Gene Summary

Gene:CCL2; C-C motif chemokine ligand 2
Aliases: HC11, MCAF, MCP1, MCP-1, SCYA2, GDCF-2, SMC-CF, HSMCR30
Summary:This gene is one of several cytokine genes clustered on the q-arm of chromosome 17. Chemokines are a superfamily of secreted proteins involved in immunoregulatory and inflammatory processes. The superfamily is divided into four subfamilies based on the arrangement of N-terminal cysteine residues of the mature peptide. This chemokine is a member of the CC subfamily which is characterized by two adjacent cysteine residues. This cytokine displays chemotactic activity for monocytes and basophils but not for neutrophils or eosinophils. It has been implicated in the pathogenesis of diseases characterized by monocytic infiltrates, like psoriasis, rheumatoid arthritis and atherosclerosis. It binds to chemokine receptors CCR2 and CCR4. [provided by RefSeq, Jul 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-C motif chemokine 2
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (75)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CCL2 (cancer-related)

Palaska I, Gagari E, Theoharides TC
The effects of P. gingivalis and E. coli LPS on the expression of proinflammatory mediators in human mast cells and their relevance to periodontal disease.
J Biol Regul Homeost Agents. 2016 Jul-Sep; 30(3):655-664 [PubMed] Related Publications
Mast cells (MCs) are tissue-resident immune cells that participate in a variety of allergic and inflammatory conditions, including periodontal disease, through the release of cytokines, chemokines and proteolytic enzymes. Porhyromonas gingivalis (P. g) is widely recognized as a major pathogen in the development and progression of periodontitis. Here we compared the differential effects of lipopolysaccharides (LPS) from P. g and E. coli on the expression and production of tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein (MCP-1) by human MCs. Human LAD2 MCs were stimulated with LPS from either P. g or E. coli (1-1000 ng/ml). MCs were also stimulated with SP (2μM) serving as the positive control or media alone as the negative control. After 24 h, the cells and supernatant fluids were collected and analyzed for β-Hexosaminidase (β-hex) spectrophotometrically, TNF, VEGF and MCP-1 release by ELISA and real-time polymerase chain reaction (PCR) for mediator gene expression, respectively. To assess the functional role of tolllike receptors (TRL) in mediator release, MCs were pre-incubated with either anti-TLR2 or anti- TLR4 (2 μg/ml) polyclonal antibody for 1 h before stimulation with LPS. When MCs were stimulated with SP (2 μM), there was a statistically significant β-hex release as well as release of TNF, VEGF and MCP-1. Stimulation of MCs with either type of LPS did not induce degranulation based on the lack of β-hex release. However, both types of LPS stimulated expression and release of TNF, VEGF and MCP-1. Although, P. g LPS induced significant release of TNF, VEGF and MCP-1, the effect was not concentration-dependent. There was no statistically significant difference between the effects of P. g and E. coli LPS. P. g LPS stimulated TNF through TLR-2 while E. coli utilized TRL-4 instead. In contrast, VEGF release by P. g LPS required both TRL-2 and TRL-4 while E. coli LPS required TLR-4. Release of MCP-1 was independent of TLR-2 or TLR-4. P. g LPS activates human MCs to generate and release TNF, VEGF and MCP-1 through different TLRs than E. coli LPS. MCs may, therefore, be involved in the inflammatory processes responsible for periodontal disease.

Kobayashi K, Koyama K, Suzukawa M, et al.
Epithelial-mesenchymal transition promotes reactivity of human lung adenocarcinoma A549 cells to CpG ODN.
Allergol Int. 2016; 65 Suppl:S45-52 [PubMed] Related Publications
BACKGROUND: Epithelial-mesenchymal transition (EMT) is reported to promote airway remodeling in asthmatics, which is the main histological change that causes complex and severe symptoms in asthmatics. However, little is known about whether EMT also plays a role in acute exacerbations of asthma evoked by respiratory tract infections.
METHODS: A human lung adenocarcinoma line, A549, was incubated with TGF-β1 at 10 ng/ml to induce EMT. Then the cells were stimulated with CpG ODN. Expression of surface and intracellular molecules was analyzed by flow cytometry. IL-6, IL-8 and MCP-1 in the culture supernatant were measured by Cytometric Bead Assay, and the expression of mRNA was quantitated by real-time PCR. CpG ODN uptake was analyzed by flow cytometry.
RESULTS: The culture supernatant levels of IL-6, IL-8 and MCP-1 and the expression of mRNA for these cytokines in CpG ODN-stimulated A549 cells that had undergone EMT was significantly higher compared to those that had not. Addition of ODN H154, a TLR9-inhibiting DNA, significantly suppressed the CpG ODN-induced production of those cytokines. However, flow cytometry found the level of TLR9 expression to be slightly lower in A549 cells that had undergone EMT compared to those that had not. On the other hand, CpG ODN uptake was increased in cells that had undergone EMT.
CONCLUSIONS: EMT induction of A549 cells enhanced CpG ODN uptake and CpG ODN-induced production of IL-6, IL-8 and MCP-1. These results suggest that EMT plays an important role in exacerbation in asthmatics with airway remodeling by enhancing sensitivity to extrinsic pathogens.

Yoon S, Kang BW, Park SY, et al.
Prognostic relevance of genetic variants involved in immune checkpoints in patients with colorectal cancer.
J Cancer Res Clin Oncol. 2016; 142(8):1775-80 [PubMed] Related Publications
PURPOSE: Genetic polymorphisms in genes involved in the immune response are already known to affect the anti-tumor immune response. This study systematically investigated the association of 14 functional SNPs in a panel of 7 genes (CCL2, CCR2, NT5E, IDO1, LAG3, PDL1, and PDCD1) involved in immune response checkpoints with the survival outcomes of Korean patients with colorectal cancer (CRC).
METHODS: The genomic DNA from 668 patients with curatively resected CRC was analyzed using a Sequenom MassARRAY, along with the association with recurrence-free survival (RFS) and overall survival (OS).
RESULTS: Among the 14 SNPs, CCL2 rs4586 and PDCD1 rs10204525 were found to have an influence on the survival outcomes of the patients with resectable CRC. CCL2 rs4586 showed a significant correlation with OS in a recessive model in a univariate analysis, as well as a multivariate analysis. In addition, PDCD1 rs10204525 revealed a significant association with RFS and OS in a recessive model in a univariate analysis and exhibited a significant impact in a multivariate analysis.
CONCLUSION: In conclusion, this results suggest that the genetic predisposition of the host may affect the anti-tumor immune reaction in CRC. The results of this study may also be helpful when selecting targets for novel drug development to promote the anti-tumor immune response.

