HOXA1

Gene Summary

Gene:HOXA1; homeobox A1
Aliases: BSAS, HOX1, HOX1F
Location:7p15.2
Summary:In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. The encoded protein may be involved in the placement of hindbrain segments in the proper location along the anterior-posterior axis during development. Two transcript variants encoding two different isoforms have been found for this gene, with only one of the isoforms containing the homeodomain region. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:homeobox protein Hox-A1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (30)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Adenocarcinoma
  • Cell Proliferation
  • Cancer Gene Expression Regulation
  • Cell Movement
  • Neoplastic Cell Transformation
  • Breast Cancer
  • Oligonucleotide Array Sequence Analysis
  • Disease Progression
  • Transcription
  • 3' Untranslated Regions
  • Epigenetics
  • Base Sequence
  • Neoplasm Invasiveness
  • RTPCR
  • Transcription Factors
  • Mutation
  • Homeobox Genes
  • Signal Transduction
  • Polymerase Chain Reaction
  • RNA Interference
  • Homeodomain Proteins
  • Neoplasm Proteins
  • Chromosome 7
  • Skin Cancer
  • Sequence Alignment
  • Lung Cancer
  • Gene Expression Profiling
  • Uterine Cancer
  • CpG Islands
  • Biomarkers, Tumor
  • Gene Knockdown Techniques
  • Western Blotting
  • Messenger RNA
  • Cell Survival
  • Cancer DNA
  • Neoplasm Metastasis
  • Down-Regulation
  • MicroRNAs
  • DNA Methylation
  • Histones
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HOXA1 (cancer-related)

Mao Y, Zhang L, Li Y
circEIF4G2 modulates the malignant features of cervical cancer via the miR‑218/HOXA1 pathway.
Mol Med Rep. 2019; 19(5):3714-3722 [PubMed] Free Access to Full Article Related Publications
Circular RNAs (circRNAs) serve important roles in tumorigenesis and may be used as novel molecular biomarkers for clinical diagnosis. However, the role and molecular mechanisms of circRNAs in cervical cancer (CC) remain unknown. In the present study, circRNA isoform of eukaryotic translation initiation factor 4γ2 (circEIF4G2) was revealed to be significantly upregulated in CC tissues and cell lines. Furthermore, increased expression of circEIF4G2 was associated with poor prognosis in patients with CC. circEIF4G2 knockdown suppressed the malignant features of CC cells, including cell proliferation, colony formation, migration and invasion. Additionally, circEIF4G2 was identified to serve as a sponge for microRNA‑218 (miR‑218), which targeted homeobox A1 (HOXA1). Furthermore, circEIF4G2 may increase the expression levels of HOXA1 by sponging miR‑218. Rescue experiments suggested that transfection with a miR‑218 inhibitor attenuated the inhibitory effects of circEIF4G2 knockdown on cell proliferation, migration and invasion. Furthermore, silencing HOXA1 reversed the effects of the miR‑218 inhibitor on CC cells. Collectively, the present findings suggested that circEIF4G2 promoted cell proliferation and migration via the miR‑218/HOXA1 pathway.

Mohanta S, Sekhar Khora S, Suresh A
Cancer Stem Cell based molecular predictors of tumor recurrence in Oral squamous cell carcinoma.
Arch Oral Biol. 2019; 99:92-106 [PubMed] Related Publications
OBJECTIVE: This study aimed to identify the cancer stem cell specific biomarkers that can be effective candidate prognosticators of oral squamous cell carcinoma.
DESIGN: Microarray-based meta-analysis derived transcriptional profile of head and neck cancers was compared with the Cancer Stem Cell database to arrive at a subset of markers. This subset was further co-related with clinico-pathological parameters, recurrence and survival of oral cancer patients (n = 313) in The Cancer Genome Atlas database and in oral cancer (n = 28) patients.
RESULTS: Meta-analysis in combination with database comparison identified a panel of 221 genes specific to head and neck cancers. Correlation of expression levels of these markers in the oral cancer cohort of The Cancer Genome Atlas (n = 313) with treatment outcome identified 54 genes (p < 0.05 or fold change >2) associated with disease recurrence, 8 genes (NQO1, UBE2C, EDNRB, FKBP4, STAT3, HOXA1, RIT1, AURKA) being significant with high fold change. Assessment of the efficacy of the subset (n = 54) as survival predictors identified an additional 4 genes (CDK1, GINS2, PHF5 A, ERBB2) that co-related with poor disease-free survival (p < 0.05). CDK1 showed a significant association with the clinical stage, margin status and with advanced pathological parameters. Initial patient validation indicated that CDK1 and NQO1 significantly co-related with the poor disease-free and overall survival (p < 0.05).
CONCLUSION: This panel of oral cancer specific, cancer stem cell associated markers identified in this study, a subset of which was validated, will be of clinical benefit subject to large scale validation studies.

Men L, Nie D, Nie H
microRNA‑577 inhibits cell proliferation and invasion in non‑small cell lung cancer by directly targeting homeobox A1.
Mol Med Rep. 2019; 19(3):1875-1882 [PubMed] Related Publications
An increasing number of studies have indicated that the dysregulation of microRNAs (miRNAs/miR) is closely associated with non‑small cell lung cancer (NSCLC) development and progression by acting as tumor suppressors or oncogenes. Therefore, an in‑depth understanding of the biological roles of miRNAs in NSCLC may provide novel therapeutic methods for the treatment of patients with this disease. In the present study, reverse transcription‑quantitative polymerase chain reaction was used to detect miR‑577 expression in NSCLC tissues and cell lines. Cell Counting Kit‑8 and Transwell invasion assays were performed to determine the effects of miR‑577 on NSCLC cell proliferation and invasion. Luciferase reporter assays were used to demonstrate the relationship between miR‑577 and homeobox A1 (HOXA1) in NSCLC cells. The results revealed that miR‑577 was markedly downregulated in NSCLC tissues and cell lines. Additionally, restoration of miR‑577 expression significantly decreased the proliferation and invasion of NSCLC cells. Furthermore, miR‑577 negatively regulated HOXA1 expression in NSCLC cells by directly binding to its 3'‑untranslated region. HOXA1 was significantly upregulated in NSCLC tissues, and its upregulation was inversely correlated with miR‑577. Notably, restored HOXA1 expression abrogated the reduced proliferation and invasion of NSCLC cells caused by miR‑577 overexpression. Taken together, these results indicated that miR‑577 may have served tumor suppressive roles in NSCLC by directly targeting HOXA1. Therefore, this miRNA may be developed as a potential therapeutic target for the therapy of patients with NSCLC.

