Gene Summary

Gene:MST1; macrophage stimulating 1
Aliases: MSP, HGFL, NF15S2, D3F15S2, DNF15S2
Summary:The protein encoded by this gene contains four kringle domains and a serine protease domain, similar to that found in hepatic growth factor. Despite the presence of the serine protease domain, the encoded protein may not have any proteolytic activity. The receptor for this protein is RON tyrosine kinase, which upon activation stimulates ciliary motility of ciliated epithelial lung cells. This protein is secreted and cleaved to form an alpha chain and a beta chain bridged by disulfide bonds. [provided by RefSeq, Jan 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:hepatocyte growth factor-like protein
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (6)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 02 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Liver Cancer
  • Triple Negative Breast Cancer
  • Substrate Specificity
  • Immunohistochemistry
  • alpha-Tocopherol
  • Phosphorylation
  • Apoptosis
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Down-Regulation
  • Cell Movement
  • Transcription Factors
  • Signal Transducing Adaptor Proteins
  • p53 Protein
  • Tumor Suppressor Proteins
  • Xenograft Models
  • Proto-Oncogene Proteins
  • Cervical Cancer
  • Signal Transduction
  • Proto-Oncogene Proteins c-myc
  • Hepatocyte Growth Factor
  • HEK293 Cells
  • Protein-Serine-Threonine Kinases
  • RT-PCR
  • Vimentin
  • Transfection
  • Cancer Gene Expression Regulation
  • Nuclear Proteins
  • Promoter Regions
  • Phosphoproteins
  • Western Blotting
  • Biomarkers, Tumor
  • Prostate Cancer
  • Hepatocellular Carcinoma
  • Cell Proliferation
  • p38 Mitogen-Activated Protein Kinases
  • Neoplasm Invasiveness
  • Two-Hybrid System Techniques
  • Chromosome 3
  • Young Adult
  • Zonula Occludens-1 Protein
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MST1 (cancer-related)

Gao R, Yun Y, Cai Z, Sang N
Sci Total Environ. 2019; 678:611-617 [PubMed] Related Publications
Extensive epidemiological studies have revealed that nearly 25% of the premature mortality from lung cancer is attributed to regional haze caused by a high level of fine particulate matter (PM

Ito T, Nakamura A, Tanaka I, et al.
CADM1 associates with Hippo pathway core kinases; membranous co-expression of CADM1 and LATS2 in lung tumors predicts good prognosis.
Cancer Sci. 2019; 110(7):2284-2295 [PubMed] Free Access to Full Article Related Publications
Cell adhesion molecule-1 (CADM1) is a member of the immunoglobulin superfamily that functions as a tumor suppressor of lung tumors. We herein demonstrated that CADM1 interacts with Hippo pathway core kinases and enhances the phosphorylation of YAP1, and also that the membranous co-expression of CADM1 and LATS2 predicts a favorable prognosis in lung adenocarcinoma. CADM1 significantly repressed the saturation density elevated by YAP1 overexpression in NIH3T3 cells. CADM1 significantly promoted YAP1 phosphorylation on Ser 127 and downregulated YAP1 target gene expression at confluency in lung adenocarcinoma cell lines. Moreover, CADM1 was co-precipitated with multiple Hippo pathway components, including the core kinases MST1/2 and LATS1/2, suggesting the involvement of CADM1 in the regulation of the Hippo pathway through cell-cell contact. An immunohistochemical analysis of primary lung adenocarcinomas (n = 145) revealed that the histologically low-grade subtype frequently showed the membranous co-expression of CADM1 (20/22, 91% of low-grade; 61/91, 67% of intermediate grade; and 13/32, 41% of high-grade subtypes; P < 0.0001) and LATS2 (22/22, 100% of low-grade; 44/91, 48% of intermediate-grade; and 1/32, 3% of high-grade subtypes; P < 0.0001). A subset analysis of disease-free survival revealed that the membranous co-expression of CADM1 and LATS2 was a favorable prognosis factor (5-year disease-free survival rate: 83.8%), even with nuclear YAP1-positive expression (5-year disease-free survival rate: 83.7%), whereas nuclear YAP1-positive cases with the negative expression of CADM1 and LATS2 had a poorer prognosis (5-year disease-free survival rate: 33.3%). These results indicate that the relationship between CADM1 and Hippo pathway core kinases at the cell membrane is important for suppressing the oncogenic role of YAP1.

Abolhassani M, Asadikaram G, Paydar P, et al.
Organochlorine and organophosphorous pesticides may induce colorectal cancer; A case-control study.
Ecotoxicol Environ Saf. 2019; 178:168-177 [PubMed] Related Publications
OBJECTIVES: Among the numerous agents, genetic factors and environmental elements such as pesticides have an important role in colorectal cancer (CRC) incidence. The present study aimed to investigate the probable-role of some organochlorine pesticides (OCPs) and organophosphorous pesticides (OPPs) in patients with CRC.
METHODS: In this case-control study, 42 patients with CRC and 30 healthy subjects were selected. The serum levels of some OCPs (α-HCH, β-HCH, γ-HCH, 2,4 DDE, 4,4 DDE, 2,4DDT and 4,4DDT) were measured by gas chromatography (GC) method. Serum levels of malondialdehyde (MDA), and total antioxidant capacity (TAC) as well as the enzyme activity of acetylcholinesterase (AChE) and arylesterase activity of Paraoxonase-1 (PON-1) were evaluated in all participants. The methylation specific PCR (MSP) assay was used for determining the methylation status of CpG island of p16 and MGMT genes in CRC patients.
RESULTS: The mean serum levels of each OCPs were significantly higher in the patient group compared to the control group (P < 0.001). The AChE and arylesterase activity of PON-1 in the patient group were significantly lower than the control group (P < 0.001). The mean serum levels of MDA and TAC in the serum of the patient group were significantly higher than the control group (P < 0.001 and P < 0.002, respectively). The current findings demonstrated significantly hypermethylation of p16 promoter in CRC patients.
CONCLUSION: Regarding the higher levels of OCPs in CRC patients, along with hypermethylation of the p16 promoter gene, diminishing in AChE and PON-1 activity and increasing in oxidative stress factors, the role of OCPs and OPPs in the CRC progression in the South-East of Iran may be assumed.

