H2AFX

Gene Summary

Gene:H2AFX; H2A histone family member X
Aliases: H2AX, H2A.X, H2A/X
Location:11q23.3
Summary:Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene encodes a replication-independent histone that is a member of the histone H2A family, and generates two transcripts through the use of the conserved stem-loop termination motif, and the polyA addition motif. [provided by RefSeq, Oct 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:histone H2AX
Source:NCBIAccessed: 09 March, 2017

Ontology:

What does this gene/protein do?
Show (25)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA-Binding Proteins
  • Testis
  • Superoxides
  • Radiotherapy, Conformal
  • Histones
  • Skin
  • Cervical Cancer
  • Radiotherapy
  • Tumor Stem Cell Assay
  • Cell Cycle Proteins
  • Mitosis
  • DNA Damage
  • fms-Like Tyrosine Kinase 3
  • Ataxia Telangiectasia Mutated Proteins
  • Angiogenesis
  • Young Adult
  • H2AFX
  • Virus Latency
  • Translational Medical Research
  • Oxidative Stress
  • Antineoplastic Agents
  • Risk Factors
  • Cancer Gene Expression Regulation
  • Breast Cancer
  • Mutation
  • DNA Repair
  • Chromosome 11
  • Radiation-Sensitizing Agents
  • bcl-2-Associated X Protein
  • Signal Transduction
  • Risk Assessment
  • Translocation
  • Reactive Oxygen Species
  • Sequence Homology, Nucleic Acid
  • RTPCR
  • Double-Stranded DNA Breaks
  • Ubiquitin-Protein Ligases
  • Phosphorylation
  • Viral Proteins
  • Transcriptional Activation
  • Apoptosis
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: H2AFX (cancer-related)

Chen Y, Chen J, Yun L, et al.
Hydroquinone-induced malignant transformation of TK6 cells by facilitating SIRT1-mediated p53 degradation and up-regulating KRAS.
Toxicol Lett. 2016; 259:133-42 [PubMed] Related Publications
Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS.

Gorska M, Wyszkowska RM, Kuban-Jankowska A, Wozniak M
Impact of Apparent Antagonism of Estrogen Receptor β by Fulvestrant on Anticancer Activity of 2-Methoxyestradiol.
Anticancer Res. 2016; 36(5):2217-26 [PubMed] Related Publications
Osteosarcoma is one of the most malignant bone tumors of childhood and adolescence. Interestingly, the presence of estrogen receptors α and β has been reported in human bone cells, including osteosarcoma. Thus, inhibitors of estrogens such as fulvestrant, are considered candidates for novel endocrine therapy in treatment of osteosarcoma. Another anticancer agent that seems to be very effective in treatment of osteosarcoma is a derivative of 17β-estradiol, 2-methoxyestradiol. The aim of this study was to determine the anticancer activities of pure anti-estrogen, fulvestrant and combined treatment of fulvestrant and 2-methoxyestradiol towards highly metastatic osteosarcoma 143B cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used in order to determine the antiproliferative potential of the compounds, and western blotting for estrogen receptors α and β. Flow cytometry was used in order to determine induction of cell death, cell-cycle arrest, mitochondrial depolarization, and DNA damage. Herein, we showed that fulvestrant has anticancer activity only at high concentrations. We were able to find and expression of estrogen receptor β, while we did not detect estrogen receptor α in osteosarcoma 143B cells. Moreover, fulvestrant down-regulated the expression of estrogen receptor β, and this effect was reversed by 2-methoxyestradiol. Thus, the obtained data suggest that 2-methoxyestradiol may exert part of its anticancer activity through modulation of expression of estrogen receptor β.

Chen XY, Wang Z, Li B, et al.
Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells.
Biochem Biophys Res Commun. 2016; 473(1):296-302 [PubMed] Related Publications
Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer.

Sorice A, Guerriero E, Volpe MG, et al.
Differential Response of Two Human Breast Cancer Cell Lines to the Phenolic Extract from Flaxseed Oil.
Molecules. 2016; 21(3):319 [PubMed] Related Publications
Many studies have evidenced that the phenolic components from flaxseed (FS) oil have potential health benefits. The effect of the phenolic extract from FS oil has been evaluated on two human breast cancer cell lines, MCF7 and MDA-MB231, and on the human non-cancerous breast cell line, MCF10A, by SRB assay, cellular death, cell cycle, cell signaling, lipid peroxidation and expression of some key genes. We have evidenced that the extract shows anti-proliferative activity on MCF7 cells by inducing cellular apoptosis, increase of the percentage of cells in G0/G1 phase and of lipid peroxidation, activation of the H2AX signaling pathway, and upregulation of a six gene signature. On the other hand, on the MDA-MB2131 cells we verified only an anti-proliferative activity, a weak lipid peroxidation, the activation of the PI3K signaling pathway and an up-regulation of four genes. Overall these data suggest that the extract has both cytotoxic and pro-oxidant effects only on MCF7 cells, and can act as a metabolic probe, inducing differences in the gene expression. For this purpose, we have performed an interactomic analysis, highlighting the existing associations. From this approach, we show that the phenotypic difference between the two cell lines can be explained through their differential response to the phenolic extract.

Kitange GJ, Mladek AC, Schroeder MA, et al.
Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins.
Cell Rep. 2016; 14(11):2587-98 [PubMed] Free Access to Full Article Related Publications
Here we provide evidence that RBBP4 modulates temozolomide (TMZ) sensitivity through coordinate regulation of two key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT) and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition, and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51, and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac) and increased H3K9 tri-methylation (H3K9me3). Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin-modifying complex that binds within the promoter of MGMT, RAD51, and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. The RBBP4/CBP/p300 complex may provide an interesting target for developing therapy-sensitizing strategies for GBM and other tumors.

