ITK

Gene Summary

Gene:ITK; IL2 inducible T cell kinase
Aliases: EMT, LYK, LPFS1, PSCTK2
Location:5q33.3
Summary:This gene encodes an intracellular tyrosine kinase expressed in T-cells. The protein contains both SH2 and SH3 domains which are often found in intracellular kinases. It is thought to play a role in T-cell proliferation and differentiation. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tyrosine-protein kinase ITK/TSK
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (18)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • CD Antigens
  • T-Lymphocyte Gene Rearrangement
  • Non-Hodgkin Lymphoma
  • T-Cell Antigen Receptors
  • Disease Models, Animal
  • Immunophenotyping
  • Phosphorylation
  • Intracellular Signaling Peptides and Proteins
  • Immunohistochemistry
  • T-Cell Lymphoma
  • Antineoplastic Agents
  • Epstein-Barr Virus Infections
  • Childhood Cancer
  • FISH
  • Phenotype
  • Biomarkers, Tumor
  • Signal Transduction
  • Pyrazoles
  • Biopsy
  • NIH 3T3 Cells
  • Syk Kinase
  • Drug Resistance
  • T-Lymphocytes, Helper-Inducer
  • Skin Diseases
  • Chromosome 5
  • Pyrimidines
  • Vascular Endothelial Growth Factor Receptor-2
  • Adolescents
  • Oncogene Fusion Proteins
  • Protein-Tyrosine Kinases
  • Transcriptome
  • Lymphoma, T-Cell, Peripheral
  • Chromosome 9
  • Immunoblastic Lymphadenopathy
  • Mutation
  • Antigens, Differentiation, T-Lymphocyte
  • Genetic Predisposition
  • Gene Expression Profiling
  • Cancer Gene Expression Regulation
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ITK (cancer-related)

Yue CH, Liu JY, Chi CS, et al.
Myeloid Zinc Finger 1 (MZF1) Maintains the Mesenchymal Phenotype by Down-regulating IGF1R/p38 MAPK/ERα Signaling Pathway in High-level MZF1-expressing TNBC cells.
Anticancer Res. 2019; 39(8):4149-4164 [PubMed] Related Publications
BACKGROUND/AIM: Signaling regulation of myeloid zinc finger 1 (MZF1) has been implicated in the progression of many human malignancies; however, the mechanistic action of MZF1 in triple-negative breast cancer (TNBC) progression remains elusive. In this study, the aim was to investigate the molecular mechanisms of MZF1 and its functional role in TNBC cellular migration and invasion.
MATERIALS AND METHODS: Hs578T and MDA-MB-231 cells were transfected to stably express the acidic domain of MZF1 (MZF1
RESULTS: Herein, we found that MZF1 in high-level MZF1-expressing TNBC cells is associated with cell migration, invasion, and mesenchymal phenotype. MZF1 interacted with the promoter region of insulin-like growth factor 1 receptor (IGF1R) to drive invasion and metastasis of high-level MZF1-expressing TNBC cells. Exogenous expression of the acidic domain of MZF1 repressed the binding of endogenous MZF1 to IGF1R promoter via blocking the interaction with ETS-like gene 1 (ELK1). This blockage not only caused MZF1 protein degradation, but also restrained ELK1 nuclear localization in high-level MZF1-expressing TNBC cells. MZF1, but not ELK1, was necessary for the retention of mesenchymal phenotype by repressing IGF1R promoter activity in TNBC cells expressing high levels of MZF1. Activation of the IGF1R-driven p38MAPK-ERα-slug-E-cadherin signaling axis mediated the conversion of mesenchymal cell to epithelial phenotype, caused by MZF1 destabilization. These results suggest that MZF1 is an oncogenic inducer.
CONCLUSION: Blocking of the MZF1/ELK1 interaction to reduce MZF1 protein stability by saturating the endogenous MZF1/ELK1 binding domains might be a promising therapeutic strategy for the treatment of high-level MZF1-expressing TNBC.

Li Z, Tan H, Zhao W, et al.
Integrative analysis of DNA methylation and gene expression profiles identifies MIR4435-2HG as an oncogenic lncRNA for glioma progression.
Gene. 2019; 715:144012 [PubMed] Related Publications
Long noncoding RNAs (lncRNAs) have been shown to play an important role in tumor biogenesis and prognosis. The glioma is a grade classified cancer, however, we still lack the knowledge on their function during glioma progression. While previous studies have shown how lncRNAs regulate protein-coding gene epigenetically, it is still unclear how lncRNAs are regulated epigenetically. In this study, we firstly analyzed the RNA-seq data systematically across grades II, IV, and IV of glioma samples. We identified 60 lncRNAs that are significantly differentially expressed over disease progression (DElncRNA), including well-known PVT1, HOTAIR, H19 and rarely studied CARD8-AS, MIR4435-2HG. Secondly, by integrating HM450K methylation microarray data, we demonstrated that some of the lncRNAs are epigenetically regulated by methylation. Thirdly, we developed a DESeq2-GSEA-ceRNA-survival analysis strategy to investigate their functions. Particularly, MIR4435-2HG is highly expressed in high-grade glioma and may have an impact on EMT and TNFα signaling pathway by functioning as a miRNA sponge of miR-125a-5p and miR-125b-5p to increase the expression of CD44. Our results revealed the dynamic expression of lncRNAs in glioma progression and their epigenetic regulation mechanism.