Li X, Lin F, Zhou H
Genetic polymorphism rs3760396 of the chemokine (C-C motif) ligand 2 gene (CCL2) associated with the susceptibility of lung cancer in a pathological subtype-specific manner in Han-ancestry Chinese: a case control study.
BMC Cancer. 2016; 16:298 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chemokines are well known inflammatory factors critical for tumor development in diverse tissues, including lung cancer. Chemokine (C-C motif) Ligand 2 (CCL2) was one of such chemokines important for both primary tumor development and metastasis of various cancers. Polymorphism at rs3760396 of CCL2 genes is associated with the prognosis of non-small cell lung cancer (NSCLC). The goal of our study was to examine the relationship of genetic polymorphisms rs3760396 with the susceptibility of lung cancer and its pathological subtypes in Han-ancestry Chinese population.
METHODS: rs3760396 G/C polymorphism of CCL2 was genotyped using PCR in 394 patients with lung cancer and 545 cancer-free controls from the same Northeast region of China.
RESULTS: After controlling for gender, age and smoking status, no significant association was observed between rs3760396 polymorphism and overall lung cancer. However, minor allele G of rs3760396 polymorphism was significantly associated with increased risk of adenosquamous lung carcinoma with either allelic genetic model (OR = 5.29, P < 0.001), or dominant genetic model (OR = 9.88, P < 0.001), or genotypic model (GC genotype vs. CC genotype, OR = 10.73, P < 0.001). Although rs3760396 polymorphism was not significantly associated with increased risk of adenocarcinoma subtype, it was nominally associated with the pooled outcome of either adenocarcinoma or adenosquamous carcinoma under allelic genetic model (OR = 1.54, P = 0.023) or dominant genetic model (OR = 1.57, P = 0.031).
CONCLUSIONS: Our study suggested rs3760396 polymorphism of CCL2 is associated not only with prognosis of NSCLC, but also with risk of lung cancer in a subtype-specific manner. Our results further supported previous evidence of the important role of CCL2 in lung cancer development.

Riwaldt S, Bauer J, Wehland M, et al.
Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach.
Int J Mol Sci. 2016; 17(4):528 [PubMed] Free Access to Full Article Related Publications
Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line) after a 24 h-exposure on the Random Positioning Machine (RPM) and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis) and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

Doster A, Schwarzig U, Zygmunt M, et al.
Unfractionated Heparin Selectively Modulates the Expression of CXCL8, CCL2 and CCL5 in Endometrial Carcinoma Cells.
Anticancer Res. 2016; 36(4):1535-44 [PubMed] Related Publications
BACKGROUND/AIM: This in vitro study analyzed the impact of heparins on expression of chemokines in human endometrial adenocarcinoma cell lines.
MATERIALS AND METHODS: Cell lines were incubated with unfractionated heparin (UFH), low molecular weight heparins (LMWH) and fondparinux under hypoxic and normoxic conditions. Chemokine (C-X-C motif) ligand 8 (CXCL8), CC-chemokine ligand 2 (CCL2) and CCL5 were detected by enzyme-linked immunosorbent assays and real-time reverse transcriptase-polymerase chain reaction and cell viability by fluorometric assay.
RESULTS: Different adenocarcinoma cell lines had distinct patterns of chemokine expression. UFH attenuated the secretion of CXCL8 and CCL2, and enhanced that of CCL5. The observed effects of heparin were in addition to the anti-coagulatory properties of heparin and dependent on molecular size and charge.
CONCLUSION: UFH has selective modulating effects on the secretion of CXCL8, CCL2 and CCL5 in different endometrial adenocarcinoma cell lines. Molecular size and charge are relevant for these observed effects. By influencing the expression of these inflammatory mediators and thereby affecting the tumour microenvironment, heparins and related agents might play an essential role in the development of new therapeutic strategies.

Liu X, Jing X, Cheng X, et al.
FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation.
Med Oncol. 2016; 33(5):46 [PubMed] Related Publications
The biological role of fibroblast growth factor receptor 3 (FGFR3) in tumor angiogenesis of hepatocellular carcinoma (HCC) has not been discussed before. Our previous work had indicated FGFR3 was overexpressed in HCC, and silencing FGFR3 in Hu7 cells could regulate tumorigenesis via down-regulating the phosphorylation level of key members of classic signaling pathways including ERK and AKT. In the present work, we explored the role of FGFR3 in angiogenesis-dependent metastasis by using SMMC-7721 and QGY-7703 stable cell lines. Our results indicated FGFR3 could regulate in vitro cell migration ability and in vivo lung metastasis ability of HCC, which was in accordance with increased angiogenesis ability in vitro and in vivo. Using the supernatant from SMMC-7721/FGFR3 cells, we conducted a human angiogenesis protein microarray including 43 angiogenesis factors and found that FGFR3 modulated angiogenesis and metastasis of HCC mainly by promoting the protein level of monocyte chemotactic protein 1 (MCP-1). Silencing FGFR3 by short hairpin RNA (shRNA) could reduce MCP-1 level in lysates and supernatant of QGY-7703 cells and SMMC-7721 cells. Silencing MCP-1 in QGY-7703 or SMMC-7721 cells could induce similar phenotypes compared with silencing FGFR3. Our results suggested FGFR3 promoted metastasis potential of HCC, at least partially if not all, via facilitating MCP-1-mediated angiogenesis, in addition to previously found cell growth and metastasis. MCP-1, a key medium between HCC cells and HUVECs, might be a novel anti-vascular target in HCC.