Li Q, Dong C, Cui J, et al.
Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme.
J Exp Clin Cancer Res. 2018; 37(1):265 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma multiforme (GBM) is the common primary brain tumor classified the most malignant glioma. Long non-coding RNAs (LncRNAs) are important epigenetic regulators with critical roles in cancer initiation and progression. LncRNA HOTAIRM1 transcribes from the antisense strand of HOXA gene cluster which locus in chromosome 7p15.2. Recent studies have shown that HOTAIRM1 is involved in acute myeloid leukemia and colorectal cancer. Here we sought to investigate the role of HOTAIRM1 in GBM and explore its mechanisms of action.
METHODS: The expressions of HOTAIRM1 and HOXA1 in GBM tissues and cells were determined by qRT-PCR, and the association between HOTAIRM1, HOXA1 transcription and tumor grade were analyzed. The biological function of HOTAIRM1 in GBM was evaluated both in vitro and in vivo. Chromatin immunoprecipitation (ChIP) assay and quantitative Sequenom MassARRAY methylation analysis were performed to explore whether HOTAIRM1 could regulate histone and DNA modification status of the HOXA1 gene transcription start sites (TSS) and activate its transcription. ChIP and RNA-ChIP were further performed to determine the molecular mechanism of HOTAIRM1 in epigenetic regulation of the HOXA1 gene.
RESULTS: HOTAIRM1 was abnormally up-regulated in GBM tissues and cells, and this up-regulation was correlated with grade malignancy in glioma patients. HOTAIRM1 silencing caused tumor suppressive effects via inhibiting cell proliferation, migration and invasion, and inducing cell apoptosis. In vivo experiments showed knockdown of HOTAIRM1 lessened the tumor growth. Additionally, HOTAIRM1 action as regulating the expression of the HOXA1 gene. HOXA1, as an oncogene, it's expression levels were markedly elevated in GBM tissues and cell lines. Mechanistically, HOTAIRM1 mediated demethylation of histone H3K9 and H3K27 and reduced DNA methylation levels by sequester epigenetic modifiers G9a and EZH2, which are H3K9me
CONCLUSIONS: We investigated the potential role of HOTAIRM1 to promote GBM cell proliferation, migration, invasion and inhibit cell apoptosis by epigenetic regulation of HOXA1 gene that can be targeted simultaneously to effectively treat GBM, thus putting forward a promising strategy for GBM treatment. Meanwhile, this finding provides an example of transcriptional control over the chromatin state of gene and may help explain the role of lncRNAs within the HOXA gene cluster.

Han S, Liu Z, Wang Y, et al.
MicroRNA‑577 inhibits the migration and invasion of hepatocellular carcinoma cells by targeting homeobox A1.
Oncol Rep. 2018; 39(6):2987-2995 [PubMed] Related Publications
Research has confirmed that abnormally expressed miRNAs are involved in the occurrence and development of hepatocellular carcinoma (HCC). In the present study, we confirmed that miR‑577 expression both in HCC tissues and cell lines was markedly downregulated. Clinically, downregulated expression of miR‑577 is notably related to malignant clinicopathological features, such as venous invasion and advanced TNM stage. Additionally, miR‑577 may act as a valuable tumor marker to predict the prognosis of HCC patients. Through knockdown and overexpression of miR‑577, miR‑577 was identified as an inhibitor of cell metastatic ability and EMT progress in HCC. Furthermore, miR‑577 was able to directly bind to the 3'‑UTR of homeobox A1 (HOXA1) to regulate the expression of HOXA1. In addition, there existed a negative correlation between the expression of miR‑577 and HOXA1 in HCC specimens. Rescue experiments revealed that the influence of miR‑577 on the migration, invasion and EMT of HCC cells was reversed by HOXA1. Taken together, our findings demonstrated that miR‑577 functions as an anti‑oncogene to suppress the migration, invasion and EMT of HCC cells through direct interaction with HOXA1. miR‑577 may act as a valuable target for the molecular‑targeted therapy of HCC.

Tian X, Ma J, Wang T, et al.
Long Non-Coding RNA HOXA Transcript Antisense RNA Myeloid-Specific 1-HOXA1 Axis Downregulates the Immunosuppressive Activity of Myeloid-Derived Suppressor Cells in Lung Cancer.
Front Immunol. 2018; 9:473 [PubMed] Free Access to Full Article Related Publications
HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is a long non-coding RNA that has been shown to be a key regulator of myeloid cell development by targeting HOXA1. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that possess immunosuppressive function. However, the impact of HOTAIRM1 on the development of MDSCs remains unknown. In this study, we demonstrated that HOTAIRM1 was expressed in MDSCs and that overexpression of HOTAIRM1 could downregulate the expression of suppressive molecules in MDSCs. In addition, HOTAIRM1 levels were observed to be decreased in the peripheral blood cells of lung cancer patients compared with those of healthy controls. By analyzing HOTAIRM1 expression levels in different types of lung cancer, we found that HOTAIRM1 was mainly expressed in lung adenocarcinoma. Finally, it was confirmed that HOTAIRM1 could enhance the expression of HOXA1 in MDSCs and that high levels of HOXA1, the target gene of HOTAIRM1, could delay tumor progression and enhance the antitumor immune response by downregulating the immunosuppression of MDSCs. Taken together, this study illustrates that HOTAIRM1/HOXA1 downregulates the immunosuppressive function of MDSCs and may be a potential therapeutic target in lung cancer.