Yang XX, Ma M, Sang MX, et al.
Radiosensitization of esophageal carcinoma cells by knockdown of RNF2 expression.
Int J Oncol. 2016; 48(5):1985-96 [PubMed] Related Publications
Radiotherapy has been widely used for the treatment of cancer patients, especially for esophageal cancer patients. Ring finger protein 2 (RNF2) plays an important role in promoting the growth of cancer cells after exposure to irradiation. The present study aims to characterize the proliferative effects of RNF2 on cancer cells, and its mechanisms on the growth of esophageal cancer cells. We demonstrate that expression of RNF2 was markedly upregulated in esophageal cancer cell lines and surgically resected cancer specimens. In addition, RNF2 expression level is positively correlated with the presence of tumor size, lymph node metastases and negatively correlated with patient survival rates, suggesting that it plays an important role in the progression of esophageal cancer. Furthermore, the expression of RNF2 at both mRNA and protein levels in esophageal cancer ECA109 and TE13 cells was detected by real-time PCR and western blot assay after shRNA targeting RNF2. Co-immunoprecipitation (Co-IP) assay and western blot analysis were employed to detect the interaction between RNF2 and r-H2AX, H2AK119ub, and the expression of proteins associated with cell cycle and apoptosis, respectively. We used flow cytometry assay to analyze cell cycle and apoptosis of transfected cells, and further examined cellular growth in vitro and in vivo. shRNA targeting RNF2 gene and protein downregulated RNF2 expression after transfection for 24 h. The proliferation of tumor cells in RNF2-shRNA group was suppressed after radiotherapy. In addition, the interaction of RNF2, H2AK119ub, r-H2AX was increased after exposure to IR, followed by increasing apoptosis rates and inducing the arrest at G0/G1 phase after irradiation and shRNA targeting RNF2. Expression of the short-hairpin RNA is also correlated with the upregulation of p16 and Bax, and the downregulation of cyclin D2, cyclin-dependent kinase (CDK)-4, H2AX and Bcl-2. RNF2 gene knockdown induces radiosensitivity of esophageal cancer cells in vitro and significantly inhibits the growth of tumor cells. The mechanisms include inducing the cell cycle arrest at G0/G1 phase and promoting apoptosis.

Ding X, Yang Q, Kong X, et al.
Radiosensitization effect of Huaier on breast cancer cells.
Oncol Rep. 2016; 35(5):2843-50 [PubMed] Related Publications
Radiotherapy is a critical treatment strategy for breast cancer. However, its wide application is sometimes restricted by radioresistance and radiotoxicity. Trametes robiniophila Murr. (Huaier), an officinal fungus used as a traditional Chinese medicine (TCM), is reported to have multi-biological functions during cancer treatment. Yet, its radiosensitization effects have not been evaluated to date. In the present study, using HTA 2.0 transcriptome microarray assay, Huaier was found to downregulate genes related to the cell cycle, cell division, cell cycle phases and DNA repair. This investigation utilized a colony formation assay to confirm the ability of Huaier to sensitize breast cancer cells to radiotherapy. Flow cytometry, immunofluorescence staining and western blotting were used to illustrate the sensitization mechanism. Our findings suggest that Huaier causes G0/G1 arrest through downregulation of cell cycle-regulating proteins in MCF-7 and MDA-MB-468 cells, prolongs the persistence of γ-H2Ax foci after radiotherapy and interferes with the homologous recombination (HR) pathway of DNA repair by downregulating RAD51. These results suggest that Huaier has the ability to sensitize breast cancer cells to radiotherapy through regulation of the cell cycle and DNA repair pathway. Thus, Huaier may be a promising radiosensitizer for the treatment of breast cancer.

Liu X, Wang S, Guo X, et al.
Exogenous p53 and ASPP2 expression enhances rAdV-TK/ GCV-induced death in hepatocellular carcinoma cells lacking functional p53.
Oncotarget. 2016; 7(14):18896-905 [PubMed] Free Access to Full Article Related Publications
Suicide gene therapy using herpes simplex virus-1 thymidine kinase (HSV-TK) in combination with ganciclovir (GCV) has emerged as a potential new method for treating cancer. We hypothesize that the efficacy of HSV-TK/GCV therapy is at least partially dependent on p53 status in hepatocellular carcinoma (HCC) patients. Using recombinant adenoviral vectors (rAdV), TK, p53, and ASPP2 were overexpressed individually and in combination in Hep3B (p53 null) and HepG2 (p53 wild-type) cell lines and in primary HCC tumor cells. p53 overexpression induced death in Hep3B cells, but not HepG2 cells. ASPP2 overexpression increased rAdV-TK/GCV-induced HepG2 cell death by interacting with endogenous p53. Similarly, ASPP2 reduced survival in rAdV-TK/GCV-treated primary HCC cells expressing p53 wild-type but not a p53 R249S mutant. Mutated p53 was unable to bind to ASPP2, suggesting that the increase in rAdV-TK/GCV-induced cell death resulting from ASPP2 overexpression was dependent on its interaction with p53. Additionally, γ-H2AX foci, ATM phosphorylation, Bax, and p21 expression increased in rAdV-TK/GCV-treated HepG2 cells as compared to Hep3B cells. This suggests that the combined use of HSV-TK, GCV, rAdV-p53 and rAdV-ASPP2 may improve therapeutic efficacy in HCC patients lacking functional p53.