Tewari BN, Singh Baghel K, Tripathi C, et al.
A study on local expression of NF-κB, CCL2 and their involvement in intratumoral macrophage infiltration in breast cancer.
Cell Mol Biol (Noisy-le-grand). 2016; 62(2):116-25 [PubMed] Related Publications
NF-κB has been implicated in mechanisms promoting inflammation in tumor microenvironment leading to breast cancer metastasis. Owing to critical role of CCL2 during metastasis, particularly in its capacity to act as a chemoattractant for macrophages and their precursors i.e monocytes, we decided to explore if pro-metastatic function of NF-κB could be attributable to CCL2 and/or macrophage infiltration. Through our study we provide experimental and clinical evidence in support of co-ordinated expression of chemokines CCL2, NF-κB and intratumoral macrophage content particularly with respect to breast cancer, with an additional evidence of these three variables being key determinant for poor prognosis and diminished survival amongst breast cancer patients both independently as well in a coordinated manner. The mean fold increase in mRNA expression level of NF-κB and CCL2 indicated that it was over expressed 13.57 and 13.18 fold respectively in tumor tissue as compared to adjacent normal tissue. Among these Immunohistochemistry expression of CD68 marker showed that 62 patients (66.7%) had low/moderate CD68 expression while 31 patients (33.3%) had strong expression. All three variables viz.NF-κB, CCL2 and CD68 showed significant (p<0.05 or p<0.01 or p<0.001) respectively associations with both clinicopathological (except CD68 with stage) and hormone receptors (ER, PR and Her2/neu) and their co-expressions indicating these as predictors of breast cancer. In this study we decipher the possible molecular mechanism by way of which NF-κB may promote breast cancer metastasis. Our study has clinical relevance as it establishes significance of these three variables as potential predictive markers to be employed in breast cancer.

Di Caro G, Carvello M, Pesce S, et al.
Circulating Inflammatory Mediators as Potential Prognostic Markers of Human Colorectal Cancer.
PLoS One. 2016; 11(2):e0148186 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cytokines and chemokines in the tumor microenvironment drive metastatic development and their serum levels might mirror the ongoing inflammatory reaction at the tumor site. Novel highly sensitive tools are needed to identify colorectal cancer patients at high risk of recurrence that should be more closely monitored during post-surgical follow up. Here we study whether circulating inflammatory markers might be used to predict recurrence in CRC patients.
METHODS: Circulating levels of the inflammatory cytokines IL-1, IL-6, IL-10, TNFalpha, CCL2, CXCL8, VEGF and the acute phase protein Pentraxin-3 were measured by ELISA in preoperative serum samples prospectively collected from a cohort of sixty-nine patients undergoing surgical resection for stage 0-IV CRC and associated with post-operative disease recurrence.
RESULTS: Cox multivariate analysis showed that combined high levels (≥ROC cut off-value) of CXCL8, VEGF and Pentraxin3 were associated with increased risk of disease recurrence [HR: 14.28; 95%CI: (3.13-65.1)] independently of TNM staging. Kaplan-Meier analysis showed that CXCL8, VEGF and Pentraxin3 levels were significantly associated with worse survival (P<0.001).
CONCLUSIONS: Circulating inflammatory mediators efficiently predicted postoperative recurrence after CRC surgery. Therefore, this study suggest that their validation in large-scale clinical trials may help in tailoring CRC post-surgical management.

Roblek M, Strutzmann E, Zankl C, et al.
Targeting of CCL2-CCR2-Glycosaminoglycan Axis Using a CCL2 Decoy Protein Attenuates Metastasis through Inhibition of Tumor Cell Seeding.
Neoplasia. 2016; 18(1):49-59 [PubMed] Free Access to Full Article Related Publications
The CCL2-CCR2 chemokine axis has an important role in cancer progression where it contributes to metastatic dissemination of several cancer types (e.g., colon, breast, prostate). Tumor cell-derived CCL2 was shown to promote the recruitment of CCR2(+)/Ly6C(hi) monocytes and to induce vascular permeability of CCR2(+) endothelial cells in the lungs. Here we describe a novel decoy protein consisting of a CCL2 mutant protein fused to human serum albumin (dnCCL2-HSA chimera) with enhanced binding affinity to glycosaminoglycans that was tested in vivo. The monocyte-mediated tumor cell transendothelial migration was strongly reduced upon unfused dnCCL2 mutant treatment in vitro. dnCCL2-HSA chimera had an extended serum half-life and thus a prolonged exposure in vivo compared with the dnCCL2 mutant. dnCCL2-HSA chimera bound to the lung vasculature but caused minimal alterations in the leukocyte recruitment to the lungs. However, dnCCL2-HSA chimera treatment strongly reduced both lung vascular permeability and tumor cell seeding. Metastasis of MC-38GFP, 3LL, and LLC1 cells was significantly attenuated upon dnCCL2-HSA chimera treatment. Tumor cell seeding to the lungs resulted in enhanced expression of a proteoglycan syndecan-4 by endothelial cells that correlated with accumulation of the dnCCL2-HSA chimera in the vicinity of tumor cells. These findings demonstrate that the CCL2-based decoy protein effectively binds to the activated endothelium in lungs and blocks tumor cell extravasation through inhibition of vascular permeability.