Zhao L, Shou H, Chen L, et al.
Effects of ginsenoside Rg3 on epigenetic modification in ovarian cancer cells.
Oncol Rep. 2019; 41(6):3209-3218 [PubMed] Free Access to Full Article Related Publications
Epigenetic modifications are closely related to oncogene activation and tumor suppressor gene inactivation. The aim of this study was to determine the effects of ginsenoside Rg3 on epigenetic modification in ovarian cancer cells. Cell proliferation, metastasis, invasion and apoptosis were respectively determined using Cell Counting Kit‑8 (CCK‑8), wound healing, Transwell and flow cytometric assays. Methylation levels were determined using methylation specific PCR (MSP). Related‑factor expression was detected by conducting real‑time‑qPCR (RT‑qPCR) and western blotting. The results revealed that cell proliferation was inhibited by ginsenoside Rg3 (0, 25, 50, 100 and 200 µg/ml) in a time‑dependent manner (12, 24 and 48 h). Ginsenoside Rg3 (50, 100 and 200 µg/ml) was selected to treat cells in various experiments. When ovarian cells were treated with ginsenoside Rg3, cell apoptosis was observed to be promoted, while cell metastasis and invasion were inhibited at 48 h. The results of the present study revealed that in the promoter regions of p53, p16 and hMLH1, the methylation levels decreased, while the mRNA and protein levels significantly increased. The activities of DNMTs and mRNA as well as protein levels of DNMT1, DNMT3a and DNMT3b were decreased by Rg3. The data also demonstrated that the mRNA and protein levels of acetyl‑H3 K14/K9 and acetyl‑H4 K12/K5/K16 were increased by Rg3. Hence, ginsenoside Rg3 inhibited ovarian cancer cell viability, migration and invasion as well as promoted cell apoptosis.

Kim TW, Han SR, Kim JT, et al.
Differential expression of tescalcin by modification of promoter methylation controls cell survival in gastric cancer cells.
Oncol Rep. 2019; 41(6):3464-3474 [PubMed] Related Publications
The EF‑hand calcium binding protein tescalcin (TESC) is highly expressed in various human and mouse cancer tissues and is therefore considered a potential oncogene. However, the underlying mechanism that governs TESC expression remains unclear. Emerging evidence suggests that TESC expression is under epigenetic regulation. In the present study, the relationship between the epigenetic modification and gene expression of TESC in gastric cancer was investigated. To evaluate the relationship between the methylation and expression of TESC in gastric cancer, the methylation status of CpG sites in the TESC promoter was analyzed using microarray with the Illumina Human Methylation27 BeadChip (HumanMethylation27_270596_v.1.2), gene profiles from the NCBI Dataset that revealed demethylated status were acquired, and real‑time methylation‑specific PCR (MSP) in gastric cancer cells was conducted. In the present study, it was demonstrated that the hypermethylation of TESC led to the downregulation of TESC mRNA/protein expression. In addition, 5‑aza‑2c‑deoxycytidine (5'‑aza‑dC) restored TESC expression in the tested gastric cancer cells except for SNU‑620 cells. ChIP assay further revealed that the methylation of the TESC promoter was associated with methyl‑CpG binding domain protein (MBD)1, histone deacetylase (HDAC)2, and Oct‑1 and that treatment with 5'‑aza‑dC facilitated the dissociation of MBD1, HDAC2, and Oct‑1 from the promoter of TESC. Moreover, silencing of TESC increased MBD1 expression and decreased the H3K4me2/3 level, thereby causing transcriptional repression and suppression of cell survival in NCI‑N87 cells; conversely, overexpression of TESC downregulated MBD1 expression and upregulated the H3K4me2 level associated with active transcription in SNU‑638 cells. These results indicated that the differential expression of TESC via the modification status of the promoter and histone methylation controled cell survival in gastric cancer cells. Overall, the present study provided a novel therapeutic strategy for gastric cancer.

Yang LX, Wu J, Guo ML, et al.
Suppression of long non-coding RNA TNRC6C-AS1 protects against thyroid carcinoma through DNA demethylation of STK4 via the Hippo signalling pathway.
Cell Prolif. 2019; 52(3):e12564 [PubMed] Related Publications
OBJECTIVES: Thyroid carcinoma (TC) represents a malignant neoplasm affecting the thyroid. Current treatment strategies include the removal of part of the thyroid; however, this approach is associated with a significant risk of developing hypothyroidism. In order to adequately understand the expression profiles of TNRC6C-AS1 and STK4 and their potential functions in TC, an investigation into their involvement with Hippo signalling pathway and the mechanism by which they influence TC apoptosis and autophagy were conducted.
METHODS: A microarray analysis was performed to screen differentially expressed lncRNAs associated with TC. TC cells were employed to evaluate the role of TNRC6C-AS1 by over-expression or silencing means. The interaction of TNRC6C-AS1 with methylation of STK4 promoter was evaluated to elucidate its ability to elicit autophagy, proliferation and apoptosis.
RESULTS: TNRC6C-AS1 was up-regulated while STK4 was down-regulated, where methylation level was elevated. STK4 was verified as a target gene of TNRC6C-AS1, which was enriched by methyltransferase. Methyltransferase's binding to STK4 increased expression of its promoter. Over-expressed TNRC6C-AS1 inhibited STK4 by promoting STK4 methylation and reducing the total protein levels of MST1 and LATS1/2. The phosphorylation of YAP1 phosphorylation was decreased, which resulted in the promotion of SW579 cell proliferation and tumorigenicity.
CONCLUSION: Based on our observations, we subsequently confirmed the anti-proliferative, pro-apoptotic and pro-autophagy capabilities of TNRC6C-AS1 through STK4 methylation via the Hippo signalling pathway in TC.

Asiaf A, Ahmad ST, Malik AA, et al.
Association of Protein Expression and Methylation of DAPK1 with Clinicopathological Features in Invasive Ductal Carcinoma Patients from Kashmir
Asian Pac J Cancer Prev. 2019; 20(3):839-848 [PubMed] Related Publications
Aims: Death-associated protein kinase-1 (DAPK1) is a pro-apoptotic Ser/Thr kinase that participates in cell apoptosis and tumor suppression. DAPK1 is frequently lost in many different tumor types including breast cancer. The aim of this study was to evaluate the promoter methylation status of DAPK1 and a possible correlation with the expression of DAPK1 and standard clinicopathological features in invasive ductal breast carcinoma patients (IDC). Methods: Methylation Specific PCR (MSP) was carried out to investigate the promoter methylation status of DAPK1 from 128 breast cancer patients. The effect of promoter methylation on protein expression was evaluated by immunohistochemistry (n=128) and western blotting (n=56). Results: We found significant difference in DAPK1 promoter methylation frequency among breast tumors when compared with the corresponding normal tissues. Hypermethylation of DAPK1 is significantly correlated with the loss of DAPK1 protein expression (P < .001, rs= -0.361). The loss of DAPK1 protein was significantly associated with estrogen receptor (ER) negativity (p= 0.003), triple negative breast cancer (TNB) (p= 0.024) and advanced tumor stages (P = 0.001). Moreover, age at diagnosis (p= 0.041), tumor stage (p= 0.034), ER negativity (p= 0.004) and TNB cancers (p=0.003) correlated significantly with the hypermethylation of the DAPK1 promoter. Coclusion: This study indicates that DAPK1 is methylated in IDC and promoter hypermethylation could be attributed to silencing of DAPK1 gene expression in breast cancer. Thus, we consider DAPK1 inactivation by promoter hypermethylation likely plays a role in the development and progression of breast cancer.