Naghizadeh S, Mohammadi A, Baradaran B, Mansoori B
Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy.
Gene. 2019; 714:143972 [PubMed] Related Publications
Among cancers, lung cancer is the most morbidity and mortality disease that is remaining the fatalist. Generally, there are multiple treatment procedures for lung cancer, such as surgery, immunotherapy, radiotherapy and chemotherapy. There is, therefore, an urgent need for more specified and efficient methods for treatment of lung cancer such as RNAi, which in combination with traditional therapies could silence genes that are involved in the drug resistance. These genes may either be motivators of apoptosis inhibition, EMT and DNA repair system promoters or a member of intracellular signaling pathways, such as JAK/STAT, RAS/RAF/MEK, PI3K/AKT, NICD, B-catenin/TCF/LEF and their stimulator receptors including IGFR, EGFR, FGFR, VEGFR, CXCR4, MET, INTEGRINS, NOTCH1 and FRIZZLED, so could be considered as appropriate targets. In current review, the results of multiple studies which have employed drug application after one specific gene silencing or more than one gene from distinct pathways also simultaneous drug and RNAi usage in vitro and in vivo in lung cancer were summarized.

Jiang B, Sun Q, Tong Y, et al.
An immune-related gene signature predicts prognosis of gastric cancer.
Medicine (Baltimore). 2019; 98(27):e16273 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Although the outcome of patients with gastric cancer (GC) has improved significantly with the recent implementation of annual screening programs. Reliable prognostic biomarkers are still needed due to the disease heterogeneity. Increasing pieces of evidence revealed an association between immune signature and GC prognosis. Thus, we aim to build an immune-related signature that can estimate prognosis for GC.
METHODS: For identification of a prognostic immune-related gene signature (IRGS), gene expression profiles and clinical information of patients with GC were collected from 3 public cohorts, divided into training cohort (n = 300) and 2 independent validation cohorts (n = 277 and 433 respectively).
RESULTS: Within 1811 immune genes, a prognostic IRGS consisting of 16 unique genes was constructed which was significantly associated with survival (hazard ratio [HR], 3.9 [2.78-5.47]; P < 1.0 × 10). In the validation cohorts, the IRGS significantly stratified patients into high- vs low-risk groups in terms of prognosis across (HR, 1.84 [1.47-2.30]; P = 6.59 × 10) and within subpopulations with stage I&II disease (HR, 1.96 [1.34-2.89]; P = 4.73 × 10) and was prognostic in univariate and multivariate analyses. Several biological processes, including TGF-β and EMT signaling pathways, were enriched in the high-risk group. T cells CD4 memory resting and Macrophage M2 were significantly higher in the high-risk risk group compared with the low-risk group.
CONCLUSION: In short, we developed a prognostic IRGS for estimating prognosis in GC, including stage I&II disease, providing new insights into the identification of patients with GC with a high risk of mortality.

Nazir SU, Kumar R, Singh A, et al.
Breast cancer invasion and progression by MMP-9 through Ets-1 transcription factor.
Gene. 2019; 711:143952 [PubMed] Related Publications
Ets-1 is one of the crucial member of transcription factor family which share a unique DNA binding domain. It is predominantly expressed in various tumor subtypes and has shown its association in the regulation of various important genes which include ECM-degrading proteases. Our study aimed to understand the mechanism(s) in the pathogenesis of breast carcinogenesis by Ets-1 transcription factor and its downstream target gene MMP-9. Role of Ets-1 in MCF-7 and MDA-MB-231 breast cancer cells was studied by RNA-interference in combination with pull down and ChIP assays to identify the regulation of MMP-9 in these cell lines. Our results showed that transfection of Ets-1 siRNA in breast cancer cell lines resulted in downregulation of Ets-1 and MMP-9. Ets-1 knock down also showed reduced cell invasion and altered expression of EMT markers. Moreover, we could also predict that MMP-9 gene promoter harbors a binding site for Ets-1 transcription factor may be responsible in direct transactivation of Ets-1 along with EMT markers. Phenotypic changes and molecular alterations that may result in increased aggressiveness/invasiveness and metastatic nature of cancerous cells may lead to changes in EMT markers. Therefore, these findings may suggest a plausible role of Ets-1 dependent regulation of MMP-9 gene and may have a significant impact on breast carcinogenesis.

Wu TK, Chen CH, Pan YR, et al.
Cetrimonium Bromide Inhibits Cell Migration and Invasion of Human Hepatic SK-HEP-1 Cells Through Modulating the Canonical and Non-canonical TGF-β Signaling Pathways.
Anticancer Res. 2019; 39(7):3621-3631 [PubMed] Related Publications
BACKGROUND/AIM: Cetrimonium bromide (CTAB), a quaternary ammonium surfactant, is an antiseptic agent against bacteria and fungi. However, the mechanisms by which its pharmacological actions affect epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) cells, such as adenocarcinoma in SK-HEP-1 cells, have not been investigated. We, thereby, investigated whether CTAB inhibits cellular mobility and invasiveness of human hepatic adenocarcinoma in SK-HEP-1 cells.
MATERIALS AND METHODS: SK-HEP-1 cells were treated with CTAB, and subsequent migration and invasion were measured by wound healing and transwell assays. Protein expression was detected by immunoblotting analysis.
RESULTS: Our data revealed that treatment of SK-HEP-1 cells with CTAB altered their mesenchymal spindle-like morphology. CTAB exerted inhibitory effects on the migration and invasion of SK-HEP-1 cells dose-dependently, and reduced protein levels of matrix metalloproteinase-2 (MMP-2), MMP-9, snail, slug, twist, vimentin, fibronectin, N-cadherin, Smad2, Smad3, Smad4, phosphoinositide-3-kinase (PI3K), p-PI3K, Akt, p-Akt, β-catenin, mammalian target of rapamycin (mTOR), p-mTOR, p-p70S6K, p-extracellular signal-regulated kinases (ERK)1/2, p-p38 mitogen-activated protein kinase (MAPK) and p-c-Jun N-terminal kinase (JNK), but increased protein levels of tissue inhibitor matrix metalloproteinase-1 (TIMP-1), TIMP-2, claudin-1 and p-GSK3β. Based on these observations, we suggest that CTAB not only inhibits the canonical transforming growth factor-β (TGF-β) signaling pathway though reducing SMADs (an acronym from the fusion of Caenorhabditis elegans Sma genes and the Drosophila Mad, Mothers against decapentaplegic proteins), but also restrains the non-canonical TGF-β signaling including MAPK pathways like ERK1/2, p38 MAPK, JNK and PI3K.
CONCLUSION: CTAB is involved in the suppression of TGF-β-mediated mesenchymal phenotype and could be a potent medical agent for use in controlling the migration and invasion of hepatic adenocarcinoma.