Ma J, Zhao J, Lu J, et al.
Cadherin-12 enhances proliferation in colorectal cancer cells and increases progression by promoting EMT.
Tumour Biol. 2016; 37(7):9077-88 [PubMed] Free Access to Full Article Related Publications
Cadherin-12 (CDH12) is a subtype of N-cadherin family. In this study, we investigated the expression of CDH12 and the role of CDH12 in prognosis of colorectal cancer (CRC) patients. In addition, we observed the influence of CDH12 on proliferation and progression of CRC cell lines. By using immunohistochemical staining, we analyzed CRC samples and adjacent non-tumor tissues collected from 78 patients who underwent laparoscopic surgery in Shanghai Minimally Invasive Center, China. Statistical analyses were used to analyze relationship between CDH12 and tumor features. Kaplan-Meier method was used to analyze patients' survival. Proliferation ability of CRC cells was tested by CCK-8 assay, and transwell assays were performed to detect migration and invasion ability. Western blot assay was performed to investigate epithelial-mesenchymal transition (EMT) variants. We found that expression of CDH12 in tumor tissue was higher than in adjacent normal tissue. High expression of CDH12 was associated with tumor invasion depth and predicts poor prognosis of CRC patients. Ectopic/repressing expression of CDH12 increased/decreased the proliferation and migration ability of CRC cells. CDH12 is able to increase cancer cell migration and invasion via promoting EMT by targeting transcriptional factor Snail. These findings may conclude that CDH12 may act as a predictor in CRC patients' prognosis and an oncogene in CRC cell proliferation and migration. CDH12 may influence CRC cell progression through promoting EMT by targeting Snail. In addition, CDH12 is promoted by MCP1 through induction of MCPIP.

Fleischmann KK, Pagel P, von Frowein J, et al.
The leukemogenic fusion gene MLL-AF9 alters microRNA expression pattern and inhibits monoblastic differentiation via miR-511 repression.
J Exp Clin Cancer Res. 2016; 35:9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In this study we explored the role of microRNAs (miRNAs) as mediators of leukemogenic effects of the fusion gene MLL-AF9, which results from a frequent chromosomal translocation in infant and monoblastic acute myeloid leukemia (AML).
METHODS: We performed a specific and efficient knockdown of endogenous MLL-AF9 in the human monoblastic AML cell line THP1.
RESULTS: The knockdown associated miRNA expression profile revealed 21 MLL-AF9 dependently expressed miRNAs. Gene ontology analyses of target genes suggested an impact of these miRNAs on downstream gene regulation via targeting of transcriptional modulators as well as involvement in many functions important for leukemia maintenance as e.g. myeloid differentiation, cell cycle and stem cell maintenance. Furthermore, we identified one of the most intensely repressed miRNAs, miR-511, to raise CCL2 expression (a chemokine ligand important for immunosurveillance), directly target cyclin D1, inhibit cell cycle progression, increase cellular migration and promote monoblastic differentiation. With these effects, miR-511 may have a therapeutic potential as a pro-differentiation agent as well as in leukemia vaccination approaches.
CONCLUSIONS: Our study provides new insights into the understanding of miRNAs as functional mediators of the leukemogenic fusion gene MLL-AF9 and opens new opportunities to further investigate specific therapeutic options for AML via the miRNA level.

Yan C, Song X, Yu W, et al.
Human umbilical cord mesenchymal stem cells delivering sTRAIL home to lung cancer mediated by MCP-1/CCR2 axis and exhibit antitumor effects.
Tumour Biol. 2016; 37(6):8425-35 [PubMed] Related Publications
Mesenchymal stem cells (MSCs) are believed to be a potential vehicle delivering antitumor agents for their tumor-homing capacity, while the underlying mechanism is yet to be explored. The apoptotic ligand TNF-related apoptosis-inducing ligand (TRAIL) has been suggested as a promising candidate for cancer gene therapy owing to its advantage of selectively inducing apoptosis in cancer cells while sparing normal cells. An isoleucine zipper (ISZ) added to the N-terminal of secretable soluble TRAIL (sTRAIL) can generate the trimeric form of TRAIL (ISZ-sTRAIL) and increase its antitumor potential. However, the inefficient delivery and toxicity are still obstacles for its use. In this study, the migration of human umbilical cord mesenchymal stem cells (HUMSCs) to lung cancer was observed through transwell migration assay and animal bioluminescent imaging both in vitro and in vivo. We found that the homing ability of HUMSCs was suppressed after either knocking down the expression of monocyte chemoattractant protein-1(MCP-1) in lung cancer cells or blocking CCR2 expressed on the surface of HUMSCs, indicating the important role of MCP-1/CCR2 axis in the tropism of HUMSCs to lung cancer. Furthermore, we genetically modified HUMSCs to deliver ISZ-sTRAIL to tumor sites specifically. This targeted therapeutic system exhibited promising apoptotic induction and antitumor potential in a xenograft mouse model without obvious side effects. In conclusion, HUMSCs expressing ISZ-sTRAIL might be an efficient therapeutic approach against lung cancer and MCP-1/CCR2 axis is essential for the tumor tropism of HUMSCs.

Kzhyshkowska J, Yin S, Liu T, et al.
Role of chitinase-like proteins in cancer.
Biol Chem. 2016; 397(3):231-47 [PubMed] Related Publications
Chitinase-like proteins (CLPs) are lectins combining properties of cytokines and growth factors. Human CLPs include YKL-40, YKL-39 and SI-CLP that are secreted by cancer cells, macrophages, neutrophils, synoviocytes, chondrocytes and other cells. The best investigated CLP in cancer is YKL-40. Serum and plasma levels of YKL-40 correlate with poor prognosis in breast, lung, prostate, liver, bladder, colon and other types of cancers. In combination with other circulating factors YKL-40 can be used as a predictive biomarker of cancer outcome. In experimental models YKL-40 supports tumor initiation through binding to RAGE, and is able to induce cancer cell proliferation via ERK1/2-MAPK pathway. YKL-40 supports tumor angiogenesis by interaction with syndecan-1 on endothelial cells and metastatic spread by stimulating production of pro-inflammatory and pro-invasive factors MMP9, CCL2 and CXCL2. CLPs induce production of pro- and anti-inflammatory cytokines and chemokines, and are potential modulators of inflammatory tumor microenvironment. Targeting YKL-40 using neutralizing antibodies exerts anti-cancer effect in preclinical animal models. Multifunctional role of CLPs in regulation of inflammation and intratumoral processes makes them attractive candidates for tumor therapy and immunomodulation. In this review we comprehensively analyze recent data about expression pattern, and involvement of human CLPs in cancer.