Zhang Y, Li XJ, He RQ, et al.
Upregulation of HOXA1 promotes tumorigenesis and development of non‑small cell lung cancer: A comprehensive investigation based on reverse transcription-quantitative polymerase chain reaction and bioinformatics analysis.
Int J Oncol. 2018; 53(1):73-86 [PubMed] Free Access to Full Article Related Publications
Homeobox A1 (HOXA1) serves an oncogenic role in multiple cancer types. However, the role of HOXA1 in non‑small cell lung cancer (NSCLC) remains unclear. In the present study, use of reverse transcription-quantitative polymerase chain reaction and the databases of The Cancer Genome Atlas (TCGA), Oncomine, Gene Expression Profiling Interactive Analysis and the Multi Experiment Matrix were combined to assess the expression of HOXA1 and its co-expressed genes in NSCLC. Bioinformatic analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network and protein-protein interaction analyses, were used to investigate the underlying molecular mechanism effected by the co-expressed genes. Additionally, the potential miRNAs targeting HOXA1 were investigated. The results showed that HOXA1 was upregulated in NSCLC. The area under the curve of HOXA1 indicated a moderate diagnostic value of the HOXA1 level in NSCLC. According to GO and KEGG analyses, the co-expressed genes may be involved in 'dGTP metabolic processes', 'network-forming collagen trimers', 'centromeric DNA binding' and 'the p53 signaling pathway'. Three miRNAs (miR‑181b‑5p, miR‑28‑5p and miR‑181d‑5p) targeting HOXA1 were each predicted by 10 algorithms; miR‑181b and miR‑181d levels were downregulated in LUSC tissues compared with those in normal lung tissues based on data from the TCGA database, and inverse correlations were found between HOXA1 and miR‑181b (r=-0.205, P<0.001) and miR‑181d (r=-0.106, P=0.020). We speculate that HOXA1 may be the direct target of miR‑181b‑5p or miR‑181d‑5p in LUSC, and HOXA1 may serve a significant role in NSCLC by regulating various pathways, particularly the p53 signaling pathway. However, the detailed mechanism should be verified by functional experiments.

Prachayakul V, Kanchanapermpoon J, Thuwajit C, et al.
DNA Methylation Markers Improve the Sensitivity of Endoscopic Retrograde Cholangiopancreatography-Based Brushing Cytology in Extrahepatic Cholangiocarcinoma.
Technol Cancer Res Treat. 2017; 16(6):1252-1258 [PubMed] Free Access to Full Article Related Publications
Endoscopic retrograde cholangiopancreatography with brushed cytology is still the standard method for the diagnosis of extrahepatic cholangiocarcinoma in obstructive jaundice; however, the diagnostic yield is limited. To improve the diagnostic sensitivity, DNA methylation analysis is an attractive candidate, since this may constitute a stable marker in brushed specimens. Therefore, this study aims to evaluate the importance of such epigenetic markers in brushed biliary cells from patients with obstructive jaundice for the diagnosis of extrahepatic cholangiocarcinoma. The cells examined were those that were left over from brushed cytology done during routine endoscopic retrograde cholangiopancreatography of patients with extrahepatic cholangiocarcinoma. The methylation states of HOXA1, RASSF1A, P16, and NEUROG1 genes in extrahepatic cholangiocarcinoma were measured by quantitative methylation-specific polymerase chain reaction and compared between brushed biliary cells and normal gall bladder epithelial cells. The results showed that the sensitivity of the methylation index measurements of HOXA1 and NEUROG1 genes from brushed samples was markedly superior to that of standard cytology. In conclusion, measurement of the DNA methylation status of HOXA1 and NEUROG1 genes in leftover brushed biliary cells might serve as a useful supplement in the detection of malignant biliary obstruction by increasing the sensitivity of diagnosis by routine cytology.

Ni LY, Zhao JD, Lu YH, et al.
MicroRNA-30c suppressed giant-cell tumor of bone cell metastasis and growth via targeting HOXA1.
Eur Rev Med Pharmacol Sci. 2017; 21(21):4819-4827 [PubMed] Related Publications
OBJECTIVE: To dissect the functioning mode of miR-30c on giant cell tumor of bone cell metastasis and growth and provide therapeutic targets for giant cell tumor of bone.
PATIENTS AND METHODS: By quantitative Real-time polymerase chain reaction (qRT-PCR), miR-30c expression level in 62 pairs of giant cell tumor of bone cells tissue samples and five breast cancer-derived cell lines. Using miR-30c mimics and inhibitors, we analyzed the effects of miR-30c over-expression and knockdown on cell proliferation, invasion, and migration. Dual-luciferase activity assay was recruited to examine the potential target gene HOXA1, which predicted by several databases. Protein level was studied using Western blot.
RESULTS: MiR-30c expressed significantly lower in giant cell tumor of bone tissue samples and cell lines. Over-expression miR-30c in giant cell tumor of bone cells decreased the cell proliferation, invasion, and migration abilities while down-regulation miR-30c in giant cell tumor of bone cells increased these abilities oppositely. Dual-luciferase and Western blot confirmed HOXA1 as a target gene of miR-30c. Furthermore, up-regulation of HOXA1 reserved the suppressive effect of miR-30c over-expression on cell growth and progression.
CONCLUSIONS: miR-30c could suppress giant cell tumor of bone cell proliferation and progression via HOXA1, which might provide a new target for giant cell tumor of bone diagnosis and therapy.