Kishore C, Sundaram S, Karunagaran D
Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells.
Chem Biol Interact. 2019; 309:108725 [PubMed] Related Publications
Tumor recurrence and metastasis decrease the survival rate of colorectal cancer (CRC) patients. Menadione reduces the numbers and incidences of 1,2-dimethylhydrazine induced colon tumors in mouse but the mechanism of anticancer activity of menadione in colorectal cancer is not very clear. Since Wnt signaling is constitutively active in CRC and it aggravates the epithelial mesenchymal transition (EMT), the regulation of EMT and Wnt signaling by menadione (vitamin K3) was investigated in CRC cells. Menadione showed cytotoxicity against human CRC cells (SW480 and SW620) and human primary colon cancer cells but was relatively ineffective against the cells from human normal colon (CRL-1790) and human primary colon epithelial cells. Menadione suppressed invasion, migration and epithelial-mesenchymal transition in human CRC cells by upregulating the expression of E-cadherin (CDH1), ZO-1 and downregulating that of N-cadherin (CDH2), Vimentin (VIM), ZEB1, MMP2 and MMP9. Menadione decreased TOPFlash/FOPFlash luciferase activity and expression of several downstream targets of Wnt signaling and coactivators such as β-catenin (CTNNB1), TCF7L2, Bcl9l, p300 (EP300) and cyclin D1 (CCND1) was suppressed. Menadione induced differentiation and increased apoptotic cell population in SubG0 phase of cell cycle in SW480 and SW620 cells. The ability of menadione to suppress EMT, migration, invasion, Wnt signaling, cell proliferation and induce Sub G0 arrest, highlights its potential to be considered for intensive preclinical and clinical investigation in CRC.

Zhang Q, Huang F, Yao Y, et al.
Interaction of transforming growth factor-β-Smads/microRNA-362-3p/CD82 mediated by M2 macrophages promotes the process of epithelial-mesenchymal transition in hepatocellular carcinoma cells.
Cancer Sci. 2019; 110(8):2507-2519 [PubMed] Free Access to Full Article Related Publications
Abnormal tumor microenvironment and the epithelial-mesenchymal transition (EMT) are important features of tumor metastasis. However, it remains unknown how signals can form complicated networks to regulate the sustainability of the EMT process. The aim of our study is to explore the possible interaction between tumor-associated macrophages and tumor cells in the EMT process mediated by microRNA (miR)-362-3p. In this study, we found that by releasing TGF-β, M2 macrophages mediate binding of Smad2/3 to miR-362-3p promoter, leading to overexpression of miR-362-3p. MicroRNA-362-3p maintains EMT by regulating CD82, one of the most important members of the family of tetraspanins. Our finding suggests that miR-362-3p can serve as a core factor mediating cross-talk between the TGF-β pathway in tumor-associated macrophages and tetraspanins in tumor cells, and thus facilitates the EMT process.

Ou J, Guan D, Yang Y
Non-contact co-culture with human vascular endothelial cells promotes epithelial-to-mesenchymal transition of cervical cancer SiHa cells by activating the NOTCH1/LOX/SNAIL pathway.
Cell Mol Biol Lett. 2019; 24:39 [PubMed] Free Access to Full Article Related Publications
Background: The aim of this study was to investigate the effect of human umbilical vein endothelial cells on epithelial-to-mesenchymal transition of the cervical cancer cell line SiHa by studying the Notch1/lysyl oxidase (LOX)/SNAIL1 pathway.
Methods: Monocultures of SiHa cells, SiHa cells containing a control sequence, and
Results: Compared with monocultured SiHa cells, co-cultured SiHa cells showed a significant increase in their invasiveness and expression levels of vimentin, as well as of NOTCH 1, LOX, and SNAIL1, whereas their expression of E-cadherin was significantly reduced and protein activities of MMP-2 and MMP-9 were increased. Compared with SiHa, mono- and co-cultured
Conclusion: Co-culture with human umbilical vein endothelial cells promoted the epithelial-to-mesenchymal transition of SiHa cells by activating the NOTCH1/LOX/SNAIL1 pathway in SiHa cells, which enhanced their invasive and metastatic capacities. The results of this study may provide a new perspective on cervical cancer metastasis and a theoretical basis for clinical treatment.

Zhang T, Suo C, Zheng C, Zhang H
Hypoxia and Metabolism in Metastasis.
Adv Exp Med Biol. 2019; 1136:87-95 [PubMed] Related Publications
The hypoxic microenvironment is one of the major features of solid tumors, which regulates cell malignancy in multiple ways. As a response to hypoxia, a large number of target genes involved in cell growth, metabolism, metastasis and immunity are activated in cancer cells. Hypoxia-inducible factor 1 (HIF-1), as a heterodimeric DNA-binding complex, is comprised of a constitutively expressed HIF-1β subunit and an oxygen sensitive HIF-1α subunit, thus, adapts to decreased oxygen availability as a transcriptional factor. HIF-1 regulates many genes involved in tumorigenesis. Here, we focus on cancer cell metabolism and metastasis regulated by hypoxia.