Park WY, Hong BJ, Lee J, et al.
H3K27 Demethylase JMJD3 Employs the NF-κB and BMP Signaling Pathways to Modulate the Tumor Microenvironment and Promote Melanoma Progression and Metastasis.
Cancer Res. 2016; 76(1):161-70 [PubMed] Related Publications
Histone methylation is a key epigenetic mark that regulates gene expression. Recently, aberrant histone methylation patterns caused by deregulated histone demethylases have been associated with carcinogenesis. However, the role of histone demethylases, particularly the histone H3 lysine 27 (H3K27) demethylase JMJD3, remains largely uncharacterized in melanoma. Here, we used human melanoma cell lines and a mouse xenograft model to demonstrate a requirement for JMJD3 in melanoma growth and metastasis. Notably, in contrast with previous reports examining T-cell acute lymphoblastic leukemia and hepatoma cells, JMJD3 did not alter the general proliferation rate of melanoma cells in vitro. However, JMJD3 conferred melanoma cells with several malignant features such as enhanced clonogenicity, self-renewal, and transendothelial migration. In addition, JMJD3 enabled melanoma cells not only to create a favorable tumor microenvironment by promoting angiogenesis and macrophage recruitment, but also to activate protumorigenic PI3K signaling upon interaction with stromal components. Mechanistic investigations demonstrated that JMJD3 transcriptionally upregulated several targets of NF-κB and BMP signaling, including stanniocalcin 1 (STC1) and chemokine (C-C motif) ligand 2 (CCL2), which functioned as downstream effectors of JMJD3 in self-renewal and macrophage recruitment, respectively. Furthermore, JMJD3 expression was elevated and positively correlated with that of STC1 and CCL2 in human malignant melanoma. Moreover, we found that BMP4, another JMJD3 target gene, regulated JMJD3 expression via a positive feedback mechanism. Our findings reveal a novel epigenetic mechanism by which JMJD3 promotes melanoma progression and metastasis, and suggest JMJD3 as a potential target for melanoma treatment.

Tsunekawa N, Higashi N, Kogane Y, et al.
Heparanase augments inflammatory chemokine production from colorectal carcinoma cell lines.
Biochem Biophys Res Commun. 2016; 469(4):878-83 [PubMed] Related Publications
To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production.

Mammari N, Vignoles P, Halabi MA, et al.
Interferon gamma effect on immune mediator production in human nerve cells infected by two strains of Toxoplasma gondii.
Parasite. 2015; 22:39 [PubMed] Free Access to Full Article Related Publications
Interferon gamma (IFN-γ) is the major immune mediator that prevents toxoplasmic encephalitis in murine models. The lack of IFN-γ secretion causes reactivation of latent T. gondii infection that may confer a risk for severe toxoplasmic encephalitis. We analyse the effect of IFN-γ on immune mediator production and parasite multiplication in human nerve cells infected by tachyzoites of two T. gondii strains (RH and PRU). IFN-γ decreased the synthesis of MCP-1, G-CSF, GM-CSF and Serpin E1 in all cell types. It decreased IL-6, migration inhibitory factor (MIF) and GROα synthesis only in endothelial cells, while it increased sICAM and Serpin E1 synthesis only in neurons. The PRU strain burden increased in all nerve cells and in contrast, RH strain replication was controlled in IFN-γ-stimulated microglial and endothelial cells but not in IFN-γ-stimulated neurons. The proliferation of the PRU strain in all stimulated cells could be a specific effect of this strain on the host cell.

Zhou P, Zhang Q, Zhao Y, et al.
IL-17 promoted the inhibition of medulloblastoma in mice by splenocyte injection.
Eur J Med Res. 2015; 20:98 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Interleukin 17 (IL-17) is a proinflammatory cytokine produced by a new subset of activated CD4+ T cells, Th17 cells. We previously showed that increased Th17 cell populations were presented in human medulloblastoma-infiltrating T cells and peripheral blood. In this study, we attempted to address the possible role of Th17 cells in the biologic activity of IL-17 for tumor control.
METHODS: We grafted fresh surgically obtained medulloblastoma into syngeneic athymic nude/nude mice. We intrapertonially injected splenocyte and murine IL-17 in mice on the second day. The tumor volume and the life spans of the mice were measured. Meanwhile, the IL-17, IL-6, IL-23, Ccl2, Ccl20 and IFN-gamma expression in the tumors was also examined by real-time PCR, Western blot and enzyme-linked immunosorbent assay.
RESULTS: We found that medulloblastoma growth in IL-17-injected mice was significantly inhibited compared to the non-IL-17 treated mice. In contrast to the IL-17 antitumor activity observed in mice injected with splenocytes, we observed that IFN-gamma, IL-6, IL-23, Ccl2, and Ccl20 proteins were significantly increased in tumor tissues of mice injected with IL-17.
CONCLUSIONS: These experiments suggest that IL-17 may promote splenocyte antitumor activity in medulloblastoma. We postulate that IL-17's antitumor activity may be related to the increased protein levels of IFN-gamma, IL-6, IL-23, Ccl2, and Ccl20.