Mavuluri J, Beesetti S, Surabhi R, et al.
Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells.
Mol Cell Biol. 2016; 36(9):1354-65 [PubMed] Free Access to Full Article Related Publications
Multifunctional adaptor proteins encompassing various protein-protein interaction domains play a central role in the DNA damage response pathway. In this report, we show that KIBRA is a physiologically interacting reversible substrate of ataxia telangiectasia mutated (ATM) kinase. We identified the site of phosphorylation in KIBRA as threonine 1006, which is embedded within the serine/threonine (S/T) Q consensus motif, by site-directed mutagenesis, and we further confirmed the same with a phospho-(S/T) Q motif-specific antibody. Results from DNA repair functional assays such as the γ-H2AX assay, pulsed-field gel electrophoresis (PFGE), Comet assay, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and clonogenic cell survival assay using stable overexpression clones of wild-type (wt.) KIBRA and active (T1006E) and inactive (T1006A) KIBRA phosphorylation mutants showed that T1006 phosphorylation on KIBRA is essential for optimal DNA double-strand break repair in cancer cells. Further, results from stable retroviral short hairpin RNA-mediated knockdown (KD) clones of KIBRA and KIBRA knockout (KO) model cells generated by a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that depleting KIBRA levels compromised the DNA repair functions in cancer cells upon inducing DNA damage. All these phenotypic events were reversed upon reconstitution of KIBRA into cells lacking KIBRA knock-in (KI) model cells. All these results point to the fact that phosphorylated KIBRA might be functioning as a scaffolding protein/adaptor protein facilitating the platform for further recruitment of other DNA damage response factors. In summary, these data demonstrate the imperative functional role of KIBRAper se(KIBRA phosphorylation at T1006 site as a molecular switch that regulates the DNA damage response, possibly via the nonhomologous end joining [NHEJ] pathway), suggesting that KIBRA could be a potential therapeutic target for modulating chemoresistance in cancer cells.

Zhou Q, Ji M, Zhou J, et al.
Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer.
Biochem Pharmacol. 2016; 107:29-40 [PubMed] Related Publications
Poly (ADP-ribose) polymerases (PARPs) facilitate repairing of cancer cell DNA damage as a mean to promote cancer proliferation and metastasis. Inhibitors of PARPs which interfering DNA repair, in context of defects in other DNA repair mechanisms, can thus be potentially exploited to inhibit or even kill cancer cells. However, nondiscriminatory inhibition of PARPs, such as PARP2, may lead to undesired consequences. Here, we demonstrated the design and development of the Zj6413 as a potent and selective PARP1 catalytic inhibitor. It trapped PARP1/2 at damaged sites of DNA. As expected, the Zj6413 showed notable anti-tumor activity against breast cancer gene (BRCA) deficient triple negative breast cancers (TNBCs). Zj6413 treated breast cancers (BCs) showed an elevated level of DNA damage evidenced by the accumulation of γ-H2AX foci and DNA damaged related proteins. Zj6413 also induced G2/M arrest and cell death in the MX-1, MDA-MB-453 BC cells, exerted chemo-sensitizing effect on BRCA proficient cancer cells and potentiated Temozolomide (TMZ)'s cytotoxicity in MX-1 xenograft tumors mice. In conclusion, our study provided evidence that a new PARP inhibitor strongly inhibited the catalytic activity of PARPs, trapped them on nicked DNA and damaged the cancer cells, eventually inhibiting the growth of breast tumor cells in vitro and in vivo.

Tièche CC, Peng RW, Dorn P, et al.
Prolonged pemetrexed pretreatment augments persistence of cisplatin-induced DNA damage and eliminates resistant lung cancer stem-like cells associated with EMT.
BMC Cancer. 2016; 16:125 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung cancer is the leading cause of cancer-related mortality, and new therapeutic options are urgently needed. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers, with the current standard regimen of care for NSCLC including chemotherapy with pemetrexed as a single agent or in combination with platinum-based agents, e.g. cisplatin. Pemetrexed is a folic acid antagonist that inhibits the synthesis of precursor nucleotides, whereas cisplatin directly induces DNA adducts, the repair of which is dependent on sufficiently high nucleotide levels. In the clinical setting, the pemetrexed-cisplatin combination therapy is administered concomitantly. We hypothesized that prolonged pretreatment with pemetrexed could be beneficial, as prior depletion of nucleotide pools could sensitize cancer cells to subsequent treatment with cisplatin.
METHODS: NSCLC A549 and H460 cells were treated with pemetrexed for 72 h. In addition, 24 h of cisplatin treatment was initiated at day 1, 2 or 3 resulting in either simultaneous pemetrexed application or pemetrexed pretreatment for 24 or 48 h, respectively. Cell growth and colony formation as well as senescence induction were quantified after treatment. Cell cycle distribution and phosphorylation of histone variant H2AX as a surrogate marker for DNA damage was quantified by flow cytometry. Relative changes in gene expression were determined by quantitative real time PCR.
RESULTS: Prolonged pemetrexed pretreatment for 48 h prior to cisplatin treatment maximally delayed long-term cell growth and significantly reduced the number of recovering clones. Moreover, apoptosis and senescence were augmented and recovery from treatment-induced DNA damage was delayed. Interestingly, a cell population was identified that displayed an epithelial-to-mesenchymal transition (EMT) and which had a stem cell phenotype. This population was highly resistant to concomitant pemetrexed-cisplatin treatment but was sensitized by pemetrexed pretreatment.
CONCLUSIONS: Adaptation of the standard treatment schedule to include pretreatment with pemetrexed optimizes the anticancer efficiency of pemetrexed-cisplatin combination therapy, which correlates with a persistence of treatment-induced DNA damage. Therefore, this study warrants further investigations to elucidate whether such an adaptation could enhance the effectiveness of the standard clinical treatment regimen. In addition, a subpopulation of therapy resistant cells with EMT and cancer stem cell features was identified that was resistant to the standard treatment regimen but sensitive to pemetrexed pretreatment combined with cisplatin.