Zhang Z, Dai DQ
MicroRNA-596 acts as a tumor suppressor in gastric cancer and is upregulated by promotor demethylation.
World J Gastroenterol. 2019; 25(10):1224-1237 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In the present study, we investigated a suppressive role of microRNA-596 (miR-596) in gastric cancer (GC). Moreover, the downregulation of miR-596 in GC cell lines was associated with an increase of miR-596 promoter methylation. We also established that miR-596 controls the expression of peroxiredoxin 1 (PRDX1), which has never been reported before, suggesting that this interaction could play an important role in GC progression.
AIM: To study the potential role and possible regulatory mechanism of miR-596 in GC.
METHODS: The expression levels of miR-596 and PRDX1 in gastric cancer tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). Western blot and luciferase reporter assay were used to detect the effect of miR-596 on PRDX1 expression. Then, the proliferation, metastasis, and invasion of GC cell lines transfected with miR-596 mimics were analyzed, respectively, by Cell Counting Kit-8 proliferation assay, wound healing assay, and transwell invasion assay. Meanwhile, the methylation status of the promoter CpG islands of miR-596 in GC cell lines was detected by methylation-specific PCR (MSP).
RESULTS: Expression of miR-596 was decreased and PRDX1 was upregulated in GC tissues and cell lines. Overexpression of miR-596 decreased the expression of PRDX1 and luciferase reporter assays detected the direct binding of miR-596 to the 3'-untranslated region (UTR) of PRDX1 transcripts. Furthermore, we found that overexpression of miR-596 remarkably suppressed cell proliferation, migration, and invasion in GC cells. We further analyzed miR-596 promoter methylation by MSP and qRT-PCR, and found the downregulation of miR-596 was associated with promoter methylation status in GC cell lines. Moreover, DNA demethylation and reactivation of miR-596 after treatment with 5-Aza-2'-deoxycytidine inhibited the proliferative ability of GC cells.
CONCLUSION: MiR-596 has a tumor suppressive role in GC and is downregulated partly due to promoter hypermethylation. Furthermore, PRDX1 is one of the putative target genes of miR-596.

Bai Y, Shen Y, Yuan Q, et al.
Evaluation of Relationship between Occurrence of Liver Cancer and Methylation of Fragile Histidine Triad (FHIT) and P16 Genes.
Med Sci Monit. 2019; 25:1301-1306 [PubMed] Free Access to Full Article Related Publications
BACKGROUND We examined the level of fragile histidine triad (FHIT) and p16 gene methylation in patients with hepatocellular carcinoma and explored the relationship to liver cancer. MATERIAL AND METHODS There were 56 patients with primary liver cancer who were admitted to the hospital from July 2015 to October 2017 included in the liver cancer group, and 24 non-hepatoma patients (hepatitis A/hepatitis B/hepatitis C, liver cirrhosis, liver fibrosis, and fatty liver, alcoholic liver identified as a control group. Fasting venous blood samples were collected from the 2 groups. Methylation-specific PCR (MSP) was used to detect the methylation of FHIT and p16 genes in the 2 groups. The risk factors for lung cancer were analyzed by logistic regression. In addition, the effects of FHIT and p16 gene methylation on the diagnostic accuracy of liver cancer were calculated. RESULTS The incidence of FHIT and p16 methylation in serum from the liver cancer group was 51.8% and 67.9%, respectively. The incidence of FHIT and p16 methylation in the non-hepatoma group was 16.7% and 25.0%. There was a statistical statistically correlated with gender, and the methylation of FHIT and p16 genes (P<0.05). From logistic regression analysis results, methylation of p16 and FHIT genes was an independent risk factor for hepatocellular carcinoma with odds ratio (OR) values of 10.550 (2.313~48.116) and 8.239 (2.386~28.455), respectively. CONCLUSIONS The methylation of p16 and FHIT genes was an independent risk factor for hepatocellular carcinoma.

Seok Y, Lee WK, Park JY, Kim DS
Mol Cells. 2019; 42(2):161-165 [PubMed] Free Access to Full Article Related Publications
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide and has high rates of metastasis. Transforming growth factor beta-inducible protein (TGFBI) is an extracellular matrix component involved in tumour growth and metastasis. However, the exact role of TGFBI in NSCLC remains controversial. Gene silencing via DNA methylation of the promoter region is common in lung tumorigenesis and could thus be used for the development of molecular biomarkers. We analysed the methylation status of the

Jovanović N, Mitrović T, Cvetković VJ, et al.
The Impact of
Medicina (Kaunas). 2019; 55(2) [PubMed] Free Access to Full Article Related Publications

Rahmani B, Hamedi Asl D, Naserpour Farivar T, et al.
Omega-3 PUFA Alters the Expression Level but Not the Methylation Pattern of the WIF1 Gene Promoter in a Pancreatic Cancer Cell Line (MIA PaCa-2).
Biochem Genet. 2019; 57(4):477-486 [PubMed] Related Publications
Pancreatic cancer is the fourth leading cause of death in both males and females, with a 5-year relative survival rate of 8%. The Wnt signaling pathway has a significant role in the pathogenesis of many tumors, including those of pancreatic cancer. Hypermethylation of the Wnt inhibitory Factor-1 (WIF1) gene promoter have been detected in different types of cancer. In contrast, the anticancer effects of long-chain omega-3 PUFA (ALA) have been reported. Regarding its anticancer effects, in this study, we investigated the effects of various concentrations of omega-3 PUFA on expression level and promoter methylation of the WIF1 gene in MIA PaCa-2 cells in 24, 48, and 72 h after treatment. MIA PaCa-2 cells were treated with different concentrations of omega-3 PUFA (25, 50, 100, 250, 500, and 1000 μM). Cell viability assay was carried out followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and methylation-specific PCR (MSP). This investigation suggested that dietary consumption of omega-3 PUFAs (250-1000 μM) has a significant effect on the proliferation and WIF1 gene expression of the MIA PaCa-2 cancer cell line but no effect on the promoter methylation of this gene. Changes in promoter methylation were not observed in any of the treatments.