Li H, Li J, Yang T, et al.
MicroRNA-433 Represses Proliferation and Invasion of Colon Cancer Cells by Targeting Homeobox A1.
Oncol Res. 2018; 26(2):315-322 [PubMed] Related Publications
The aberrant expression of miR-433 has been validated in some types of cancers. However, the expression profile and the biological function of miR-433 on colon cancer are still elusive. This study was designed to investigate the function of miR-433 on the proliferation and invasion of colon cancer cells. We detected the expression of miR-433 in colon cancer tissues, adjacent normal tissues, and cell lines. CCK8 and Transwell assays were performed to explore the impact of miR-433 on colon cancer cell proliferation and invasion. The luciferase reporter assay was applied to identify the direct target of miR-433. The results demonstrated that miR-433 was downregulated in colon cancer tissues and cell lines when compared with the control. Overexpression of miR-433 significantly suppressed the ability of colon cancer cell proliferation and invasion, whereas knockdown of miR-433 remarkably enhanced cell proliferation and invasion. Homeobox A1 (HOXA1) was identified as a target of miR-433, and it mediated the functions of miR-433 on colon cancer cells. To conclude, we revealed that miR-433 was downregulated in colon cancer, and it inhibited colon cancer cell proliferation and invasion by directly targeting HOXA1.

An Y, Wang S, Li S, et al.
Distinct molecular subtypes of uterine leiomyosarcoma respond differently to chemotherapy treatment.
BMC Cancer. 2017; 17(1):639 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Uterine leiomyosarcoma (ULMS) is an aggressive form of soft tissue tumors. The molecular heterogeneity and pathogenesis of ULMS are not well understood.
METHODS: Expression profiling data were used to determine the possibility and optimal number of ULMS molecular subtypes. Next, clinicopathological characters and molecular pathways were analyzed in each subtype to prospect the clinical applications and progression mechanisms of ULMS.
RESULTS: Two distinct molecular subtypes of ULMS were defined based on different gene expression signatures. Subtype I ULMS recapitulated low-grade ULMS, the gene expression pattern of which resembled normal smooth muscle cells, characterized by overexpression of smooth muscle function genes such as LMOD1, SLMAP, MYLK, MYH11. In contrast, subtype II ULMS recapitulated high-grade ULMS with higher tumor weight and invasion rate, and was characterized by overexpression of genes involved in the pathway of epithelial to mesenchymal transition and tumorigenesis, such as CDK6, MAPK13 and HOXA1.
CONCLUSIONS: We identified two distinct molecular subtypes of ULMS responding differently to chemotherapy treatment. Our findings provide a better understanding of ULMS intrinsic molecular subtypes, and will potentially facilitate the development of subtype-specific diagnosis biomarkers and therapy strategies for these tumors.

Liu Y, Easton J, Shao Y, et al.
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia.
Nat Genet. 2017; 49(8):1211-1218 [PubMed] Free Access to Full Article Related Publications
Genetic alterations that activate NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors, are hallmarks of T-lineage acute lymphoblastic leukemia (T-ALL), but detailed genome-wide sequencing of large T-ALL cohorts has not been carried out. Using integrated genomic analysis of 264 T-ALL cases, we identified 106 putative driver genes, half of which had not previously been described in childhood T-ALL (for example, CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We describe new mechanisms of coding and noncoding alteration and identify ten recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOXA1 deregulated ALL, PTPN2 mutations in TLX1 deregulated T-ALL, and PIK3R1/PTEN mutations in TAL1 deregulated ALL, which suggests that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches.

Kraft S, Moore JB, Muzikansky A, et al.
Differential UBE2C and HOXA1 expression in melanocytic nevi and melanoma.
J Cutan Pathol. 2017; 44(10):843-850 [PubMed] Related Publications
BACKGROUND: Recent molecular advances suggest that Spitz nevi and other spitzoid neoplasms are biologically distinct from melanoma and conventional nevi. The ubiquitin ligase UBE2C and the homeobox transcription factor HOXA1 are candidate oncogenes in melanoma.
METHODS: Using RNA expression analysis and immunohistochemistry, we evaluated these biomarkers in Spitz nevi (n = 20), melanoma (n = 20), and by immunohistochemistry in conventional nevi (n = 20).
RESULTS: RNA analysis with branched DNA multiplex assay identified upregulation of UBE2C in melanomas vs Spitz nevi (P = .003), whereas HOXA1 was downregulated in melanoma (P < .0001). Immunohistochemical analysis confirmed increased nuclear expression of UBE2C in melanoma (mean = 18% of cells; range 3%-44%) when compared with Spitz nevi (mean = 9%; range 2%-28%; P = .001) and conventional nevi (mean = 1.5%; range 0-9%; P < .0001). Strong UBE2C staining was identified in cells undergoing mitosis. UBE2C RNA and protein detection correlated with mitotic rate (P < .0001). On the other hand, HOXA1 nuclear staining was low in melanoma (mean = 69%; range 5%-100%) when compared with Spitz nevi (mean = 94%; range 66%-100%; P = .0024) and conventional nevi (mean = 94%; range 83%-99%; P = .009).
CONCLUSIONS: UBE2C and HOXA1 RNA and protein are differentially expressed in conventional and Spitz nevi and melanoma.

Xu X, Nagel S, Quentmeier H, et al.
KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia.
Leuk Lymphoma. 2018; 59(1):204-213 [PubMed] Related Publications
KDM3B reportedly shows both tumor-suppressive and tumor-promoting activities in leukemia. The function of KDM3B is likely cell-type dependent and its seeming functional discordance may reflect its phenotypic dependence on downstream targets. Here, we first showed the underexpression of KDM3B in acute myeloid leukemia (AML) patients and AML cell lines with MLL-AF6/9 or PML-RARA translocations. Overexpression of KDM3B repressed colony formation of AML cell line with 5q deletion. We then performed global microarray profiling to identify potential downstream targets of KDM3B, notably HOXA1, which was verified by real time PCR and Western blotting. We further showed KDM3B binding at retinoic acid response elements (RARE) but not at the promoter region of HOXA1 gene. KDM3B knockdown resulted in increased mono-methylation but decreased di-methylation of H3K9 at RARE while eschewing the promoter region of HOXA1. Collectively, we found that KDM3B exhibits potential tumor-suppressive activity and transcriptionally modulates HOXA1 expression via RARE in AML.