Weyemi U, Redon CE, Choudhuri R, et al.
The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition.
Nat Commun. 2016; 7:10711 [PubMed] Free Access to Full Article Related Publications
The epithelial-mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induces mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reverses these changes, as does silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibit a similar metastatic behaviour, but the cells with re-expressed H2A.X are substantially more metastatic. We surmise that H2A.X re-expression leads to partial EMT reversal and increases robustness in the HCT116 cells, permitting them to both form tumours and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlate inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a regulator of EMT.

Braunstein M, Liao L, Lyttle N, et al.
Downregulation of histone H2A and H2B pathways is associated with anthracycline sensitivity in breast cancer.
Breast Cancer Res. 2016; 18(1):16 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Drug resistance in breast cancer is the major obstacle to effective treatment with chemotherapy. While upregulation of multidrug resistance genes is an important component of drug resistance mechanisms in vitro, their clinical relevance remains to be determined. Therefore, identifying pathways that could be targeted in the clinic to eliminate anthracycline-resistant breast cancer remains a major challenge.
METHODS: We generated paired native and epirubicin-resistant MDA-MB-231, MCF7, SKBR3 and ZR-75-1 epirubicin-resistant breast cancer cell lines to identify pathways contributing to anthracycline resistance. Native cell lines were exposed to increasing concentrations of epirubicin until resistant cells were generated. To identify mechanisms driving epirubicin resistance, we used a complementary approach including gene expression analyses to identify molecular pathways involved in resistance, and small-molecule inhibitors to reverse resistance. In addition, we tested its clinical relevance in a BR9601 adjuvant clinical trial.
RESULTS: Characterisation of epirubicin-resistant cells revealed that they were cross-resistant to doxorubicin and SN-38 and had alterations in apoptosis and cell-cycle profiles. Gene expression analysis identified deregulation of histone H2A and H2B genes in all four cell lines. Histone deacetylase small-molecule inhibitors reversed resistance and were cytotoxic for epirubicin-resistant cell lines, confirming that histone pathways are associated with epirubicin resistance. Gene expression of a novel 18-gene histone pathway module analysis of the BR9601 adjuvant clinical trial revealed that patients with low expression of the 18-gene histone module benefited from anthracycline treatment more than those with high expression (hazard ratio 0.35, 95 % confidence interval 0.13-0.96, p = 0.042).
CONCLUSIONS: This study revealed a key pathway that contributes to anthracycline resistance and established model systems for investigating drug resistance in all four major breast cancer subtypes. As the histone modification can be targeted with small-molecule inhibitors, it represents a possible means of reversing clinical anthracycline resistance.
TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00003012 . Registered on 1 November 1999.

Pan X, Meng R, Yu Z, et al.
Quinalizarin enhances radiosensitivity of nasopharyngeal carcinoma cells partially by suppressing SHP-1 expression.
Int J Oncol. 2016; 48(3):1073-84 [PubMed] Related Publications
The purpose of this study was to investigate the influence of quinalizarin on the radiosensitivity of nasopharyngeal carcinoma (NPC) cells and the relevant underlying mechanisms. Human NPC cell lines CNE-1, CNE-2 and 5-8F were treated with quinalizarin and then irradiated with different X-rays doses. Cell viability, survival, DNA double-strand breaks (DSB), apoptosis, cell cycle distribution, expression of SHP-1 and other related proteins were detected with MTT assay, colony formation assay, immunofluorescent assay, flow cytometry and western blot analysis, respectively. We also examined how the effects of quinalizarin were affected by SHP-1-overexpression by lentivirus transfection. Quinalizarin at 25 µM enhanced radiosensitivity of NPC cells. This increased radiosensitivity was due to inhibition of cell viability, which delayed DSB repair as seen by significantly increased γ-H2AX foci, promoting apoptosis by 34% in CNE-1 and 9% in CNE-2 cells compared to controls and changing cell cycle distribution in CNE-1, but not CNE-2 cells. Quinalizarin treatment obviously decreased SHP-1 protein expression. Overexpressing SHP-1 partially reversed the radiosensitive effect of quinalizarin. Quinalizarin inhibited binding of p65 and the promoter of SHP-1, and decreased the activities of SHP-1 promoter and SHP-1. Quinalizarin enhanced radiosensitivity of NPC cells partially by suppressing SHP-1 expression.

Pinazza M, Borga C, Agnusdei V, et al.
An immediate transcriptional signature associated with response to the histone deacetylase inhibitor Givinostat in T acute lymphoblastic leukemia xenografts.
Cell Death Dis. 2016; 6:e2047 [PubMed] Free Access to Full Article Related Publications
Despite some success with certain hematological malignancies and in contrast with the strong pro-apoptotic effects measured in vitro, the overall response rate of acute lymphoblastic leukemia (ALL) to histone deacetylase inhibitors (HDACis) is low. With the aim to improve the understanding of how HDACis work in vivo, we investigated the therapeutic efficacy of the clinically approved HDACi Givinostat in a collection of nine pediatric human T-ALL engrafted systemically in NOD/SCID mice. We observed highly heterogeneous antileukemia responses to Givinostat, associated with reduction of the percentage of infiltrating blasts in target organs, induction of apoptosis and differentiation. These effects were not associated with the T-ALL cytogenetic subgroup. Transcriptome analysis disclosed an immediate transcriptional signature enriched in genes involved in cell-cycle regulation and DNA repair, which was validated by quantitative RT-PCR and was associated with in vivo response to this HDACi. Increased phospho-H2AX levels, a marker of DNA damage, were measured in T-ALL cells from Givinostat responders. These results indicate that the induction of the DNA damage response could be an early biomarker of the therapeutic effects of Givinostat in T-ALL models. This information should be considered in the design of future clinical trials with HDACis in acute leukemia.