Bahnassy AA, Helal TE, El-Ghazawy IM, et al.
The role of E-cadherin and Runx3 in Helicobacter Pylori - Associated gastric carcinoma is achieved through regulating P21waf and P27 expression.
Cancer Genet. 2018; 228-229:64-72 [PubMed] Related Publications
BACKGROUND: We assessed the role of E-cadherin (CDH1), runt-related transcription factor 3, p21waf and p27 promoter methylation (PM) and protein expression in Helicobacter pylori (HP)-associated gastric carcinomas (GCs) and adjacent non-neoplastic tissues (ANNTs).
PATIENTS AND METHODS: 192 cases were assessed for PM and protein expression of CDH1, RUNX3, p21waf and p27 by methylation-specific PCR (MSP) and immunohistochemistry. The CagA gene was also assessed.
RESULTS: In GCs, 66 (34.4%) and 84 (43.8%) cases showed CDH1-PM and reduced expression. It is significantly affected in GCs rather than in non-neoplastic groups (p < 0.001). In ANNTs, 108 (56.3%) cases showed CDH1-PM and all cases revealed preserved protein expression. RUNX3-PM was detected in 78 GCs (40.6%) and 69 ANNTs (35.9%), whereas reduced protein expression was detected in 99 (51.65%) GC compared to ANNTs 90 (46.9%). p21WAF and p27 showed PM in (48.4% and 45.3%) GCs and ANNTs; respectively. p21waf protein was reduced in 90 (46.9%) cases and 91 ANNTs (47.4%). p27 was reduced in 86 (44.8%) cases and 87 ANNTs (45.3%). CDH1 aberrations correlated with HP in tumors and ANNTs and with diffuse/intestinal tumors (p = 0.014, p = 0.014 and p = 0.02). RUNX3 aberrations associated with HP (p = 0.04), high grade (p = 0.04), and advanced stage (p = 032). Tumor grade associated with RUNX3-PM, CDH, p21 and p27 protein (p < 0.05 for all). Tumor stage associated significantly with PM and reduced protein expression of all markers. Positive lymph nodes associated significantly with p27PM (p < 0.001).
CONCLUSIONS: HP plays an important role in the development and progression of GC through silencing of CDH1, RUNX3, p21WAF and p27 expression.

Ye L, Xiang T, Zhu J, et al.
Interferon Consensus Sequence-Binding Protein 8, a Tumor Suppressor, Suppresses Tumor Growth and Invasion of Non-Small Cell Lung Cancer by Interacting with the Wnt/β-Catenin Pathway.
Cell Physiol Biochem. 2018; 51(2):961-978 [PubMed] Related Publications
BACKGROUND/AIMS: Interferon consensus sequence-binding protein 8 (IRF8) belongs to a family of interferon (IFN) regulatory factors that modulates various important physiological processes including carcinogenesis. As reported by others and our group, IRF8 expression is silenced by DNA methylation in both human solid tumors and hematological malignancies. However, the role of IRF8 in lung carcinoma remains elusive. In this study, we determined IRF8 epigenetic regulation, biological functions, and the signaling pathway involved in non-small cell lung cancer (NSCLC).
METHODS: IRF8 expression were determined by Q- PCR. MSP and A+T determined promotor methylation. MTS, clonogenic, Transwell assay, Flow cytometry, three-dimensional culture and AO/EB stain verified cell function. In vivo tumorigenesis examed the in vivo effects. By Chip-QPCR, RT-PCR, Western blot and Immunofluorescence staining, the mechanisms were studied.
RESULTS: IRF8 was significantly downregulated in lung tumor tissues compared with adjacent non-cancerous tissues. Furthermore, methylation-specific PCR analyses revealed that IRF8 methylation in NSCLC was a common event, and demethylation reagent treatment proved that downregulation of IRF8 was due to its promoter CpG hypermethylation. Clinical data showed that the IRF8 methylation was associated with tumor stage, lymph node metastasis status, patient outcome, and tumor histology. Exogenous expression of IRF8 in the silenced or downregulated lung cancer cell lines A549 and H1299 at least partially restored the sensitivity of lung cancer cells to apoptosis, and arrested cells at the G0/G1 phase. Cell viability, clonogenicity, and cell migration and invasive abilities were strongly inhibited by restored expression of IRF8. A three-dimensional culture system demonstrated that IRF8 changed the cells to a more spherical phenotype. Moreover, ectopic expression of IRF8 enhanced NSCLC chemosensitivity to cisplatin. Furthermore, as verified by Chip-qPCR, immunofluorescence staining, and western blotting, IRF8 bound to the T-cell factor/lymphoid enhancer factor (TCF /LEF) promoter, thus repressing β-catenin nuclear translocation and its activation. IRF8 significantly disrupted the effects of Wnt agonist, bml284, further suggesting its involvement in the Wnt/β-catenin pathway.
CONCLUSION: IRF8 acted as a tumor suppressor gene through the transcriptional repression of β-catenin-TCF/LEF in NSCLC. IRF8 methylation may serve as a potential biomarker in NSCLC prognosis.

Nesvet J, Rizzi G, Wang SX
Highly sensitive detection of DNA hypermethylation in melanoma cancer cells.
Biosens Bioelectron. 2019; 124-125:136-142 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Aberrant hypermethylation of CpG islands in the promoter region of tumor suppressor genes is a promising biomarker for early cancer detection. This methylation status is reflected in the methylation pattern of ctDNA shed from the primary tumor; however, to realize the full clinical utility of ctDNA methylation detection via liquid biopsy for early cancer diagnosis, improvements in the sensitivity and multiplexability of existing technologies must be improved. Additionally, the assay must be cheap and easy to perform in a clinical setting. We report the integration of methylation specific PCR (MSP) to melt curve analysis on giant magnetoresistive (GMR) biosensors to greatly enhance the sensitivity of our DNA hybridization assay for methylation detection. Our GMR sensor is functionalized with synthetic DNA probes that target methylated or unmethylated CpG sites in the MSP amplicon, and measures the difference in melting temperature (T