Kumar KJS, Vani MG, Hsieh HW, et al.
Antcin-A Modulates Epithelial-to-Mesenchymal Transition and Inhibits Migratory and Invasive Potentials of Human Breast Cancer Cells via p53-Mediated miR-200c Activation.
Planta Med. 2019; 85(9-10):755-765 [PubMed] Related Publications
Antcin-A (ATA) is a steroid-like phytochemical isolated from the fruiting bodies of a precious edible mushroom

Zhang P, Lu X, Shi Z, et al.
miR-205-5p regulates epithelial-mesenchymal transition by targeting PTEN via PI3K/AKT signaling pathway in cisplatin-resistant nasopharyngeal carcinoma cells.
Gene. 2019; 710:103-113 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) symbolizes the predominant program of advanced-stage cancer, it is critical in cancer progression, metastasis, and chemotherapy resistance. In this study, the metastatic properties of nasopharyngeal carcinoma (NPC) cells were evaluated by morphological examination, wound healing assay, migration and invasion assay. Western blotting and qRT-PCR were used to ascertain the expression of markers which were associated with EMT. The effects of miR-205-5p on invasion, migration, EMT and proliferation of NPC cells were evaluated and the molecular mechanisms of their interaction were explored. In this study, we manifested firstly that the expression of miR-205-5p in cisplatin-resistant NPC cell line HNE1/DDP was obviously up-regulated than that in its parental cell line HNE1. Then we analyzed the specific role of miR-205-5p through functional assays by transfecting specific mimics and inhibitors. The results indicated that low expression of miR-205-5p restrained EMT progression of HNE1/DDP cells. Further studies on the mechanism of miR-205-5p manifested that PTEN was a downstream candidate gene of miR-205-5p, down-regulated PTEN expression could counteract the effect of miR-205-5p inhibitors, and the regulation of EMT by miR-205-5p on HNE1/DDP cells depended on the PI3K/AKT signaling pathway. Overall, our results indicated that miR-205-5p was targeting PTEN to regulate EMT through the PI3K/AKT pathway. This study will supply a new treatment target for advanced NPC.

Ardalan Khales S, Abbaszadegan MR, Majd A, Forghanifard MM
Linkage between EMT and stemness state through molecular association between TWIST1 and NY-ESO1 in esophageal squamous cell carcinoma.
Biochimie. 2019; 163:84-93 [PubMed] Related Publications
Aberrant expression of cancer testis antigens (CTAs) is reported in tumors, especially those with stemness properties. A number of CTAs can induce epithelial mesenchymal transition (EMT) process and promote cancer stem cells (CSCs) characteristics. We aimed in this study to analyze the correlation between NY-ESO1 and TWIST1 in esophageal squamous cell carcinoma (ESCC), as well as their impact on EMT process. Gene expression profiling of NY-ESO1 and TWIST1 was performed in 43 esophageal tumors compared to their margin normal tissues of using qRT-PCR, and their correlation with clinicopathological variables of the patients was evaluated. In silico analysis of the NY-ESO1, epithelial and mesenchymal cell markers and also their promoter sequences was executed. ESCC cell lines KYSE-30 and YM-1 were transduced to ectopically express TWIST1 using a retroviral system, followed by qRT-PCR mRNA expression analysis to reveal the probable correlation among TWIST1, NY-ESO1 and EMT markers gene expression. Scratch assay was performed to estimate migration of TWIST1-induced cells. Overexpression of TWIST1 and NY-ESO1 mRNA was observed in 42% and 39.5% (P ˂ 0.05) of tumors, respectively. Expression of the genes was significantly correlated with each other (p = 0.005). TWIST1 and NY-ESO1 overexpression was significantly associated with stage of progression and size of tumors, respectively. A direct association between TWIST1 and NY-ESO1 mRNA expression was confirmed by induced ectopic expression of TWIST1 in ESCC cell lines KYSE-30 and YM-1. TWIST1-induced cells led to increase migration in ESCC cell line. Furthermore, significant up-regulation of EMT markers was observed following ectopic expression of TWIST1 in these cells. Based on our findings, it may be proposed that a vital association is exist between the EMT and the acquisition of cancer stemness state in tumor cells through the TWIST1/NY-ESO1 axis and it can be a critical hallmark in ESCC tumorigenesis.

Yang H, Geng YH, Wang P, et al.
Extracellular ATP promotes breast cancer invasion and epithelial-mesenchymal transition via hypoxia-inducible factor 2α signaling.
Cancer Sci. 2019; 110(8):2456-2470 [PubMed] Free Access to Full Article Related Publications
Extracellular ATP has been shown to play an important role in invasion and the epithelial-mesenchymal transition (EMT) process in breast cancer; however, the mechanism is unclear. Here, by using a cDNA microarray, we demonstrated that extracellular ATP could stimulate hypoxia-inducible factor (HIF) signaling and upregulate hypoxia-inducible factor 1/2α (HIF-1/2α) expression. After knocking down HIF-1/2α using siRNA, we found that ATP-driven invasion and EMT were significantly attenuated via HIF2A-siRNA in breast cancer cells. By using ChIP assays, we revealed that the biological function of extracellular ATP in invasion and EMT process depended on HIF-2α direct targets, among which lysyl oxidase-like 2 (LOXL2) and matrix metalloproteinase-9 (MMP-9) mediated ATP-driven invasion, and E-cadherin and Snail mediated ATP-driven EMT, respectively. In addition, using silver staining and mass spectrometry, we found that phosphoglycerate kinase 1 (PGK1) could interact with HIF-2α and mediate ATP-driven HIF-2α upregulation. Furthermore, we demonstrated that expressions of HIF-2α and its target proteins could be regulated via ATP by AKT-PGK1 pathway. Using a Balb/c mice model, we illustrated the function of HIF-2α in promoting tumor growth and metastasis in vivo. Moreover, by exploring online databases, we found that molecules involved in ATP-HIF-2α signaling were highly expressed in human breast carcinoma tissues and were associated with poor prognosis. Altogether, these findings suggest that extracellular ATP could promote breast carcinoma invasion and EMT via HIF-2α signaling, which may be a potential target for future anti-metastasis therapy.