Marmary Y, Adar R, Gaska S, et al.
Radiation-Induced Loss of Salivary Gland Function Is Driven by Cellular Senescence and Prevented by IL6 Modulation.
Cancer Res. 2016; 76(5):1170-80 [PubMed] Related Publications
Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy.

Hocke S, Guo Y, Job A, et al.
A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers.
Oncotarget. 2016; 7(6):7080-95 [PubMed] Free Access to Full Article Related Publications
The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials.

Meng F, Qian L, Lv L, et al.
miR-193a-3p regulation of chemoradiation resistance in oesophageal cancer cells via the PSEN1 gene.
Gene. 2016; 579(2):139-45 [PubMed] Related Publications
Chemoradiation therapy is an important component of the curative treatment for oesophageal carcinomas. These therapeutic effects are prevented in patients according to radioresistance and multi-drug resistance, and the cause of such resistance remains unclear. In this study, we identified the role of miR-193a-3p in modulating the radioresistance and chemoresistance of oesophageal cancer cells. We found that KYSE150 and KYSE410 cells could be characterized as relatively radiation-sensitive and radiation-resistant cells, respectively. Similarly, KYSE150 and KYSE410 cells were found to be chemosensitive and chemoresistant, respectively. Over-expression of miR-193a-3p increased the radioresistance and chemoresistance of oesophageal squamous cell carcinoma (ESCC) cells. In contrast, the down-regulation of miR-193a-3p decreased the radioresistance and chemoresistance of ESCC cells. In addition, miR-193a-3p inducing DNA damage has also been demonstrated through measuring the level of gamma-H2AX associated with miR-193a-3p. Moreover, a small interfering RNA(siRNA)-induced repression of the PSEN1 gene had an effect similar to that of miR-193a-3p up-regulation. The above processes also inhibited oesophageal cancer cells apoptosis. These findings suggest that miR-193a-3p contributes to the radiation and chemotherapy resistance of oesophageal carcinoma by down-regulating PSEN1. Thus, miR-193a-3p and PSEN1 might be potential biomarkers for chemoradiation resistant cancers.

Lin CS, Chiou WY, Lee KW, et al.
Xeroderma pigmentosum, complementation group D expression in H1299 lung cancer cells following benzo[a]pyrene exposure as well as in head and neck cancer patients.
J Toxicol Environ Health A. 2016; 79(1):39-47 [PubMed] Related Publications
DNA repair genes play critical roles in response to carcinogen-induced and anticancer therapy-induced DNA damage. Benzo[a]pyrene (BaP), the most carcinogenic polycyclic aromatic hydrocarbon (PAH), is classified as a group 1 carcinogen by International Agency for Research on Cancer. The aims of this study were to (1) evaluate the effects of BaP on DNA repair activity and expression of DNA repair genes in vitro and (2) examine the role of xeroderma pigmentosum, complementation group D (XPD) mRNA expression in human head and neck cancers. Host cell reactivation assay showed that BaP inhibited nucleotide excision repair in H1299 lung cancer cells. DNA repair through the non-homologous end-joining pathway was not affected by BaP. Real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) and Western blot demonstrated that XPD was downregulated by BaP treatment. BaP exposure did not apparently affect expression of another 11 DNA repair genes. BaP treatment increased the DNA damage marker γ-H2AX and ultraviolet (UV) sensitivity, supporting an impairment of DNA repair in BaP-treated cells. XPD expression was also examined by quantitative RT-PCR in 68 head and neck cancers, and a lower XPD mRNA level was found in smokers' cancer specimens. Importantly, reduced XPD expression was correlated with patient 5-year overall survival rate (35 vs. 56%) and was an independent prognostic factor (hazard ratio: 2.27). Data demonstrated that XPD downregulation was correlated with BaP exposure and human head and neck cancer survival.

Seong da B, Hong S, Muthusami S, et al.
Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest.
Eur J Pharmacol. 2016; 771:77-83 [PubMed] Related Publications
Cordycepin (3-deoxyadenosine) has many pharmacological activities. We studied the radiosensitising effect of cordycepin and the underlying mechanisms relating to cell cycle changes in two human uterine cervical cancer cell lines, ME180 and HeLa cells. Cordycepin produced concentration- and time-dependent reductions in cell viability with more pronounced effects in ME180 cells. Cells pre-treated with cordycepin showed lower cell survival than those exposed to irradiation only. Radiation-induced expression of the histone, γ-H2AX, and apoptosis were also increased following cordycepin pre-treatment. In ME180 cells, pre-treatment with cordycepin reduced radiation-induced G2/M arrest and this G2/M checkpoint override was sustained for longer than in HeLa cells, where G2/M arrest was observed earlier and more briefly, the number of HeLa cells in the G2/M phase was subsequently increased. Cordycepin produced different effects on the expression of p53 and cell cycle checkpoint proteins in these two cell lines. It can be assumed that the mechanism underlying cordycepin-mediated radiosensitisation involves multiple effects that are primarily based on the induction of p53-mediated apoptosis and modulation of the expression of cell cycle checkpoint molecules.