Vergani E, Di Guardo L, Dugo M, et al.
Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b.
Oncotarget. 2016; 7(4):4428-41 [PubMed] Free Access to Full Article Related Publications
In melanoma, the adaptative cell response to BRAF inhibitors includes altered patterns of cytokine production contributing to tumor progression and drug resistance. Among the factors produced by PLX4032-resistant melanoma cell lines, CCL2 was higher compared to the sensitive parental cell lines and increased upon drug treatment. CCL2 acted as an autocrine growth factor for melanoma cells, stimulating the proliferation and resistance to apoptosis. In patients, CCL2 is detected in melanoma cells in tumors and in plasma at levels that correlate with tumor burden and lactate dehydrogenase. Vemurafenib treatment increased the CCL2 levels in plasma, whereas the long-term clinical response was associated with low CCL2 levels.Increased CCL2 production was associated with miRNA deregulation in the resistant cells. miR-34a, miR-100 and miR-125b showed high expression in both resistant cells and in tumor biopsies that were obtained from treated patients, and they were involved in the control of cell proliferation and apoptosis. Inhibition of CCL2 and of the selected miRNAs restored both the cell apoptosis and the drug efficacy in resistant melanoma cells. Therefore, CCL2 and miRNAs are potential prognostic factors and attractive targets for counteracting treatment resistance in metastatic melanoma.

Hsu FT, Chen TC, Chuang HY, et al.
Enhancement of adoptive T cell transfer with single low dose pretreatment of doxorubicin or paclitaxel in mice.
Oncotarget. 2015; 6(42):44134-50 [PubMed] Free Access to Full Article Related Publications
Ex vivo expansion of CD8+ T-cells has been a hindrance for the success of adoptive T cell transfer in clinic. Currently, preconditioning with chemotherapy is used to modulate the patient immunity before ACT, however, the tumor microenvironment beneficial for transferring T cells may also be damaged. Here preconditioning with single low dose of doxorubicin or paclitaxel combined with fewer CD8+ T-cells was investigated to verify whether the same therapeutic efficacy of ACT could be achieved. An E.G7/OT1 animal model that involved adoptive transfer of OVA-specific CD8+ T-cells transduced with a granzyme B promoter-driven firefly luciferase and tomato fluorescent fusion reporter gene was used to evaluate this strategy. The result showed that CD8+ T-cells were activated and sustained longer in mice pretreated with one low-dose Dox or Tax. Enhanced therapeutic efficacy was found in Dox or Tax combined with 2x106 CD8+ T-cells and achieved the same level of tumor growth inhibition as that of 5x106 CD8+ T-cells group. Notably, reduced numbers of Tregs and myeloid derived suppressor cells were shown in combination groups. By contrast, the number of tumor-infiltrating cytotoxic T lymphocytes and IL-12 were increased. The NF-κB activity and immunosuppressive factors such as TGF-β, IDO, CCL2, VEGF, CCL22, COX-2 and IL-10 were suppressed. This study demonstrates that preconditioning with single low dose Dox or Tax and combined with two fifth of the original CD8+ T-cells could improve the tumor microenvironment via suppression of NF-κB and its related immunosuppressors, and activate more CD8+ T-cells which also stay longer.

O'Donnell C, Mahmoud A, Keane J, et al.
An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer.
Br J Cancer. 2016; 114(1):37-43 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Despite the importance of inflammation in cancer, the role of the cytokine IL-33, and its receptor ST2, in colon cancer is unclear. The aim of this study was to investigate the role of IL-33, and its receptor isoforms (ST2 and ST2L), in colon cancer.
METHODS: Serum levels of IL-33 and sST2 were determined with ELISA. ST2 and IL-33 expression was detected with quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. ST2 expression in CT26 cells was stably suppressed using ST2-specific shRNA. Cytokine and chemokine gene expression was detected with qRT-PCR.
RESULTS: Human colon tumours showed lower expression of ST2L as compared with adjacent non-tumour tissue (P<0.01). Moreover, the higher the tumour grade, the lower the expression of ST2L (P=0.026). Colon cancer cells expressed ST2 and IL-33 in vitro. Functional analyses showed that stimulation of tumour cells with IL-33 induced the expression of chemokine (C-C motif) ligand 2 (CCL2). Knockdown of ST2 in murine colon cancer cells resulted in enhanced tumour growth (P<0.05) in BALB/c mice in vivo. This was associated with a decrease in macrophage infiltration, with IL-33-induced macrophage recruitment reduced by antagonising CCL2 in vitro.
CONCLUSION: The IL-33/ST2 signalling axis may have a protective role in colon carcinogenesis.

Passaro C, Borriello F, Vastolo V, et al.
The oncolytic virus dl922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma.
Oncotarget. 2016; 7(2):1500-15 [PubMed] Free Access to Full Article Related Publications
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human solid tumor and current treatments are ineffective in increasing patients' survival. Thus, the development of new therapeutic approaches for ATC is needed. We have previously shown that the oncolytic adenovirus dl922-947 induces ATC cell death in vitro and tumor regression in vivo. However, the impact of dl922-947 on the pro-tumorigenic ATC microenvironment is still unknown. Since viruses are able to regulate cytokine and chemokine production from infected cells, we sought to investigate whether dl922-947 virotherapy has such effect on ATC cells, thereby modulating ATC microenvironment. dl922-947 decreased IL-8/CXCL8 and MCP-1/CCL2 production by the ATC cell lines 8505-c and BHT101-5. These results correlated with dl922-947-mediated reduction of NF-κB p65 binding to IL8 promoter in 8505-c and BHT101-5 cells and CCL2 promoter in 8505-c cells. IL-8 stimulates cancer cell proliferation, survival and invasion, and also angiogenesis. dl922-947-mediated reduction of IL-8 impaired ATC cell motility in vitro and ATC-induced angiogenesis in vitro and in vivo. We also show that dl922-947-mediated reduction of the monocyte-attracting chemokine CCL2 decreased monocyte chemotaxis in vitro and tumor macrophage density in vivo. Interestingly, dl922-947 treatment induced the switch of tumor macrophages toward a pro-inflammatory M1 phenotype, likely by increasing the expression of the pro-inflammatory cytokine interferon-γ. Altogether, we demonstrate that dl922-947 treatment re-shape the pro-tumorigenic ATC microenvironment by modulating cancer-cell intrinsic factors and the immune response. An in-depth knowledge of dl922-947-mediated effects on ATC microenvironment may help to refine ATC virotherapy in the context of cancer immunotherapy.