Qian X, Nie X, Wollenberg B, et al.
Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells.
Adv Exp Med Biol. 2019; 1139:23-40 [PubMed] Related Publications
Current systemic cancer treatment in head and neck squamous cell carcinoma (HNSCC) is moving toward more personalized approaches such as de-escalation protocols human-papilloma-virus dependent HNSCC or application of checkpoint inhibitors. However, these treatments have been challenged by cancer stem cells (CSC), a small population within the bulk tumor, which are leading to treatment failure, tumor recurrence, or metastases. This review will give an overview of the characteristics of HNSCC-CSC. Specifically, the mechanisms by which HNSCC-CSC induce tumor initiation, progression, recurrence, or metastasis will be discussed. Although evidence-based treatment options targeting HNSCC-CSC specifically are still being sought for, they warrant a promise for additional and sustainable treatment options where for HNSCC patients where others have failed.

Wang X, Lyu J, Ji A, et al.
Jarid2 enhances the progression of bladder cancer through regulating PTEN/AKT signaling.
Life Sci. 2019; 230:162-168 [PubMed] Related Publications
AIMS: Jumonji AT-rich interactive domain 2 (Jarid2) is an interacting component of PRC2 which catalyzes methylation of H3K27 (H3K27me3) and causes the downregulation of PTEN. In the present study, we aimed to explore whether Jarid2 could interact with H3K27me3 to regulate PTEN expression in bladder cancer.
MAIN METHODS: Jarid2 expression in bladder cancer tissues and cells were determined by western blotting and RT-PCR. CCK-8, flow cytometry, transwell chamber and in vivo xenograft assays were performed to assess cell growth, apoptosis, migration and tumorigenesis, respectively. Chromatin immunoprecipitation (ChIP) assay was used to assess the methylation of PTEN.
KEY FINDINGS: Jarid2 expression was increased in bladder cancer tissues and cells. Downregulation of Jarid2 with shRNA transfection obviously inhibited the proliferation, migration and tumorigenesis of bladder cancer T24 and HT-1376 cells and induced cell apoptosis. Jarid2 downregulation decreased the expression of p-AKT and increased PTEN expression. Besides, Jarid2 down-regulation repressed the epithelial-mesenchymal transition (EMT), whereas knockdown of PTEN impaired this effect. Moreover, upregulation of Jarid2 increased the combination of PTEN promoter and H3K27me3, and 5-aza-CdR rescued it. Meanwhile, 5-aza-CdR administration abolished Jarid2 roles in the promotion of EMT process and AKT activation, as well as the reduction of PTEN expression.
SIGNIFICANCE: Overall, the present study elaborated that Jarid2 facilitated the progression of bladder cancer through H3K27me3-mediated PTEN downregulation and AKT activation, which might provide a new mechanism for Jarid2 in promoting bladder cancer progression.

Dudzik P, Trojan SE, Ostrowska B, et al.
The Epigenetic Modifier 5-Aza-2-deoxycytidine Triggers the Expression of
Anticancer Res. 2019; 39(5):2395-2403 [PubMed] Related Publications
BACKGROUND/AIM: During cancer progression cells undergo epithelial-to-mesenchymal transition (EMT). Although EMT is a complex process, recently, it has been reported that CD146 overexpression in prostate cancer cells is sufficient to induce mesenchymal phenotype. The following study aimed to investigate whether the expression of CD146 is altered by an epigenetic modifier in prostate cancer cells, in vitro.
MATERIALS AND METHODS: Three human prostate cancer cell lines were treated with 5-aza-2-deoxycytidine; the expression of CD146 and EMT-related factors was analyzed by RT-PCR and western Blot. The methylation status of the CD146 promoter area was assessed using bisulfite sequencing.
RESULTS: Our data showed that, the expression of CD146 was evidently increased in all three studied cell lines in response to a demethylating agent, both at the mRNA and protein level, suggesting epigenetic regulation of the analyzed gene. However, there was no methylation in the studied CpG island in CD146 gene promoter. Moreover, the demethylating agent induced the expression of EMT-related transcription factors (SNAI1, SNAI2, TWIST1 and ZEB1), the pattern of which differed among the cell lines, as well as alterations in cell morphology; altogether accounting for the mesenchymal phenotype.
CONCLUSION: The demethylating agent 5-aza-2-deoxycytidine triggers the expression of CD146 in prostate cancer cells independently on the methylation status of the analyzed CpG island fragment in CD146 gene promoter. Moreover, demethylation treatment induces a mesenchymal profile in prostate cancer cells.

Tang XJ, Wang W, Hann SS
Interactions among lncRNAs, miRNAs and mRNA in colorectal cancer.
Biochimie. 2019; 163:58-72 [PubMed] Related Publications
Long non-coding RNAs (lncRNAs) are longer than 200 nts non-coding transcripts and have recently emerged as one of the largest and significantly diverse RNA families whereas microRNAs (miRNAs) are highly conserved short single-stranded ncRNAs (∼18-22 nucleotides). As families of small and long evolutionarily conserved ncRNAs, lncRNAs activate and repress genes via a variety of mechanisms at both transcriptional and translational levels, while miRNAs regulate protein-coding gene expression mainly through mRNA degradation or silencing, These ncRNAs have been proved to be involved in multiple biological functions, such as proliferation, differentiation, migration, angiogenesis and apoptosis. Today, while majority of studies have focused on defining the regulatory functions of lncRNAs and miRNAs, limited information have now available for the mutual regulations of lncRNAs, miRNAs and mRNA. Thus, the underlying molecular mechanisms, in particularly the interactions among lncRNAs, miRNAs and mRNA in development, growth, metastasis and therapeutic potential of cancer still remain obscure. Colorectal cancer (CRC) is known as the third most common and fourth leading cancer death worldwide. Increasing evidence showed the close correlations among aberrant expressions of lncRNAs, miRNAs and the occurrence, development of CRC. This review summarize the potential links among these RNAs in following three areas: 1, The biogenesis and roles of miRNAs in CRC; 2, The biogenesis and functions of lncRNAs in CRC; 3, The interactions among lncRNAs, miRNAs and mRNA in tumorigensis, growth, progression, EMT formation, chemoradiotherapy resistance, and therapeutic potential in CRC. We believe that identifying diverging lncRNAs, miRNAs and relevant genes, their interactions and complex molecular regulatory networks will provide important clues for understanding the mechanism and developing novel diagnostic and therapeutic strategies for CRC. Further efforts are warranted to bring the promise of regulating their activities into clinical utilities.