Véquaud E, Desplanques G, Jézéquel P, et al.
Survivin contributes to DNA repair by homologous recombination in breast cancer cells.
Breast Cancer Res Treat. 2016; 155(1):53-63 [PubMed] Free Access to Full Article Related Publications
Survivin overexpression, frequently found in breast cancers and others, is associated with poor prognosis. Its dual regulation of cell division and apoptosis makes it an attractive therapeutic target but its exact functions that are required for tumor maintenance are still elusive. Survivin protects cancer cells from genotoxic agents and this ability is generally assigned to a universal anti-apoptotic function. However, a specific role in cancer cell protection from DNA damage has been overlooked so far. We assessed DNA damage occurrence in Survivin-depleted breast cancer cells using γH2AX staining and comete assay. QPCR data and a gene conversion assay indicated that homologous recombination (HR) was impaired upon Survivin depletion. We conducted the analysis of Survivin and HR genes' expression in breast tumors. We revealed BRCAness phenotype of Survivin-depleted cells using cell death assays combined to PARP targeting. Survivin silencing leads to DNA double-strand breaks in breast cancer cells and functionally reduces HR. Survivin depletion decreases the transcription of a set of genes involved in HR, decreases RAD51 protein expression and impairs the endonuclease complex MUS81/EME1 involved in the resolution of Holliday junctions. Clinically, EME1, RAD51, EXO1, BLM expressions correlate with that of BIRC5 (coding for Survivin) and are of prognostic value. Functionally, Survivin depletion triggers p53 activation and sensitizes cancer cells to of PARP inhibition. We defined Survivin as a constitutive actor of HR in breast cancers, and implies that its inhibition would enhance cell vulnerability upon PARP inhibition.

Chang JH, Hwang YH, Lee DJ, et al.
MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells.
Int J Radiat Oncol Biol Phys. 2016; 94(2):412-20 [PubMed] Related Publications
PURPOSE: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved.
METHODS AND MATERIALS: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed.
RESULTS: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1.
CONCLUSIONS: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

Nikitina D, Chen Z, Vallis K, et al.
Relationship between Caffeine and Levels of DNA Repair and Oxidative Stress in Women with and without a BRCA1 Mutation.
J Nutrigenet Nutrigenomics. 2015; 8(4-6):174-84 [PubMed] Related Publications
BACKGROUND: Coffee consumption has been associated with a reduction in breast cancer risk among women with a BRCA1 mutation. The objective of this study was to evaluate whether major contributors of caffeine intake are associated with a reduction in DNA damage and/or oxidative stress in women with and without a BRCA1 mutation.
METHODS: Coffee, tea, soda and total caffeine consumption was collected by a dietary history questionnaire, and DNA repair capacity in lymphocytes was assessed by the comet assay (tail moments), micronucleus test (per 1,000 binucleated cells) and analysis of γ-H2AX staining (nuclear foci). The thiobarbituric acid-malondialdehyde and DTNB assays were used to estimate serum lipid peroxidation (µmol/l) and protein oxidation (µmol/l), respectively.
RESULTS: Among all women, high levels of caffeine and caffeinated coffee intake were associated with significantly lower levels of micronuclei (138.50 vs. 97.67, p = 0.04, and 138.12 vs. 97.70, p = 0.04). There was no significant relationship between caffeine, coffee, tea and soda intake and the other markers of DNA repair capacity and oxidative stress among all women and in analyses stratified by BRCA1 mutation status.
CONCLUSION: The chemopreventive effects of coffee and/or caffeine may be associated with improved capacity to efficiently repair DNA damage.

Fujimori H, Sato A, Kikuhara S, et al.
A comprehensive analysis of radiosensitization targets; functional inhibition of DNA methyltransferase 3B radiosensitizes by disrupting DNA damage regulation.
Sci Rep. 2015; 5:18231 [PubMed] Free Access to Full Article Related Publications
A comprehensive genome-wide screen of radiosensitization targets in HeLa cells was performed using a shRNA-library/functional cluster analysis and DNMT3B was identified as a candidate target. DNMT3B RNAi increased the sensitivity of HeLa, A549 and HCT116 cells to both γ-irradiation and carbon-ion beam irradiation. DNMT3B RNAi reduced the activation of DNA damage responses induced by γ-irradiation, including HP1β-, γH2AX- and Rad51-foci formation. DNMT3B RNAi impaired damage-dependent H2AX accumulation and showed a reduced level of γH2AX induction after γ-irradiation. DNMT3B interacted with HP1β in non-irradiated conditions, whereas irradiation abrogated the DNMT3B/HP1β complex but induced interaction between DNMT3B and H2AX. Consistent with radiosensitization, TP63, BAX, PUMA and NOXA expression was induced after γ-irradiation in DNMT3B knockdown cells. Together with the observation that H2AX overexpression canceled radiosensitization by DNMT3B RNAi, these results suggest that DNMT3B RNAi induced radiosensitization through impairment of damage-dependent HP1β foci formation and efficient γH2AX-induction mechanisms including H2AX accumulation. Enhanced radiosensitivity by DNMT3B RNAi was also observed in a tumor xenograft model. Taken together, the current study implies that comprehensive screening accompanied by a cluster analysis enabled the identification of radiosensitization targets. Downregulation of DNMT3B, one of the targets identified using this method, radiosensitizes cancer cells by disturbing multiple DNA damage responses.