Zhang Y, Fan J, Fan Y, et al.
The new 6q27 tumor suppressor DACT2, frequently silenced by CpG methylation, sensitizes nasopharyngeal cancer cells to paclitaxel and 5-FU toxicity via β-catenin/Cdc25c signaling and G2/M arrest.
Clin Epigenetics. 2018; 10(1):26 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
BACKGROUND: Nasopharyngeal carcinoma (NPC) is prevalent in South China, including Hong Kong and Southeast Asia, constantly associated with Epstein-Barr virus (EBV) infection. Epigenetic etiology attributed to EBV plays a critical role in NPC pathogenesis. Through previous CpG methylome study, we identified Disheveled-associated binding antagonist of beta-catenin 2 (DACT2) as a methylated target in NPC. Although DACT2 was shown to regulate Wnt signaling in some carcinomas, its functions in NPC pathogenesis remain unclear.
METHODS: RT-PCR, qPCR, MSP, and BGS were applied to measure expression levels and promoter methylation of DACT2 in NPC. Transwell, flow cytometric analysis, colony formation, and BrdU-ELISA assay were used to assess different biological functions affected by DACT2. Immunofluorescence, Western blot, and dual-luciferase reporter assay were used to explore the mechanisms of DACT2 functions. Chemosensitivity assay was used to measure the impact of DACT2 on chemotherapy drugs.
RESULTS: We found that DACT2 is readily expressed in multiple normal adult tissues including upper respiratory tissues. However, it is frequently downregulated in NPC and correlated with promoter methylation. DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored its expression in NPC cells. DACT2 methylation was further detected in 29/32 (91%) NPC tumors but not in any (0/8) normal nasopharyngeal tissue samples. Ectopic expression of DACT2 in NPC cells suppressed their proliferation, migration, and invasion through downregulating matrix metalloproteinases. DACT2 expression also induced G2/M arrest in NPC cells through directly suppressing β-catenin/Cdc25c signaling, which sensitized NPC cells to paclitaxel and 5-FU, but not cisplatin.
CONCLUSION: Our results demonstrate that DACT2 is frequently inactivated epigenetically by CpG methylation in NPC, while it inhibits NPC cell proliferation and metastasis via suppressing β-catenin/Cdc25c signaling. Our study suggests that DACT2 promoter methylation is a potential epigenetic biomarker for the detection and chemotherapy guidance of NPC.

Johannessen LE, Brandal P, Myklebust TÅ, et al.
Cancer Genomics Proteomics. 2018 Nov-Dec; 15(6):437-446 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
BACKGROUND: Although methylation of the O
MATERIALS AND METHODS: Methylation of MGMT promoter was examined by methylation-specific polymerase chain reaction (MSP), quantitative real-time MSP, methylation-sensitive high-resolution melting analysis, and two commercial pyrosequencing (PSQ) kits. Survival was compared among 48 patients with glioblastoma according to assay results.
RESULTS: Only PSQ and MSP significantly separated patients who benefited from temozolomide, with PSQ being the superior method. For PSQ analysis, the cut-off value that best correlated with prognostic outcome was 7% methylation of MGMT. Median survival in patients with MGMT promoter methylation above this cut-off value was 7.8 months longer compared to those with less than 7% methylation. Two-year overall survival for the two groups was 42% and 7.4%, respectively.
CONCLUSION: PSQ is the method of choice for MGMT promoter methylation analysis in routine clinical practice.

Zhang W, Liu K, Pei Y, et al.
Mst1 regulates non-small cell lung cancer A549 cell apoptosis by inducing mitochondrial damage via ROCK1/F‑actin pathways.
Int J Oncol. 2018; 53(6):2409-2422 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Mammalian STE20-like kinase 1 (Mst1) is well recognized as a major tumor suppressor in cancer development, growth, metabolic reprogramming, metastasis, cell death and recurrence. However, the roles of Mst1 in non-small cell lung cancer (NSCLC) A549 cell phenotypic alterations remain to be elucidated. The present study aimed to explore the functional role and underlying mechanisms of Mst1 with regards to A549 cell proliferation, migration and apoptosis; this study focused on mitochondrial homeostasis and Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/F‑actin pathways. The results demonstrated that Mst1 was downregulated in A549 cells compared with in a normal pulmonary epithelial cell line. Subsequently, overexpression of Mst1 in A549 cells reduced cell viability and promoted cell apoptosis. Furthermore, overexpression of Mst1 suppressed A549 cell proliferation and migration. At the molecular level, the reintroduction of Mst1 in A549 cells led to activation of mitochondrial apoptosis, as evidenced by a reduction in mitochondrial potential, overproduction of ROS, cytochrome c release from the mitochondria into the nucleus, and upregulation of pro-apoptotic protein expression. In addition, Mst1 overexpression was closely associated with impaired mitochondrial respiratory function and suppressed cellular energy metabolism. Functional studies illustrated that Mst1 overexpression activated ROCK1/F-actin pathways, which highly regulate mitochondrial function. Inhibition of ROCK1/F-actin pathways in A549 cells sustained mitochondrial homeostasis, alleviated caspase-9-dependent mitochondrial apoptosis, enhanced cancer cell migration and increased cell proliferation. In conclusion, these data firmly established the regulatory role of Mst1 in NSCLC A549 cell survival via the modulation of ROCK1/F-actin pathways, which may provide opportunities for novel treatment modalities in clinical practice.

Qin R, Cao L, Wang J, Liu J
Promoter Methylation of Ezrin and its Impact on the Incidence and Prognosis of Cervical Cancer.
Cell Physiol Biochem. 2018; 50(1):277-287 [PubMed] Related Publications
BACKGROUND/AIMS: Aberrant localization and over-expression of Ezrin have been reported to be implicated in cervical cancer (CC). Aberrant promoter methylation of some gene families may serve as potential diagnostic biomarkers for CC. In this study, we explored the correlation of promoter methylation of the Ezrin gene with the incidence and prognosis of CC.
METHODS: Cervical tissues from a total of 483 patients with CC were collected from the China-Japan Union Hospital of Jilin University. Samples were assigned into four groups accordingly to pathological diagnosis, namely the control group, the cervical intraepithelial neoplasia (CIN) I group, the CIN II-III group and the CC group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect the mRNA expression of Ezrin. Methylation-specific polymerase chain reaction (MSP) was used to detect the promoter methylation of the Ezrin gene. The Kaplan-Meier product-limit method and the log-rank analysis were used for survival analysis, the Cox regression analysis for the prognostic factors for CC, and the logistic regression analysis for the risk factors for the occurrence of CC.
RESULTS: The methylation rate of the Ezrin gene was correspondingly increased from the control, the CIN I, the CIN II-III to the CC groups. Over-expressed mRNA of Ezrin was determined in CC tissues. The mRNA expression of Ezrin was correlated with tumor size, lymphatic metastasis, pathological grade and clinical stage (FIGO). The risk factors for the occurrence of CC were the number of abortions and the promoter methylation of the Ezrin gene. Poor prognosis of CC correlated to lymphatic metastasis, higher pathological grade, higher FIGO stage and positive Ezrin promoter methylation.
CONCLUSION: These findings indicate that promoter methylation of the Ezrin gene may play a crucial role in carcinogenesis, progression and prognosis of CC.