Hori S, Miyake M, Onishi S, et al.
Evaluation of pro‑ and anti‑tumor effects induced by three colony‑stimulating factors, G‑CSF, GM‑CSF and M‑CSF, in bladder cancer cells: Is G‑CSF a friend of bladder cancer cells?
Int J Oncol. 2019; 54(6):2237-2249 [PubMed] Related Publications
Cytotoxic chemotherapy is the standard treatment for patients with advanced bladder cancer. However, this treatment can cause transient and prolonged neutropenia, which can result in fatal infection. Three recombinant human colony‑stimulating factors (CSFs), granulocyte CSF (G‑CSF), granulocyte‑macrophage CSF (GM‑CSF), and macrophage CSF (M‑CSF), are currently available to reduce the duration and degree of neutropenia. The present study investigated the pro‑ and anti‑tumor effects of these three CSFs and the changes in molecular profiles. Xenograft tumors in athymic mice were generated by subcutaneously inoculating the human bladder cancer cell lines MGH‑U3 and UM‑UC‑3. A total of 2 weeks after cell inoculation, mice were randomly divided into four groups (control, G‑CSF, GM‑CSF and M‑CSF) and treated thrice a week for 2 weeks. Tumor growth during monitoring and tumor weight at the time of euthanization were significantly higher in mice treated with G‑CSF and lower in mice treated with GM‑CSF compared with the control mice. Tumors were examined by immunostaining with antibodies against proteins associated tumor proliferation (Ki‑67), angiogenesis [CD31 and vascular endothelial growth factor (VEGF)], anti‑immunity (CD204) and epithelial‑mesenchymal transition (EMT; E‑cadherin). Immunohistochemical staining revealed that tumor proliferation, angiogenesis, recruitment of M2 macrophages and EMT were promoted by G‑CSF, whereas lymphangiogenesis and recruitment of M2 macrophages were inhibited by GM‑CSF. Treatment‑associated changes in serum pro‑ and anti‑tumoral cytokines and chemokines were evaluated by enzyme‑linked immunosorbent assay (ELISA)‑based arrays. In the ELISA for serum, the levels of cytokines associated with angiogenesis (interleukin‑6 and VEGF), and EMT (transforming growth factor‑β1 and ‑β2) were elevated in mice treated with G‑CSF. Treatment with GM‑CSF and M‑CSF also affected the level of these cytokines characteristically. The current results indicate that administration of exogenous G‑CSF to patients with bladder cancer promotes tumor growth through promotion of cell proliferation, angiogenesis, recruitment of M2 macrophages and enhancement of EMT through the modulation of the tumor microenvironment.

Cui W, Meng W, Zhao L, et al.
TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis.
Int J Oncol. 2019; 54(6):2005-2018 [PubMed] Free Access to Full Article Related Publications
Non‑coding RNAs, particularly long non‑coding RNAs (lncRNAs), play important roles in tumorigenesis. The miR‑155 host gene (MIR155HG) lncRNA has been found to play a crucial role in tumor progression. However, the role of MIR155HG in laryngeal squamous cell carcinoma (LSCC) remains unclear. Thus, the aim of the present study was to explore the roles and underlying molecular mechanisms of action of MIR155HG and miR‑155‑5p in LSCC, in an effort to provide novel approaches for the antitumor therapy for LSCC. In the present study, the expression levels of miR‑155‑5p and MIR155HG were detected by reverse tran-scription‑quantitative polymerase chain reaction. In addition, the biological functions of MIR155HG and miR‑155‑5p on LSCC were evaluated in vitro by MTS assay, colony formation assay and Transwell assays, and in vivo by tumorigenesis assays. It was revealed that MIR155HG and miR‑155‑5p were significantly upregulated in LSCC tissues, and were associated with the TNM stage, pathological differentiation and lymph node metastasis. Moreover, the knockdown of MIR155HG and miR‑155‑5p inhibited the proliferation, migration and invasion of LSCC cells, whereas their overexpression exerted the opposite effects in vitro and MIR155HG overexpression promoted tumorigenesis in vivo. Furthermore, MIR155HG downregulation reduced the expression level of miR‑155‑5p. The inhibitory effect of MIR155HG knockdown on malignant behavior was abrogated by miR‑155‑5p overexpression. Bioinformatics analysis and luciferase reporter assay confirmed that miR‑155‑5p contributed to the progression of LSCC by directly binding to the 3' untranslated region of SRY‑related‑HMG‑box 10 (SOX10). In addition, MIR155HG and miR‑155‑5p were upregulated by the induction of transforming growth factor‑β (TGF‑β) and promoted the expression of mesenchymal markers synergistically. On the whole, the findings of the present study indicate a novel role of MIR155HG in the TGF‑β‑induced EMT of LSCC cells by regulating EMT markers through the miR‑155/SOX10 axis. The MIR155HG/miR‑155‑5p/SOX10 axis plays an important role in promoting the progression of LSCC and may thus serve as a potential therapeutic target for LSCC treatment.