Gong P, Zhang T, He D, Hsieh JT
MicroRNA-145 Modulates Tumor Sensitivity to Radiation in Prostate Cancer.
Radiat Res. 2015; 184(6):630-8 [PubMed] Related Publications
Radiation therapy prior to surgery has increasingly become the standard of care for locally advanced prostate cancer, however tumor radioresistance remains a major clinical problem. While restoration of microRNA-145 (miR-145) expression reduces chemoradioresistance in glioblastoma and suppress prostate cancer proliferation, migration and invasion, the role of miR-145 in response to radiation therapy for prostate cancer is still unknown. The aim of this study was to investigate the role of miR-145 in determining the tumor response to radiation treatment in prostate cancer. Human prostate cancer cells LNCAP and PC3 were transfected with miR-145 mimic. Clonogenic assay was used to determine whether overexpression of miR-145 could alter radiation response in vitro. Immunofluorescence of γ-H2AX and flow cytometric analysis of phosphorylated histone H3 were performed to investigate the potential mechanisms contributing to the enhanced radiation-induced cell killing induced by miR-145. In addition, a qPCR-based array was used to detect the possible miR-145-mediated regulated genes involved. Tumor growth delay assays and survival curves were then analyzed in an animal model to investigate whether miR-145 induced radiosensitivity in vivo. Furthermore, miR-145 expression was assessed in 30 prostate tumor tissue biopsies taken prior to neoadjuvant radiotherapy using miRNA arrays. Our current study suggested that ectopic expression of miR-145 significantly sensitized prostate cancer cells to radiation and we used γ-H2AX phosphorylation as a surrogate marker of radiotherapy response versus miR-145 expression levels. We observed significantly more foci per cell in the group treated with miR-145 and radiation. In addition, mitotic catastrophe was significantly increased in cells receiving miR-145 and radiation. The above results suggest that miR-145 appears to reduced the efficiency of the repair of radiation-induced DNA double-strand breaks in cells. A detailed examination of the involvement of the DNA repair pathway showed that miR-145 reduced the expression of 10 genes involved in DNA repair according to a qPCR-based array data. Irradiation of subcutaneous PC3 tumors in mice treated with R11-miR-145 (a cellular permeable peptide, previously reported) resulted in an increase in radiation-induced tumor growth delay and lived the longest after combination treatment. Moreover, miR-145 expression was significantly increased in patients demonstrating good response (PSA < 2.0 ng/ml/year) to neoadjuvant radiotherapy, while expression of the miR-145-regulated DNA repair genes was significantly decreased. In conclusion, these data suggest a possible mechanism for miR-145 radiosensitivity, potentially through down regulating of DNA repair. This novel study shows a role for miR-145 in modulating radiosensitivity in vivo and highlights the need for further study investigating the potential role of miR-145 as both a predictive marker of response and a novel therapeutic agent with which to enhance the efficacy of radiation therapy.

Gupta SK, Kizilbash SH, Carlson BL, et al.
Delineation of MGMT Hypermethylation as a Biomarker for Veliparib-Mediated Temozolomide-Sensitizing Therapy of Glioblastoma.
J Natl Cancer Inst. 2016; 108(5) [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Sensitizing effects of poly-ADP-ribose polymerase inhibitors have been studied in several preclinical models, but a clear understanding of predictive biomarkers is lacking. In this study, in vivo efficacy of veliparib combined with temozolomide (TMZ) was evaluated in a large panel of glioblastoma multiforme (GBM) patient-derived xenografts (PDX) and potential biomarkers were analyzed.
METHODS: The efficacy of TMZ alone vs TMZ/veliparib was compared in a panel of 28 GBM PDX lines grown as orthotopic xenografts (8-10 mice per group); all tests of statistical significance were two-sided. DNA damage was analyzed by γH2AX immunostaining and promoter methylation of DNA repair gene O6-methylguanine-DNA-methyltransferase (MGMT) by Clinical Laboratory Improvement Amendments-approved methylation-specific polymerase chain reaction.
RESULTS: The combination of TMZ/veliparib statistically significantly extended survival of GBM models (P < .05 by log-rank) compared with TMZ alone in five of 20 MGMT-hypermethylated lines (average extension in median survival = 87 days, range = 20-150 days), while the combination was ineffective in six MGMT-unmethylated lines. In the MGMT promoter-hypermethylated GBM12 line (median survival with TMZ+veliparib = 189 days, 95% confidence interval [CI] = 59 to 289 days, vs TMZ alone = 98 days, 95% CI = 49 to 210 days, P = .04), the profound TMZ-sensitizing effect of veliparib was lost when MGMT was overexpressed (median survival with TMZ+veliparib = 36 days, 95% CI = 28 to 38 days, vs TMZ alone = 35 days, 95% CI = 32 to 37 days, P = .87), and a similar association was observed in two nearly isogenic GBM28 sublines with an intact vs deleted MGMT locus. In comparing DNA damage signaling after dosing with veliparib/TMZ or TMZ alone, increased phosphorylation of damage-responsive proteins (KAP1, Chk1, Chk2, and H2AX) was observed only in MGMT promoter-hypermethylated lines.
CONCLUSION: Veliparib statistically significantly enhances (P < .001) the efficacy of TMZ in tumors with MGMT promoter hypermethylation. Based on these data, MGMT promoter hypermethylation is being used as an eligibility criterion for A071102 (NCT02152982), the phase II/III clinical trial evaluating TMZ/veliparib combination in patients with GBM.

Ho IL, Kuo KL, Liu SH, et al.
MLN4924 Synergistically Enhances Cisplatin-induced Cytotoxicity via JNK and Bcl-xL Pathways in Human Urothelial Carcinoma.
Sci Rep. 2015; 5:16948 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial carcinoma. However, the response rate is only 40-65%. This study investigated the anti-tumor effect and underlying mechanisms of the combination of cisplatin and the NEDD8-activating enzyme inhibitor MLN4924 in human bladder urothelial carcinoma. The combination of cisplatin and MLN4924 exerted synergistic cytotoxicity on two high-grade bladder urothelial carcinoma cell lines, NTUB1 and T24 (combination index <1). MLN4924 also potentiated the cisplatin-induced apoptosis and activation of caspase-3 and -7, phospho-histone H2A.X and PARP. c-Jun N-terminal kinase (JNK) activation and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) were also observed during cisplatin and MLN4924 treatment. Inhibition of JNK activation partially restored cell viability and Bcl-xL expression. Bcl-xL overexpression also rescued cell viability. MLN4924 significantly potentiated cisplatin-induced tumor suppression in urothelial carcinoma xenograft mice. In summary, MLN4924 synergistically enhanced the anti-tumor effect of cisplatin via an increase in DNA damage, JNK activation and down-regulation of Bcl-xL in urothelial carcinoma cells. These findings provide a new therapeutic strategy for the treatment of bladder cancer.