Ghavifekr Fakhr M, Rezaie Kahkhaie K, Shanehbandi D, et al.
Scrophularia Atropatana Extract Reverses TP53 Gene Promoter Hypermethylation and Decreases Survivin Antiapoptotic Gene Expression in Breast Cancer Cells
Asian Pac J Cancer Prev. 2018; 19(9):2599-2605 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Background: In many cases of breast cancer, the aberrant methylation of TP53 gene leads to uncontrolled cell proliferation and apoptosis inhibition. Moreover, expression of oncogenes which are under the control of P53 protein could be altered. Survivin as a conspicuous example of this category plays important roles in tumorigenesis, drug resistance and apoptosis inhibition. The present study was done to reveal the effects of Scrophularia atropatana extract on epigenetic situation of TP53 gene promoter and the expression levels of anti-apoptotic gene, survivin and its potential for production of cancer epi-drugs. Methods: Cytotoxic effect of dichloromethane extracts of Scrophularia plant on MCF-7 cell line was assessed in our previous study. Cell death ELISA (enzyme-linked immunosorbent assay) and TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) tests were used to investigate the occurrence of apoptosis in the treated cells. Methylation Specific PCR (MSP) was employed to assess the changes in methylation status of the TP53 gene promoter. Furthermore, quantitative real time PCR was utilized to evaluate the resulting changes in TP53 and survivin genes expression. Results: Cell death ELISA and TUNEL assays confirmed the occurrence of apoptosis. MSP test revealed a significant change in the methylation status of TP53 promoter. QRT-PCR showed an increased TP53 gene expression in the treated cells while a significant decrease in survivin mRNA was evident. Conclusions: According to the outcomes, dichloromethane extract of S. atropatana returned the TP53 gene promoter hypermethylation to normal state. This plant could be a promising source for production of epi-drugs due to its apoptotic effects and reversal of TP53 epigenetic alterations.

Li J, Wang H, Wang L, et al.
Decursin inhibits the growth of HepG2 hepatocellular carcinoma cells via Hippo/YAP signaling pathway.
Phytother Res. 2018; 32(12):2456-2465 [PubMed] Related Publications
Targeted therapy has a pivotal role for the treatment of liver cancer. The aim of this current study was to examine the effects of decursin on the growth of HepG2 cells and the underlying mechanisms. Our present study showed that treatment of HepG2 cells with decursin significantly inhibited the growth of HepG2 cells by suppressing cell proliferation, cell cycle arresting, and promoting apoptosis in a dose- and time-dependent manner. Most significantly, administration of decursin dramatically impeded in vivo tumor growth in nude mice. Mechanically, it is noteworthy that decursin treatment provoked degradation of YAP by upregulating the expression of phosphorylated LATS1 and βTRCP. Moreover, apoptosis caused by decursin could be reversed by a selective MST1/2 inhibitor, XMU-MP-1, suggesting that decursin may function through Hippo/YAP signaling. This study has identified that decursin is a potential agent for HCC therapy, and further research should be undertaken to facilitate its therapeutic application.

Liu H, Liu Z, Liu XW, et al.
A similar effect of P16 hydroxymethylation and true-methylation on the prediction of malignant transformation of oral epithelial dysplasia: observation from a prospective study.
BMC Cancer. 2018; 18(1):918 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
BACKGROUND: Total P16 methylation (P16M), including P16 hydroxymethylation (P16H) and true-P16M, correlates with malignant transformation of oral epithelial dysplasia (OED). Both true-P16M and P16H are early events in carcinogenesis. The aim of this study is to prospectively determine if discrimination of true-P16M from P16H is necessary for prediction of cancer development from OEDs.
METHODS: Patients (n = 265) with mild or moderate OED were recruited into the double blind two-center cohort. Total-P16M and P16H were analyzed using the 115-bp MethyLight, TET-assisted bisulfite (TAB) methylation-specific PCR (MSP), and TAB-sequencing. Total-P16M-positive and P16H-negative samples were defined as true-P16M-positive. Progression of OEDs was monitored for a minimum 24 months follow-up period.
RESULTS: P16H was detected in 23 of 73 (31.5%) total-P16M-positive OEDs. Follow-up information was obtained from 247 patients with an ultimate compliance rate of 93.2%. OED-derived squamous cell carcinomas were observed in 13.0% (32/247) patients during follow-up (median, 41.0 months). The cancer progression rate for total-P16M-positive patients was significantly increased when compared to total-P16M-negative patients [23.3% vs 8.6%; adjusted odds ratio = 2.67 (95% CI: 1.19-5.99)]. However, the cancer progression rates were similar between P16H- and true-P16M-positive OEDs [26.1% (6/23) vs 22.0% (11/50); odds ratio = 0.80 (95% CI: 0.22-2.92)]. The cancer-free survival was also similar for these patients.
CONCLUSION: P16H and true-P16M are similar biomarkers for determining malignant potential of OEDs. Discrimination of P16H from true-P16M, at least in OED, may be not necessary in clinical applications.
TRIAL REGISTRATION: This study is registered prospectively in the U.S. National Institutes of Health Clinical Trials Protocol Registration System (trial number NCT02967120, available at ).