Li X, Liu C, Ip BC, et al.
Tumor progression locus 2 ablation suppressed hepatocellular carcinoma development by inhibiting hepatic inflammation and steatosis in mice.
J Exp Clin Cancer Res. 2015; 34:138 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumor progression locus 2 (TPL2), a serine-threonine kinase, functions as a critical regulator of inflammatory pathways and mediates oncogenic events. The potential role of Tpl2 in nonalcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) development remains unknown.
METHODS: Both wild-type and Tpl2 knockout male mice were initiated by a hepatic carcinogen (diethylnitrosamine, i.p. with a single dose of 25 2 weeks of age, and then were given the high carbohydrate diet feeding to induce hepatic steatosis, inflammation, adenoma and HCC for 24 weeks.
RESULTS: Tpl2 knockout mice had significantly lower incidences of liver tumor and developed hepatocellular adenoma only, which is contrast to wild-type mice where they all developed HCC. Tpl2 knockout mice had significantly down-regulated phosphorylation of JNK and ERK, and levels of mRNA expression of pro-inflammatory cytokines (Il-1β, Il-18, Mcp-1 and Nalp3), which correlated with the reduced incidence and number of hepatic inflammatory foci. Furthermore, Tpl2 ablation resulted in decreased hepatic steatosis and expression of de novo lipogenesis related markers (ACC, SCD1, SREBP1C and AKT phosphorylation), as well as reduction of endoplasmic reticulum stress biomarkers PERK and eIF-2a.
CONCLUSION: The study revealed for the first time that Tpl2 plays a significant role in promoting HCC development by its pro-inflammatory effect, which suggested that Tpl2 could be a molecular target for HCC prevention.

Callari M, Guffanti A, Soldà G, et al.
In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays.
Oncotarget. 2016; 7(1):976-94 [PubMed] Free Access to Full Article Related Publications
Numerous studies have reported the existence of tumor-promoting cells (TPC) with self-renewal potential and a relevant role in drug resistance. However, pathways and modifications involved in the maintenance of such tumor subpopulations are still only partially understood. Sequencing-based approaches offer the opportunity for a detailed study of TPC including their transcriptome modulation. Using microarrays and RNA sequencing approaches, we compared the transcriptional profiles of parental MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using different bioinformatic approaches, and major findings were experimentally validated. The different analytical pipelines (Lifescope and Cufflinks based) yielded similar although not identical results. RNA sequencing data partially overlapped microarray results and displayed a higher dynamic range, although overall the two approaches concordantly predicted pathway modifications. Several biological functions were altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding RNAs were defined as differentially expressed, and 2,471 potential splicing events were identified. A consensus signature of genes up-regulated in TPC was derived and was found to be significantly associated with insensitivity to fulvestrant in a public breast cancer patient dataset. Overall, we obtained a detailed portrait of the transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs and differential splicing, and identified a gene signature with a potential as a context-specific biomarker in patients receiving endocrine treatment.

Alečković M, Kang Y
Welcoming Treat: Astrocyte-Derived Exosomes Induce PTEN Suppression to Foster Brain Metastasis.
Cancer Cell. 2015; 28(5):554-6 [PubMed] Related Publications
Metastasis to distant organs depends on pathological crosstalk between tumor cells and various tissue-specific stromal components. Zhang and colleagues recently demonstrated that astrocyte-derived exosomal miR-19a reversibly downregulated PTEN expression in cancer cells, thereby increasing their CCL2 secretion and recruitment of myeloid cell to promote brain metastasis.

Jiang K, Sun Y, Wang C, et al.
Genome-wide association study identifies two new susceptibility loci for colorectal cancer at 5q23.3 and 17q12 in Han Chinese.
Oncotarget. 2015; 6(37):40327-36 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWAS) have reported a number of loci harboring common variants that influence risk of colorectal cancer (CRC) in European descent. But all the SNPs identified explained a small fraction of total heritability. To identify more genetic factors that modify the risk of CRC, especially Chinese Han specific, we conducted a three-stage GWAS including a screening stage (932 CRC cases and 966 controls) and two independent validations (Stage 2: 1,759 CRC cases and 1,875 controls; Stage 3: 943 CRC cases and 1,838 controls). In the combined analyses, we discovered two novel loci associated with CRC: rs12522693 at 5q23.3 (CDC42SE2-CHSY3, OR = 1.31, P = 2.08 × 10-8) and rs17836917 at 17q12 (ASIC2-CCL2, OR = 0.75, P = 4.55 × 10-8). Additionally, we confirmed two previously reported risk loci, rs6983267 at 8q24.21 (OR = 1.17, P = 7.17 × 10-7) and rs10795668 at 10p14 (OR = 0.86, P = 2.96 × 10-6) in our cohorts. These results bring further insights into the CRC susceptibility and advance our understanding on etiology of CRC.

Zhang L, Zhang S, Yao J, et al.
Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth.
Nature. 2015; 527(7576):100-4 [PubMed] Free Access to Full Article Related Publications
The development of life-threatening cancer metastases at distant organs requires disseminated tumour cells' adaptation to, and co-evolution with, the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interaction between metastatic tumour cells and extrinsic signals at individual metastatic organ sites critically effects the subsequent metastatic outgrowth. Yet, it is unclear when and how disseminated tumour cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that both human and mouse tumour cells with normal expression of PTEN, an important tumour suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumour cells is restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation is epigenetically regulated by microRNAs from brain astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting microRNAs to metastatic tumour cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumour cells leads to an increased secretion of the chemokine CCL2, which recruits IBA1-expressing myeloid cells that reciprocally enhance the outgrowth of brain metastatic tumour cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumour cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic outgrowth. Our findings signify the dynamic and reciprocal cross-talk between tumour cells and the metastatic niche; importantly, they provide new opportunities for effective anti-metastasis therapies, especially of consequence for brain metastasis patients.