Zhang K, Wang J, Tong TR, et al.
Loss of H2B monoubiquitination is associated with poor-differentiation and enhanced malignancy of lung adenocarcinoma.
Int J Cancer. 2017; 141(4):766-777 [PubMed] Free Access to Full Article Related Publications
Deregulated monoubiquitination of histone H2B (H2Bub1), mainly catalyzed by E3 ubiquitin-protein ligase RNF20/RNF40 complex, may play an important role in cancer. Here we investigate potential roles of H2Bub1 and the underlying mechanisms through which it contributes to cancer development and progression in lung adenocarcinoma. We show that downregulation of H2Bub1 through RNF20 knockdown dramatically decreases H3K79 and H3K4 trimethylation in both normal and malignant lung epithelial cell lines. Concurrently, global transcriptional profiling analysis reveals that multiple tumor-associated genes such as CCND3, E2F1/2, HOXA1, Bcl2 modifying factor (BMF), Met, and Myc; and signaling pathways of cellular dedifferentiation, proliferation, adhesion, survival including p53, cadherin, Myc, and anti-apoptotic pathways are differentially expressed or significantly altered in these lung epithelial cells upon downregulation of H2Bub1. Moreover, RNF20 knockdown dramatically suppresses terminal squamous differentiation of cultured bronchial epithelial cells, and significantly enhances proliferation, migration, invasion, and cisplatin resistance of lung cancer cells. Furthermore, immunohistochemistry analysis shows that H2Bub1 is extremely low or undetectable in >70% of 170 lung adenocarcinoma samples. Notably, statistical analysis demonstrates that loss of H2Bub1 is significantly correlated with poor differentiation in lung adenocarcinoma (p = 0.0134). In addition, patients with H2Bub1-negative cancers had a trend towards shorter survival compared with patients with H2Bub1-positive cancers. Taken together, our findings suggest that loss of H2Bub1 may enhance malignancy and promote disease progression in lung adenocarcinoma probably through modulating multiple cancer signaling pathways.

Li Q, Zhang X, Li N, et al.
miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer.
Biochem Biophys Res Commun. 2017; 485(2):506-512 [PubMed] Related Publications
Emerging evidence has shown that microRNAs (miRNAs) play important roles in tumor development and progression. In particular, miR-30b is thought to be closely related to the migration, invasion, proliferation, communication, and drug resistance of tumor cells. However, the potential value of miR-30b in human esophageal cancer (EC) remains unclear. In this study, we investigated the biological functions of miR-30b and its potential role in EC. The results indicated that the expression levels of miR-30b were decreased in EC tissues and were correlated with invasion classification (P < 0.01), lymph node metastasis (P < 0.01), and pathological stage (P < 0.05). Log-rank tests demonstrated that low expression of miR-30bwas strongly correlated with poor overall survival in patients with EC (P < 0.05). Moreover, overexpression of miR-30b markedly inhibited the growth, migration, and invasion of ECA109 and TE-1 cells by directly downregulating homeobox A1 (HOXA1). When HOXA1 was reintroduced into miR-30b-transfected ECA109 or TE-1 cells, the inhibitory effects of miR-30b on EC cell growth, migration, and invasion were markedly reversed. In conclusion, our findings demonstrated that miR-30b could inhibit tumor cell growth, migration, and invasion by directly targeting HOXA1 in EC cells.

Ning ZQ, Lu HL, Chen C, et al.
MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma.
Oncotarget. 2017; 8(3):4572-4581 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs) play critical roles in variousbiological processes,including malignancy. Here, we demonstrated that miR-30e levels were markedly reduced in human lung carcinoma specimens in comparisonwith adjacent normal tissues.In addition, miR-30eamounts were starkly lower in the resistant PC9/gefitinib (PC9G) cancer cells compared with PC9 cells. Meanwhile, miR-30eoverexpression inPC9G cells resulted in reduced cell proliferation and migration,reversing drug resistance to gefitinib.Conversely,miR-30e silencing in PC9 cells increased proliferation as well as migration, and conferred resistance to gefitinib.Moreover, HOXA1, which was identified asa new miR-30etarget, plays important roles in regulating cell fate, early developmental patterns and organogenesis.Importantly, miR-30ealso inhibited PC9G growth in vivo. Taken together, these findings demonstrated that miR-30eshould be considered a tumor suppressor miRNA, which could be used in treatinghuman lung cancer.

Bell D, Raza SM, Bell AH, et al.
Whole-transcriptome analysis of chordoma of the skull base.
Virchows Arch. 2016; 469(4):439-49 [PubMed] Related Publications
Fourteen skull base chordoma specimens and three normal specimens were microdissected from paraffin-embedded tissue. Pools of RNA from highly enriched preparations of these cell types were subjected to expression profiling using whole-transcriptome shotgun sequencing. Using strict criteria, 294 differentially expressed transcripts were found, with 28 % upregulated and 72 % downregulated. The transcripts were annotated using NCBI Entrez Gene and computationally analyzed with the Ingenuity Pathway Analysis program. From these significantly changed expressions, the analysis identified 222 cancer-related transcripts. These 294 differentially expressed genes and non-coding RNA transcripts provide here a set to specifically define skull base chordomas and to identify novel and potentially important targets for diagnosis, prognosis, and therapy of this cancer. Significance Genomic profiling to subtype skull base chordoma reveals potential candidates for specific biomarkers, with validation by IHC for selected candidates. The highly expressed developmental genes T, LMX1A, ZIC4, LHX4, and HOXA1 may be potential drivers of this disease.