Chen X, Liu C, Zhao R, et al.
Synergetic and Antagonistic Molecular Effects Mediated by the Feedback Loop of p53 and JNK between Saikosaponin D and SP600125 on Lung Cancer A549 Cells.
Mol Pharm. 2018; 15(11):4974-4984 [PubMed] Related Publications
We jointly analyzed the changes in cell cycle arrest and distribution, the accumulation of subphase cells, apoptosis, and proliferation in A549 cells treated with Saikosaponin D (Ssd) and JNK inhibitor SP600125 alone or in combination. Our results indicated that cell cycle arrest at G0/G1, S, and G2/M phases was coupled with the accumulation of subG1, subS, and subG2 cells, corresponding to early apoptosis, DNA endoreplication, and later inhibitory proliferation, respectively. Analyzing the expression of 18 cell cycle regulatory genes and JNK and phosphorylated JNK (pJNK) levels revealed an enhancement in these factors by Ssd. Additional SP600125 weakened or eliminated the Ssd-induced increase of these factors except that p53/p21 and Rassfia levels were further improved. Ingenuity Pathway Analysis (IPA) of the interactions of these factors revealed a negative synergistic effect on apoptosis while a positive synergistic effect on proliferative inhibition of the two drugs: (1) Ssd induced apoptosis via the activation of two axes, TGFα-JNK-p53 and TGFα-Rassfia-Mst1. By eliminating the Ssd-induced increase of JNK/pJNK, additional SP600125 weakened the Ssd-induced apoptotic axis of TGFα-JNK-p53 and simultaneously abolished Ssd-induced apoptosis; (2) Ssd inhibited proliferation by the activation of two axes, TGFβ-p53/p21/p27/p15/p16 and TGFα-Rassfia-cyclin D1. By improving the Ssd-induced increase of p53/p21 and Rassfia, additional SP600125 enhanced the two axes of Ssd-induced inhibitory proliferation. Analyzing JNK/pJNK, p53, phospho-p53, and TNF-α levels revealed an opposite association of JNK/pJNK with p53 while consistent with phospho-p53 and TNF-α, which supported the proposals that JNK/pJNK negatively regulated p53 level, while it mediated p53 phosphorylation to transcriptionally activate TNF-α expression of apoptotic gene and trigger apoptosis. With the multiple roles, JNK/pJNK forms a synergetic and antagonistic feedback loop with phospho-p53/p53. Within the feedback loop, (1) Ssd-induced apoptosis depended on JNK/pJNK activities mediating phospho-p53 that activated TNF-α expression; (2) by weakening the negative regulation of JNK/pJNK in p53, SP600125 enhanced p53 level and the Ssd-induced inhibitory proliferation axes of TGFβ-p53/p21/p27/p15/p16. The results indicated the central coordinating roles of the feedback loop in the synergistic and antagonistic effects of the two drugs in A549 cells and provided a rationale for the combination of Ssd with SP600125 in the treatment of lung cancer.

Liu B, Pilarsky C
Analysis of DNA Hypermethylation in Pancreatic Cancer Using Methylation-Specific PCR and Bisulfite Sequencing.
Methods Mol Biol. 2018; 1856:269-282 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor and the fourth common cause of cancer death in the Western world. The lack of effective therapeutic strategies is attributed to the late diagnosis of this disease. Methylation markers could improve early detection and help in the surveillance of PDAC after treatment. Analysis of hypermethylation in the tumor tissue and tumor-derived exosomes might help to identify new therapeutic strategies and aid in the understanding of the pathophysiological changes occurring in pancreatic cancer. There are several methods for the detection of methylation events. Whereas methylation-specific PCR (MSP-PCR) is the method of choice, the cost reductions in DNA sequencing enables researchers to add bisulfite sequencing (BSS) to their repertoire if a small number of genes will be tested in a larger set of patients' samples. During the last years, several techniques to isolate and analyze DNA methylation have been proposed, but DNA modification using sodium bisulfite is still the gold standard.

Chen M, Ba H, Lu C, et al.
Glial Cell Line-Derived Neurotrophic Factor (GDNF) Promotes Angiogenesis through the Demethylation of the Fibromodulin (FMOD) Promoter in Glioblastoma.
Med Sci Monit. 2018; 24:6137-6143 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
BACKGROUND Angiogenesis plays an important role in the progression of glioblastoma, with a high degree of malignancy. Previous studies have proved that glial cell line-derived neurotrophic factor (GDNF) and fibromodulin (FMOD) are strongly expressed in human glioblastoma. The purpose of this study was to explore the roles of GDNF and FMOD in angiogenesis and the molecular mechanisms underlying these roles in human glioblastoma. MATERIAL AND METHODS The effects of GDNF on the expression and secretion of vascular endothelial growth factor (VEGF) in human glioblastoma cell line U251 and angiogenesis in human umbilical vein endothelial cells (HUVECs) were investigated. The molecular mechanism of GDNF-induced expression of FMOD was explored. The roles of FMOD in GDNF-induced expression and secretion of VEGF and angiogenesis were also examined. RESULTS In the present study, we showed that GDNF promoted the expression and secretion of VEGF in U251 cells. VEGF mediated GDNF-induced angiogenesis in human glioblastoma. In addition, GDNF significantly upregulated the expression of FMOD in U251 cells. Mechanistically, the results of luciferase reporter assay and methylation-specific PCR (MSP) demonstrated that GDNF facilitated the demethylation of the FMOD promoter. More importantly, we found that FMOD acted as an important mediator in VEGF expression and angiogenesis induced by GDNF in human glioblastoma. CONCLUSIONS Collectively, our data show that GDNF promotes angiogenesis through demethylation of the FMOD promoter in human glioblastoma, indicating that GDNF and FMOD may be potential therapeutic targets for glioblastoma.

Kirn V, Strake L, Thangarajah F, et al.
ESR1-promoter-methylation status in primary breast cancer and its corresponding metastases.
Clin Exp Metastasis. 2018; 35(7):707-712 [PubMed] Related Publications
The role of ESR1 methylation in breast cancer and its influence on disease progression is not yet fully understood. Healthy breast tissue usually does not show ESR1 promoter methylation, whereas the frequency of ESR1 methylation appears to increase in primary breast cancer and in metastatic disease. Although women with ER positive breast cancer have a good prognosis, some will relapse. We aimed to evaluate the methylation status of ESR1 in primary breast cancer and its corresponding metastases by a methylation-specific real-time PCR and to correlate the methylation status with clinical outcome. Women who were treated for primary and metastatic breast cancer were included in the study. Tumor DNA was isolated from paraffin embedded tissue sections. After bisulfite treatment ESR1 promoter methylation was analyzed by real time-MSP of each tissue sample. Kaplan-Meier-Curves were drawn for survival. In the group of patients with positive ESR1 promoter methylation in the primary breast carcinoma survival was lower compared to the group of patients without methylation (38.1 months vs. 54.3 months, n.s.). Seven out of 19 (37%) of those patients with positive ESR1 promoter methylation developed loss of ER expression in metastatic disease. None of the patients who had primary tumours that were ESR1 methylation negative developed ER expression negative metastatic disease. The results underline the importance of the ESR1 promoter methylation and its potential application as a predictive marker. To improve the clinical outcome of patients with metastatic disease, those with initially positive ESR1 methylation status should undergo a tissue biopsy already at the beginning of metastatic disease to identify those with loss of ER expression and thus resitance to anti-endocrine therapy.