Fabbri E, Brognara E, Montagner G, et al.
Regulation of IL-8 gene expression in gliomas by microRNA miR-93.
BMC Cancer. 2015; 15:661 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Different strategies have been proposed to target neoangiogenesis in gliomas, besides those targeting Vascular Endothelial Growth Factor (VEGF). The chemokine Interleukin-8 (IL-8) has been shown to possess both tumorigenic and proangiogenic properties. Although different pathways of induction of IL-8 gene expression have been already elucidated, few data are available on its post-transcriptional regulation in gliomas.
METHODS: Here we investigated the role of the microRNA miR-93 on the expression levels of IL-8 and other pro-inflammatory genes by RT-qPCR and Bio-Plex analysis. We used different disease model systems, including clinical samples from glioma patients and two glioma cell lines, U251 and T98G.
RESULTS: IL-8 and VEGF transcripts are highly expressed in low and high grade gliomas in respect to reference healthy brain; miR-93 expression is also increased and inversely correlated with transcription of IL-8 and VEGF genes. Computational analysis showed the presence of miR-93 consensus sequences in the 3'UTR region of both VEGF and IL-8 mRNAs, predicting possible interaction with miR-93 and suggesting a potential regulatory role of this microRNA. In vitro transfection with pre-miR-93 and antagomiR-93 inversely modulated VEGF and IL-8 gene expression and protein release when the glioma cell line U251 was considered. Similar data were obtained on IL-8 gene regulation in the other glioma cell line analyzed, T98G. The effect of pre-miR-93 and antagomiR-93 in U251 cells has been extended to the secretion of a panel of cytokines, chemokines and growth factors, which consolidated the concept of a role of miR-93 in IL-8 and VEGF gene expression and evidenced a potential regulatory role also for MCP-1 and PDGF (also involved in angiogenesis).
CONCLUSION: In conclusion, our results suggest an increasing role of miR-93 in regulating the level of expression of several genes involved in the angiogenesis of gliomas.

Meulendijks D, Lassen UN, Siu LL, et al.
Exposure and Tumor Fn14 Expression as Determinants of Pharmacodynamics of the Anti-TWEAK Monoclonal Antibody RG7212 in Patients with Fn14-Positive Solid Tumors.
Clin Cancer Res. 2016; 22(4):858-67 [PubMed] Related Publications
PURPOSE: The TWEAK-Fn14 pathway represents a novel anticancer target that is being actively investigated. Understanding the relationship between pharmacokinetics of anti-TWEAK therapeutics and tumor pharmacodynamics is critical. We investigated exposure-response relationships of RG7212, an anti-TWEAK mAb, in patients with Fn14-expressing tumors.
EXPERIMENTAL DESIGN: Patients with Fn14-positive tumors (IHC ≥ 1+) treated in a phase I first-in-human study with ascending doses of RG7212 were the basis for this analysis. Pharmacokinetics of RG7212 and dynamics of TWEAK were determined, as were changes in tumor TWEAK-Fn14 signaling in paired pre- and posttreatment tumor biopsies. The objectives of the analysis were to define exposure-response relationships and the relationship between pretreatment tumor Fn14 expression and pharmacodynamic effect. Associations between changes in TWEAK-Fn14 signaling and clinical outcome were explored.
RESULTS: Thirty-six patients were included in the analysis. RG7212 reduced plasma TWEAK to undetectable levels at all observed RG7212 exposures. In contrast, reductions in tumor Fn14 and TRAF1 protein expression were observed only at higher exposure (≥ 300 mg*h/mL). Significant reductions in tumor Ki-67 expression and early changes in serum concentrations of CCL-2 and MMP-9 were observed exclusively in patients with higher drug exposure who had high pretreatment tumor Fn14 expression. Pretreatment tumor Fn14 expression was not associated with outcome, but a trend toward longer time on study was observed with high versus low RG7212 exposure.
CONCLUSIONS: RG7212 reduced tumor TWEAK-Fn14 signaling in a systemic exposure-dependent manner. In addition to higher exposure, relatively high Fn14 expression might be required for pharmacodynamic effect of anti-TWEAK monoclonal antibodies.

Cohen CA, Shea AA, Heffron CL, et al.
Interleukin-12 Immunomodulation Delays the Onset of Lethal Peritoneal Disease of Ovarian Cancer.
J Interferon Cytokine Res. 2016; 36(1):62-73 [PubMed] Free Access to Full Article Related Publications
The omental fat band (OFB) is the predominant site for metastatic seeding of ovarian cancer. Previously, we highlighted the influx and accumulation of neutrophils and macrophages in the OFB following syngeneic ovarian cancer cell seeding as an important factor in the development of a protumorigenic cascade. Here we investigated localized immunomodulation as a means of promoting a successful protective response. As an important TH1-type immunomodulator, interleukin (IL)-12 has previously been investigated clinically as an anticancer therapeutic. However, systemic IL-12 administration was associated with serious side effects, galvanizing the development of immune or accessory cells engineered to express secreted or membrane-bound IL-12 (mbIL-12). Using an mbIL-12-expressing cell variant, we demonstrate that localized IL-12 in the tumor microenvironment significantly delays disease development. The mbIL-12-mediated decrease in tumor burden was associated with a significant reduction in neutrophil and macrophage infiltration in the OFB, and correlated with a reduced expression of neutrophil and macrophage chemoattractants (CXCL1, -2, -3 and CCL2, -7). Vaccination with mitotically impaired tumor cells did not confer protection against subsequent tumor challenge, indicating that IL-12 did not impact the immunogenicity of the cancer cells. Our findings are in agreement with previous reports suggesting that IL-12 may hold promise when delivered in a targeted and sustained manner to the omental microenvironment. Furthermore, resident cells within the omental microenvironment may provide a reservoir that can be activated and mobilized to prevent metastatic seeding within the peritoneum and, therefore, may be targets for chemotherapeutics.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCL2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999