Taminiau A, Draime A, Tys J, et al.
HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner.
Nucleic Acids Res. 2016; 44(15):7331-49 [PubMed] Free Access to Full Article Related Publications
HOX proteins define a family of key transcription factors regulating animal embryogenesis. HOX genes have also been linked to oncogenesis and HOXA1 has been described to be active in several cancers, including breast cancer. Through a proteome-wide interaction screening, we previously identified the TNFR-associated proteins RBCK1/HOIL-1 and TRAF2 as HOXA1 interactors suggesting that HOXA1 is functionally linked to the TNF/NF-κB signaling pathway. Here, we reveal a strong positive correlation between expression of HOXA1 and of members of the TNF/NF-κB pathway in breast tumor datasets. Functionally, we demonstrate that HOXA1 can activate NF-κB and operates upstream of the NF-κB inhibitor IκB. Consistently, we next demonstrate that the HOXA1-mediated activation of NF-κB is non-transcriptional and that RBCK1 and TRAF2 influences on NF-κB are epistatic to HOXA1. We also identify an 11 Histidine repeat and the homeodomain of HOXA1 to be required both for RBCK1 and TRAF2 interaction and NF-κB stimulation. Finally, we highlight that activation of NF-κB is crucial for HOXA1 oncogenic activity.

Zou D, Zhou Q, Wang D, et al.
The Downregulation of MicroRNA-10b and its Role in Cervical Cancer.
Oncol Res. 2016; 24(2):99-108 [PubMed] Related Publications
It has been demonstrated that microRNAs (miRNAs) act as oncogenes or tumor suppressors in a variety of cancers. Our previous work suggested that miR-10a/b functioned as a tumor suppressor in gastric cancer, and miR-10b was also reported to be significantly downregulated in advanced stage cervical cancer tissues. However, the aberrant expression of miR-10b in cervical cancer and its possible role in cervical carcinogenesis was largely unknown. In this study, we investigated the expression of miR-10b in cervical cancer tissues, carcinoma in situ tissues, mild dysplasia, moderate dysplasia, severe dysplasia tissues, and normal controls. We found that miR-10b was significantly downregulated during cervical cancer progression, and the lower level of miR-10b in cervical cancer was significantly associated with a more aggressive tumor phenotype. Moreover, overexpression of miR-10b in cervical cancer cells could inhibit the cell proliferation and invasion, and the further mechanism study suggested that its role was possibly through directly targeting HOXA1. These results suggested that the downregulation of miR-10b and the resulting elevated HOXA1 level in cervical cancer tissues might play critical roles in cervical cancer progression.

Yuan C, Zhu X, Han Y, et al.
Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1.
J Exp Clin Cancer Res. 2016; 35:15 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: HOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC).
METHODS: To assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes.
RESULTS: HOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS.
CONCLUSION: Our data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.

Fang S, Gao H, Tong Y, et al.
Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells.
Lab Invest. 2016; 96(1):60-8 [PubMed] Related Publications
Homeobox (HOX) transcript antisense RNA (HOTAIR), a long intergenic noncoding RNA (lincRNA), has been reported to play an oncogenic role in various cancers including small cell lung cancer (SCLC). However, it is not known whether HOTAIR can modulate chemoresistance in SCLC. The aim of this study is to investigate the roles of HOTAIR in chemoresistance of SCLC and its possible molecular mechanism. Knockdown of HOTAIR was carried out in SCLC multidrug-resistant cell lines (H69AR and H446AR) and the parental cell lines (H69 and H446) to assess its influence on chemoresistance. The results showed that downregulation of HOTAIR increased cell sensitivity to anticancer drugs through increasing cell apoptosis and cell cycle arrest, and suppressed tumor growth in vivo. Moreover, HOXA1 methylation increased in the resistant cells using bisulfite sequencing PCR. Depletion of HOTAIR reduced HOXA1 methylation by decreasing DNMT1 and DNMT3b expression. The interaction between HOTAIR and HOXA1 was validated by RNA immunoprecipitation. Taken together, our study suggested that HOTAIR mediates chemoresistance of SCLC by regulating HOXA1 methylation and could be utilized as a potential target for new adjuvant therapies against chemoresistance.

Wang X, Li Y, Qi W, et al.
MicroRNA-99a inhibits tumor aggressive phenotypes through regulating HOXA1 in breast cancer cells.
Oncotarget. 2015; 6(32):32737-47 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs) are key regulators of tumor progression. Based on microarray data, we identified miR-99a as a potential tumor suppressor in breast cancer. Expression of miR-99a is frequently down-regulated in breast cancer tissues relative to normal breast tissues. Reduced miR-99a expression was highly associated with lymph node metastasis and shorter overall survival of patients with breast cancer. Gain- and loss-of-function studies revealed that, miR-99a significantly inhibits breast cancer cell proliferation, migration, and invasion. An integrated bioinformatics analysis identified HOXA1 mRNA as the direct functional target of miR-99a, and this regulation was confirmed by luciferase reporter assay. Furthermore, we showed for the first time that HOXA1 expression is elevated in breast cancer tissues. Knockdown of HOXA1 significantly inhibited breast cancer cell proliferation, migration and invasion, and restoration of HOXA1 partially rescued the inhibitory effect of miR-99a in breast cancer cells. Collectively, our data indicate that miR-99a plays a tumor-suppressor role in the development of breast cancer, and could serve as a potential therapeutic target for breast cancer treatment.