Nasif D, Campoy E, Laurito S, et al.
Epigenetic regulation of ID4 in breast cancer: tumor suppressor or oncogene?
Clin Epigenetics. 2018; 10(1):111 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
BACKGROUND: Inhibitor of differentiation protein 4 (ID4) is a dominant negative regulator of the basic helix-loop-helix (bHLH) family of transcription factors. During tumorigenesis, ID4 may act as a tumor suppressor or as an oncogene in different tumor types. However, the role of ID4 in breast cancer is not clear where both an oncogenic and a tumor suppressor function have been attributed. Here, we hypothesize that ID4 behaves as both, but its role in breast differs according to the estrogen receptor (ER) status of the tumor.
METHODS: ID4 expression was retrieved from TCGA database using UCSC Xena. Association between overall survival (OS) and ID4 was assessed using Kaplan-Meier plotter. Correlation between methylation and expression was analyzed using the MEXPRESS tool. In vitro experiments involved ectopic expression of ID4 in MCF-7, T47D, and MDA-MB231 breast cancer cell lines. Migration and colony formation capacity were assessed after transfection treatments. Gene expression was analyzed by ddPCR and methylation by MSP, MS-MLPA, or ddMSP.
RESULTS: Data mining analysis revealed that ID4 expression is significantly lower in ER+ tumors with respect to ER- tumors or normal tissue. We also demonstrate that ID4 is significantly methylated in ER+ tumors. Kaplan-Meier analysis indicated that low ID4 expression levels were associated with poor overall survival in patients with ER+ tumors. In silico expression analysis indicated that ID4 was associated with the expression of key genes of the ER pathway only in ER+ tumors. In vitro experiments revealed that ID4 overexpression in ER+ cell lines resulted in decreased migration capacity and reduced number of colonies. ID4 overexpression induced a reduction in ER levels in ER+ cell lines, while estrogen deprivation with fulvestrant did not induce changes neither in ID4 methylation nor in ID4 expression.
CONCLUSIONS: We propose that ID4 is frequently silenced by promoter methylation in ER+ breast cancers and functions as a tumor suppressor gene in these tumors, probably due to its interaction with key genes of the ER pathway. Our present study contributes to the knowledge of the role of ID4 in breast cancer.

Ji Y, Jia L, Zhang Y, et al.
Antitumor activity of the plant extract morin in tongue squamous cell carcinoma cells.
Oncol Rep. 2018; 40(5):3024-3032 [PubMed] Related Publications
Morin is a naturally occurring bioflavonoid originally isolated from members of the Moraceae family of flowering plants and it possesses antitumor activity in various human cancer cells. The present study explored the antitumor effects of morin in tongue squamous cell carcinoma (TSCC) cells in vitro and investigated the underlying molecular events. A TSCC cell line was treated with different doses of morin for up to 48 h. Analyses of cell viability, using Cell Counting Kit‑8 (CCK‑8), EdU incorporation, colony formation, flow cytometric analysis of cell cycle distribution and apoptosis, wound healing assay, western blot analysis and qRT‑PCR assays, were then performed. The data revealed that morin treatment reduced Cal27 cell proliferation and reduced the migration capacity of tumor cells in a dose‑dependent manner. Morin treatment also significantly upregulated mammalian sterile 20‑like 1 (MST1) and MOB kinase activator 1 (MOB1) phosphorylation in CAL27 cells, but suppressed nuclear translocation of yes‑associated protein (YAP) through the induction of YAP phosphorylation in Cal27 cells. Moreover, the expression of YAP‑targeting genes, such as CTGF, CYR61 and ANKRD, was downregulated in morin‑treated TSCC cells, indicating that morin was able to activate the Hippo signaling pathway to inhibit YAP nuclear translocation and YAP‑related transcriptional activity in TSCC cells. In conclusion, the data from the present study demonstrated that morin produces anti‑TSCC activity in vitro through activation of the Hippo signaling pathway and the downstream suppression of YAP activity in TSCC cells. Future studies should assess the clinical antitumor effects of morin.

Jin P, Song Y, Yu G
The Role of Abnormal Methylation of Wnt5a Gene Promoter Regions in Human Epithelial Ovarian Cancer: A Clinical and Experimental Study.
Anal Cell Pathol (Amst). 2018; 2018:6567081 [PubMed] Article available free on PMC after 15/01/2020 Related Publications
Objective: In the current study, the role of abnormal methylation of Wnt5a gene promoter regions in human epithelial ovarian cancer was investigated.
Methods: Wnt5a expressions were examined by immunohistochemistry in epithelial ovarian tissues (30 normal and 79 human EOC tissues). SKOV3 cells were treated with different concentrations of 5-Aza-CdR (0.5, 5, and 50 
Results: (1) Compared with normal tissues, Wnt5a expressions were reduced or lost in EOC (
Conclusions: Wnt5a gene region promoter aberrant methylation existed in epithelial ovarian cancer, and abnormal methylation of Wnt5a gene promoter regions may be a new target for the treatment of epithelial ovarian cancer.

Chen M, Zhang H, Shi Z, et al.
The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer.
J Biol Chem. 2018; 293(37):14455-14469 [PubMed] Article available free on PMC after 14/09/2019 Related Publications
The mammalian STE20-like protein kinase 1 (MST1)-MOB kinase activator 1 (MOB1) complex has been shown to suppress the oncogenic activity of Yes-associated protein (YAP) in the mammalian Hippo pathway, which is involved in the development of multiple tumors, including pancreatic cancer (PC). However, it remains unclear whether other MST-MOB complexes are also involved in regulating Hippo-YAP signaling and have potential roles in PC. Here, we report that mammalian STE20-like kinase 4 (MST4), a distantly related ortholog of the MST1 kinase, forms a complex with MOB4 in a phosphorylation-dependent manner. We found that the overall structure of the MST4-MOB4 complex resembles that of the MST1-MOB1 complex, even though the two complexes exhibited opposite biological functions in PC. In contrast to the tumor-suppressor effect of the MST1-MOB1 complex, the MST4-MOB4 complex promoted growth and migration of PANC-1 cells. Moreover, expression levels of MST4 and MOB4 were elevated in PC and were positively correlated with each other, whereas MST1 expression was down-regulated. Because of divergent evolution of key interface residues, MST4 and MOB4 could disrupt assembly of the MST1-MOB1 complex through alternative pairing and thereby increased YAP activity. Collectively, these findings identify the MST4-MOB4 complex as a noncanonical regulator of the Hippo-YAP pathway with an oncogenic role in PC. Our findings highlight that although MST-MOB complexes display some structural conservation, they functionally diverged during their evolution.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MST1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999