Khodadadi Kohlan A, Saidijam M, Amini R, et al.
Induction of let-7e gene expression attenuates oncogenic phenotype in HCT-116 colorectal cancer cells through targeting of DCLK1 regulation.
Life Sci. 2019; 228:221-227 [PubMed] Related Publications
AIMS: MicroRNAs (miRNAs) are small noncoding RNAs that negatively control gene expression at the translational level. There are compelling evidences indicating that the expression of let-7e is downregulated in various cancers, however, the role of let-7e in colorectal cancer (CRC) and its mechanism has been remained unknown. Here, we investigated the potential role of let-7e in regulating CRC cells phenotypes.
MAIN METHODS: Let-7e and DCLK1 siRNA were transfected in HCT-116 cells. Colony formation assay, scratch test, Annexin V/PI flow cytometry, and sphere formation assay were performed to examine the cell proliferation, migration, apoptosis, and stemness, respectively. The expression of let-7e, epithelial-mesenchymal transition (EMT)-related genes, Doublecortin like kinase protein 1 (DCLK1), and cancer stem cells (CSCs) were assessed using RT-qPCR while the protein level of DCLK1 was determined by western blotting.
KEY FINDINGS: Overexpression of let-7e effectively inhibited cell proliferation, suppressed migration, reduced sphere formation, and precluded EMT process as well as stemness factors. Furthermore, let-7e suppressed DCLK1 expression. Additionally, we found that the expression of let-7e was negatively correlated with DCLK1 expression in CRC cells.
SIGNIFICANCE: Let-7e plays an important role as tumor suppressor miRNA in CRC probably through inhibition of DCLK1 expression.

Prakash V, Carson BB, Feenstra JM, et al.
Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease.
Nat Commun. 2019; 10(1):2110 [PubMed] Free Access to Full Article Related Publications
Ribosome biogenesis is a canonical hallmark of cell growth and proliferation. Here we show that execution of Epithelial-to-Mesenchymal Transition (EMT), a migratory cellular program associated with development and tumor metastasis, is fueled by upregulation of ribosome biogenesis during G1/S arrest. This unexpected EMT feature is independent of species and initiating signal, and is accompanied by release of the repressive nucleolar chromatin remodeling complex (NoRC) from rDNA, together with recruitment of the EMT-driving transcription factor Snai1 (Snail1), RNA Polymerase I (Pol I) and the Upstream Binding Factor (UBF). EMT-associated ribosome biogenesis is also coincident with increased nucleolar recruitment of Rictor, an essential component of the EMT-promoting mammalian target of rapamycin complex 2 (mTORC2). Inhibition of rRNA synthesis in vivo differentiates primary tumors to a benign, Estrogen Receptor-alpha (ERα) positive, Rictor-negative phenotype and reduces metastasis. These findings implicate the EMT-associated ribosome biogenesis program with cellular plasticity, de-differentiation, cancer progression and metastatic disease.

Li D, Hao S, Zhang J
Long non-coding RNA UCA1 exerts growth modulation by miR-15a in human thyroid cancer TPC-1 cells.
Artif Cells Nanomed Biotechnol. 2019; 47(1):1815-1822 [PubMed] Related Publications
Thyroid cancer is widely diagnosed as malignancy in endocrine system. This study attempted to validate UCA1 possessed modulatory function on cell proliferation and epithelial mesenchymal transition (EMT) in human thyroid cancer cell line TPC-1. Ectopic expression of UCA1 was induced in TPC-1 cells by transfection. CCK-8 assays were employed to value cell viability. Cell apoptosis analysis was conducted through flow cytometry. We found that overexpressed UCA1 strongly promoted cell proliferation. However, the knockdown of UCA1 suppressed cell proliferation and induced obvious cell apoptosis. Besides, cell EMT was promoted by overexpressed UCA1 and was inhibited by the knockdown of UCA1. Further study revealed that miR-15a level in TPC-1 cells was suppressed by overexpressed UCA1. Simultaneous overexpression of UCA1 and miR-15a partly alleviated UCA1-induced growth, identifying that miR-15a was a possible target of UCA1. At last, the Hippo and JNK signal pathways were activated by overexpressed UCA1 but were then weakened by the adding of miR-15a. In conclusion, our study revealed UCA1/miR-15a axis implicated in thyroid cancer cells EMT, exposing a novel mechanism of thyroid cancer progression.

Lin X, Chai G, Wu Y, et al.
RNA m
Nat Commun. 2019; 10(1):2065 [PubMed] Free Access to Full Article Related Publications
N6-Methyladenosine (m

Sale MJ, Balmanno K, Saxena J, et al.
MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAF
Nat Commun. 2019; 10(1):2030 [PubMed] Free Access to Full Article Related Publications
Acquired resistance to MEK1/2 inhibitors (MEKi) arises through amplification of BRAF