Casimiro MC, Di Sante G, Ju X, et al.
Cyclin D1 Promotes Androgen-Dependent DNA Damage Repair in Prostate Cancer Cells.
Cancer Res. 2016; 76(2):329-38 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Therapy resistance and poor outcome in prostate cancer is associated with increased expression of cyclin D1. Androgens promote DNA double-strand break repair to reduce DNA damage, and cyclin D1 was also shown to enhance DNA damage repair (DDR). In this study, we investigated the significance of cyclin D1 in androgen-induced DDR using established prostate cancer cells and prostate tissues from cyclin D1 knockout mice. We demonstrate that endogenous cyclin D1 further diminished the dihydrotestosterone (DHT)-dependent reduction of γH2AX foci in vitro. We also show that cyclin D1 was required for the androgen-dependent DNA damage response both in vitro and in vivo. Furthermore, cyclin D1 was required for androgen-enhanced DDR and radioresistance of prostate cancer cells. Moreover, microarray analysis of primary prostate epithelial cells from cyclin D1-deficient and wild-type mice demonstrated that most of the DHT-dependent gene expression changes are also cyclin D1 dependent. Collectively, our findings suggest that the hormone-mediated recruitment of cyclin D1 to sites of DDR may facilitate the resistance of prostate cancer cells to DNA damage therapies and highlight the need to explore other therapeutic approaches in prostate cancer to prevent or overcome drug resistance.

Chen Y, Zhang F, Tsai Y, et al.
IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation.
Radiat Oncol. 2015; 10:227 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Local tumor control by standard fractionated radiotherapy (RT) remains poor because of tumor resistance to radiation (radioresistance). It has been suggested that cancer stem cells (CSCs) are more radioresistant than non-CSCs. In previous studies, we have shown IL-6 promotes self-renewal of CD133+ CSC-like cells. In this study, we investigated whether IL-6 plays roles not only in promoting self-renewal of CD133+ cells after radiation, but also in conferring radioresistance of CD133+ cells in NSCLC.
MATERIALS AND METHODS: To compare radiation sensitivity of CSCs and non-CSCs, CD133+ CSC-like and CD133- cell populations were isolated from two NSCLC cell lines, A549 and H157, by immunomagnetic separation and their sensitivities to ionizing radiation were investigated using the clonogenic survival assay. To further study the IL-6 effect on the radiosensitivity of CD133+ CSC-like cells, CD133+ cells were isolated from A549IL-6si/sc and H157IL-6si/sc cells whose intracellular IL-6 levels were manipulated via the lentiviral transduction with IL-6siRNA. Post-irradiation DNA damage was analyzed by γ-H2AX staining and Comet assay. Molecular mechanisms by which IL-6 regulates the molecules associated with DNA repair and anti-apoptosis after radiation were analyzed by Western blot and immunofluoresecence (IF) staining analyses.
RESULTS: NSCLC CD133+ CSC-like cells were enriched upon radiation. Survival of NSCLC CD133+ cells after radiation was higher than that of CD133- cells. Survival of IL-6 expressing NSC LC CD133+ cells (sc) was higher than that of IL-6 knocked-down cells (IL-6si) after radiation. IL-6 played a role in protecting NSCLC CD133+ cells from radiation-induced DNA damage and apoptosis.
CONCLUSIONS: IL-6 signaling promotes DNA repair while protecting CD133+ CSC-like cells from apoptotic death after radiation for lung cancer. A combined therapy of radiation and agents that inhibit IL-6 signaling (or its downstream signaling) is suggested to reduce CSC-mediated radioresistance in lung cancer.

Su H, Jin X, Shen L, et al.
Inhibition of cyclin D1 enhances sensitivity to radiotherapy and reverses epithelial to mesenchymal transition for esophageal cancer cells.
Tumour Biol. 2016; 37(4):5355-63 [PubMed] Related Publications
Acquired radioresistance during radiotherapy has significantly affected the treatment efficacy in esophageal cancer. Many of radioresistant cancer cells demonstrated epithelial-mesenchymal transition (EMT).We found in previous study that a radioresistant cell line (KYSE-150R) possessed EMT characteristic with cyclin D1 overexpression. Cyclin D1 has been demonstrated to affect the radiation sensitivity in cancer cells. To elucidate the molecular functions of cyclin D1 on EMT phenotypes and esophageal cancer radiosensitivity, we treated the radioresistant esophageal cancer cells (KYSE-150R) and parental cells (KYSE-150) with cyclin D1 small interfering RNA (siRNA). The cell proliferation rate of KYSE-150R and the radiation survival fraction were significantly decreased in cyclin D1 siRNA treatment group. Knocking down cyclin D1 resulted in G0/G1 arrest in KYSE-150R cells. The average number of irradiation-induced γ-H2AX foci increased in the cells treated with cyclin D1 siRNA, indicating impaired DNA double-strand break (DSB) repair in KYSE-150R cells. Cyclin D1 also reversed EMT phenotypes with significantly increased expression of E-cadherin in KYSE-150R cells. However, cyclin D1 siRNA have no radiosensitizing effects on KYSE-150 cells, with no obvious change in EMT marker expression .Our work showed that EMT phenotypes can be reduced and the radiosensitivity of esophageal cancer cells can be enhanced by inhibiting cyclin D1.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. H2AFX, Cancer Genetics Web: http://www.cancer-genetics.org/H2AFX.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999