Wang H, Liu G, Shen D, et al.
HOXA1 enhances the cell proliferation, invasion and metastasis of prostate cancer cells.
Oncol Rep. 2015; 34(3):1203-10 [PubMed] Related Publications
HOXA1, a member of the HOX gene family, has been implicated in tumor progression. However, the role of HOXA1 in prostate cancer is not well-established. In the present study, we found that HOXA1 was highly expressed in prostate cancer cells. We then repressed the expression of HOXA1 by short hairpin RNA (shRNA) to investigate the function of HOXA1 in prostate cancer cells. Our in vitro data showed that knockdown of HOXA1 attenuated the growth, invasion and migration of prostate cancer DU-145 and PC-3 cells. Furthermore, knockdown of HOXA1 resulted in an increased E-cadherin level and decreased Snail and MMP-3 levels in the DU-145 cells. In addition, knockdown of HOXA1 inhibited activation of ERK1/2 and AKT in the DU-145 cells. Our in vivo data revealed that knockdown of HOXA1 suppressed the growth and metastasis of prostate cancer cells. Collectively, our findings suggest that HOXA1 is involved in the regulation of prostate cancer progression, including cell growth, migration, invasion and metastasis. Thus, downregulation of HOXA1 may be a novel approach for the treatment of prostate cancer.

Chang H, Shin BK, Kim A, et al.
DNA methylation analysis for the diagnosis of thyroid nodules - a pilot study with reference to BRAF(V) (600E) mutation and cytopathology results.
Cytopathology. 2016; 27(2):122-30 [PubMed] Related Publications
OBJECTIVE: Promoter hypermethylation and the BRAF(V) (600E) mutation are both involved in thyroid tumorigenesis. We conducted a pilot study on the diagnosis of thyroid nodules by analysis of promoter hypermethylation status with reference to BRAF(V) (600E) mutation and cytopathology results using formalin-fixed, paraffin-embedded (FFPE) tissues and liquid-based preparation (LBP) thyroid fine needle aspiration (FNA) samples to predict more reliably the possibility of papillary carcinoma.
METHODS: We initially performed MethyLight analysis for 30 genes that are known to be hypermethylated in malignancies using 164 papillary carcinomas and 77 benign tissue samples. Five genes selected from the tissue analysis were subsequently analysed in 75 surgically proven benign and 66 surgically proven papillary carcinoma LBP FNA samples. Samples that showed two or more positive results among the five genes were classified as methylation positive. We also analysed the BRAF(V) (600E) mutation status of the FNA samples.
RESULTS: We identified five genes that were significantly hypermethylated in malignant tissues: PTGS2, HOXA1, TMEFF2, p16 and PTEN. With respect to diagnostic potential, results obtained using the BRAF(V) (600E) mutation test combined with cytological examination were not significantly different from those obtained with cytological examination only. Combining methylation analyses with cytological examination or performing all three tests for diagnoses did not improve significantly the negative predictive values and sensitivity, but a significant decrease in positive predictive value and specificity was observed.
CONCLUSION: Further studies are needed on larger samples to assess the potential value of methylation analysis of thyroid FNA.

Cheng Y, Jutooru I, Chadalapaka G, et al.
The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration.
Oncotarget. 2015; 6(13):10840-52 [PubMed] Free Access to Full Article Related Publications
HOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expressed in pancreatic cancer cell lines and knockdown of HOTTIP by RNA interference (siHOTTIP) in Panc1 pancreatic cancer cells decreased proliferation, induced apoptosis and decreased migration. In Panc1 cells transfected with siHOTTIP, there was a decrease in expression of 757 genes and increased expression of 514 genes, and a limited gene analysis indicated that HOTTIP regulation of genes is complex. For example, Aurora kinase A, an important regulator of cell growth, is coregulated by MLL and not WDR5 and, in contrast to previous studies in liver cancer cells, HOTTIP does not regulate HOXA13 but plays a role in regulation of several other HOX genes including HOXA10, HOXB2, HOXA11, HOXA9 and HOXA1. Although HOTTIP and the HOX-associated lncRNA HOTAIR have similar pro-oncogenic functions, they regulate strikingly different sets of genes in Panc1 cells and in pancreatic tumors.

Mahajan K, Mahajan NP
ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers.
Oncogene. 2015; 34(32):4162-7 [PubMed] Free Access to Full Article Related Publications
Deregulated tyrosine kinase signaling alters cellular homeostasis to drive cancer progression. The emergence of a non-receptor tyrosine kinase (non-RTK), ACK1 (also known as activated Cdc42-associated kinase 1 or TNK2) as an oncogenic kinase, has uncovered novel mechanisms by which tyrosine kinase signaling promotes cancer progression. Although early studies focused on ACK1 as a cytosolic effector of activated transmembrane RTKs, wherein it shuttles between the cytosol and the nucleus to rapidly transduce extracellular signals from the RTKs to the intracellular effectors, recent data unfold a new aspect of its functionality as an epigenetic regulator. ACK1 interacts with the estrogen receptor (ER)/histone demethylase KDM3A (JHDM2a) complex, which modifies KDM3A by tyrosine phosphorylation to regulate the transcriptional outcome at HOXA1 locus to promote the growth of tamoxifen-resistant breast cancer. It is also well established that ACK1 regulates the activity of androgen receptor (AR) by tyrosine phosphorylation to fuel the growth of hormone-refractory prostate cancers. Further, recent explosion in genomic sequencing has revealed recurrent ACK1 gene amplification and somatic mutations in a variety of human malignancies, providing a molecular basis for its role in neoplastic transformation. In this review, we will discuss the various facets of ACK1 signaling, including its newly uncovered epigenetic regulator function, which enables cells to bypass the blockade to major survival pathways to promote resistance to standard cancer treatments. Not surprisingly, cancer cells appear to acquire an 'addiction' to ACK1-mediated survival, particularly under stress conditions, such as growth factor deprivation or genotoxic insults or hormone deprivation. With the accelerated development of potent and selective ACK1 inhibitors, targeted treatment for cancers harboring aberrant ACK1 activity may soon become a clinical reality.