Guo D, Li Y, Chen Y, et al.
DANCR promotes HCC progression and regulates EMT by sponging miR-27a-3p via ROCK1/LIMK1/COFILIN1 pathway.
Cell Prolif. 2019; 52(4):e12628 [PubMed] Related Publications
OBJECTIVES: This research aims to verify that the long non-coding RNA differentiation antagonizing nonprotein coding RNA (LncRNA DANCR) could modulate the proliferation and metastasis of hepatocellular carcinoma (HCC), and it thus may work as a novel biomarker to render new orientation for early diagnosis and clinical therapy of HCC.
MATERIALS AND METHODS: Firstly, qRT-PCR was used to detect the expression of genes including LncRNA DANCR and miR-27a-3p. Next, MTT assay, Ethynyldeoxyuridine (EdU) analysis and clone formation assay were used for investigating cell growth and proliferation. Meanwhile, transwell assay and wound healing assay were applied to evaluate the capacity of cell metastasis and motility, respectively. In addition, bioinformatic analysis and dual-luciferase reporter assay were applied to analyse molecular interaction. Next, we conducted immunofluorescence and Western blot for mechanic investigation. Last but not the least, xenograft tumours in nude mice were built by subcutaneously injecting Hep3B cells stably transfected with sh-NC and sh-DANCR to detect proliferation and SMMC-7721 cells stably transfected with sh-NC and sh-DANCR to investigate metastasis.
RESULTS: The results of qRT-PCR and bioinformatic analysis revealed the high expression of DANCR in HCC. DANCR accelerated proliferation and metastasis of HCC cells and the knockdown of DANCR had the opposite effect. Meanwhile, xenograft tumours in sh-DANCR group grow slower and have smaller volumes compared with negative control group. Next, the antineoplastic effect of miR-27a-3p on cell growth and motility of HCC was confirmed. In addition, we clarified that DANCR acted as a ceRNA to decoy miR-27a-3p via mediating ROCK1/LIMK1/COFILIN1 pathway. In the end, we validated that DANCR/miR-27a-3p axis regulates EMT progression by cell immunofluorescence and Western blot.
CONCLUSIONS: In a word, DANCR promotes HCC development and induces EMT by decoying miR-27a-3p to regulate ROCK1/LIMK1/COFILIN1 pathway.

Li W, Liao X, Ning P, et al.
Paracrine effects of CCN3 from non-cancerous hepatic cells increase signaling and progression of hepatocellular carcinoma.
BMC Cancer. 2019; 19(1):395 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The liver microenvironment plays a key role in the progression and metastasis of hepatocellular carcinoma (HCC). Gene expression profiling of non-cancerous hepatic tissues obtained from patients with metastatic HCC exhibit a unique immune response signature, including upregulation of CCN3. However, the role of CCN3 secreted from non-cancerous hepatic tissues in the progression of HCC remains unclear.
METHODS: Using tissue microarrays, we examined CCN3 in non-cancerous hepatic tissues of patients with HCC and correlated expression with clinical and pathological features. In addition, CCN3 localization and mechanisms of HCC progression were investigated in tissues and cell lines. Finally, correlations between CCN3 and cirrhosis were explored in patients.
RESULTS: CCN3 was primarily localized to hepatic cells of non-cancerous hepatic tissues and was associated with vascular invasion and poor prognosis in patients with HCC. CCN3 expression in non-cancerous hepatic tissues also correlated with the degree of liver fibrosis. Compared with conditioned media from wild-type LO2 cells, conditioned media from hepatic cell line LO2 activated by LX2 (aLO2-CM) induced CCN3 expression and HCC cell proliferation and metastasis. Further, aLO2-CM activated MAPK signaling and epithelial-mesenchymal transition in HCC cells. Finally, CCN3 was inversely related to cirrhosis in the prognosis of HCC and negatively regulated hepatic stellate cells (HSCs) in vitro with downregulation of α-SMA, TGF-β, and collagens.
CONCLUSIONS: CCN3 was secreted from hepatic cells activated by HSCs and increased MAPK signaling, EMT, proliferation and metastasis of HCC cells. CCN3 was also inversely related to cirrhosis, regulating HSCs through a negative feedback loop.

Kang H, Kim H, Lee S, et al.
Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT).
Int J Mol Sci. 2019; 20(8) [PubMed] Free Access to Full Article Related Publications
Activation of epithelial-mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.

Moncho-Amor V, Pintado-Berninches L, Ibañez de Cáceres I, et al.
Role of Dusp6 Phosphatase as a Tumor Suppressor in Non-Small Cell Lung Cancer.
Int J Mol Sci. 2019; 20(8) [PubMed] Free Access to Full Article Related Publications
DUSP6/MKP3 is a dual-specific phosphatase that regulates extracellular regulated kinase ERK1/2 and ERK5 activity, with an increasingly recognized role as tumor suppressor. In silico studies from Gene expression Omnibus (GEO) and Cancer Genome atlas (TCGA) databases reveal poor prognosis in those Non-small cell lung cancer (NSCLC) patients with low expression levels of

Li JY, Huang WX, Zhou X, et al.
Numb inhibits epithelial-mesenchymal transition via RBP-Jκ-dependent Notch1/PTEN/FAK signaling pathway in tongue cancer.
BMC Cancer. 2019; 19(1):391 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Oral cancer has been estimated as the sixth most frequent solid cancer all over the world, in which tongue squamous cell carcinoma (TSCC) is the most common type of oral cancers. However, the mechanism of TSCC metastasizing to lymph node and distant sites has not been completely understood.
METHODS: In this study, RT-qPCR method was used to detect the mRNA level of Numb, PTEN and Notch1 genes, as well as EMT-associated genes. Western blot assay was utilized to detect protein level of these genes. In addition, we determined cell proliferation by MTT assay and employed transwell invasion assay and wound healing assay to probe the abilities of invasion and migration, respectively. To investigate the role of PTEN, its inhibitor VO-Ohpic trihydrate was used to treat SCC-4 and CAL27 cells.
RESULTS: We found that Numb expression was downregulated in SCC-9 and CAL-27 cells compared to NHOK cells. Instead, Notch1 level in SCC-9 and CAL-27 cells were higher than that in NHOK cells. Furthermore, the results showed that Numb overexpression significantly suppressed proliferation, migration and invasion of SCC-9 and CAL-27 cells via regulating Notch1 signaling and EMT-related genes expression. By contrast, we observed that RBP-Jκ knockdown had an inhibitory role in proliferation, migration and invasion of SCC-9 and CAL-27 cells. In cells with Numb overexpression or RBP-Jκ knockdown, p-FAK and EMT-related genes were remarkably regulated.
CONCLUSIONS: Our findings provide new mechanism of understanding the metastasis of TSCC and help develop therapeutic strategies for treating tongue cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ITK, Cancer Genetics Web: http://www.cancer-genetics.org/ITK.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999