Rivera C, González-Arriagada WA, Loyola-Brambilla M, et al.
Clinicopathological and immunohistochemical evaluation of oral and oropharyngeal squamous cell carcinoma in Chilean population.
Int J Clin Exp Pathol. 2014; 7(9):5968-77 [PubMed] Free Access to Full Article Related Publications
In oral and oropharyngeal squamous cell carcinoma (OCSCC and OPSCC) exist an association between clinical and histopathological parameters with cell proliferation, basal lamina, connective tissue degradation and surrounding stroma markers. We evaluated these associations in Chilean patients. A convenience sample of 37 cases of OCSCC (n=16) and OPSCC (n=21) was analyzed clinically (TNM, clinical stage) and histologically (WHO grade of differentiation, pattern of tumor invasion). We assessed the expression of p53, Ki67, HOXA1, HOXB7, type IV collagen (ColIV) and carcinoma-associated fibroblast (α-SMA-positive cells). Additionally we conducted a univariate/bivariate analysis to assess the relationship of these variables with survival rates. Males were mostly affected (56.2% OCSCC, 76.2% OPSCC). Patients were mainly diagnosed at III/IV clinical stages (68.8% OCSCC, 90.5% OPSCC) with a predominantly infiltrative pattern invasion (62.9% OCSCC, 57.1% OPSCC). Significant association between regional lymph nodes (N) and clinical stage with OCSCC-HOXB7 expression (Chi-Square test P < 0.05) was observed. In OPSCC a statistically significant association exists between p53, Ki67 with gender (Chi-Square test P < 0.05). In OCSCC and OPSCC was statistically significant association between ki67 with HOXA1, HOXB7, and between these last two antigens (Pearson's Correlation test P < 0.05). Furthermore OPSCC-p53 showed significant correlation when it was compared with α-SMA (Kendall's Tau-c test P < 0.05). Only OCSCC-pattern invasion and OPSCC-primary tumor (T) pattern resulted associated with survival at the end of the follow up period (Chi-Square Likelihood Ratio, P < 0.05). Clinical, histological and immunohistochemical features are similar to seen in other countries. Cancer proliferation markers were associated strongly from each other. Our sample highlights prognostic value of T and pattern of invasion, but the conclusions may be limited and should be considered with caution (small sample). Many cases were diagnosed in the advanced stages of the disease, which suggests that the diagnosis of OCSCC and OPSCC is made late.

Marcato P, Dean CA, Liu RZ, et al.
Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling.
Mol Oncol. 2015; 9(1):17-31 [PubMed] Free Access to Full Article Related Publications
Aldehyde dehydrogenase (ALDH) 1A enzymes produce retinoic acid (RA), a transcription induction molecule. To investigate if ALDH1A1 or ALDH1A3-mediated RA signaling has an active role in breast cancer tumorigenesis, we performed gene expression and tumor xenograft studies. Analysis of breast patient tumors revealed that high levels of ALDH1A3 correlated with expression of RA-inducible genes with retinoic acid response elements (RAREs), poorer patient survival and triple-negative breast cancers. This suggests a potential link between ALDH1A3 expression and RA signaling especially in aggressive and/or triple-negative breast cancers. In MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells, ALDH1A3 and RA increased expression of RA-inducible genes. Interestingly, ALDH1A3 had opposing effects in tumor xenografts, increasing tumor growth and metastasis of MDA-MB-231 and MDA-MB-435 cells, but decreasing tumor growth of MDA-MB-468 cells. Exogenous RA replaced ALDH1A3 in inducing the same opposing tumor growth and metastasis effects, suggesting that ALDH1A3 mediates these effects by promoting RA signaling. Genome expression analysis revealed that ALDH1A3 induced largely divergent gene expression in MDA-MB-231 and MDA-MB-468 cells which likely resulted in the opposing tumor growth effects. Treatment with DNA methylation inhibitor 5-aza-2'deoxycytidine restored uniform RA-inducibility of RARE-containing HOXA1 and MUC4 in MDA-MB-231 and MDA-MB-468 cells, suggesting that differences in epigenetic modifications contribute to differential ALDH1A3/RA-induced gene expression in breast cancer. In summary, ALDH1A3 induces differential RA signaling in breast cancer cells which affects the rate of breast cancer progression.

Sharma G, Agarwal SM
Identification of critical microRNA gene targets in cervical cancer using network properties.
Microrna. 2014; 3(1):37-44 [PubMed] Related Publications
miRNAs are short non-coding RNAs which function as oncogenes or tumour suppressor gene and regulate gene expression by controlling targets that play role in cancer development and progression. Numerous recent studies have established an association of abnormal expression of miRNA with cervical cancer progression. Although the number of reported deregulated miRNA in cervical cancer is increasing, only a few associations between miRNA and their targets have been studied in cervical cancer. Therefore, we performed a systematic analysis of known dysregulated miRNAs involved in cervical cancer so as to identify critical miRNA targets that could pave way for therapeutic solutions. In this study, miRNAs reported to be dysregulated in cervical cancer were collected and their targets predicted using TargetScan, PicTar and miRanda. These targets were subsequently compared with previously curated gene dataset involved in cervical cancer to derive the putative target dataset. We then compared network properties (composed of degree, betweenness centrality, closeness centrality and clustering coefficient) of the putative, validated and human protein-protein interaction network. Based on the topological properties genes were ranked and observed that the gene targets BIRC5 (survivin), HOXA1 and RARB presenting with high Novoseek score of Genecards were enriched in cervical cancer. BIRC5 is an anti- apoptotic protein while HOXA1 and RARB are transcription factors which play critical role in altering the level of cell cycle and apoptosis associated proteins. Also, miRNA-mRNA network was constructed and it was found that miR-203 and miR-30b could target these genes. The analysis indicates that the genes BIRC5, HOXA1 and RARB are critical targets that play an important regulatory role in cervical cancer pathogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HOXA1, Cancer Genetics Web: http://www.cancer-genetics.org/HOXA1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999