NGFR

Gene Summary

Gene:NGFR; nerve growth factor receptor
Aliases: CD271, p75NTR, TNFRSF16, p75(NTR), Gp80-LNGFR
Location:17q21.33
Summary:Nerve growth factor receptor contains an extracellular domain containing four 40-amino acid repeats with 6 cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155-amino acid cytoplasmic domain. The cysteine-rich region contains the nerve growth factor binding domain. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tumor necrosis factor receptor superfamily member 16
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (37)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NGFR (cancer-related)

Miao Q, Ma K, Chen D, et al.
Targeting tropomyosin receptor kinase for cancer therapy.
Eur J Med Chem. 2019; 175:129-148 [PubMed] Related Publications
NTRKs and their expression product tropomyosin receptor kinases (Trks) are widely distributed in mammals. While neural growth factor (NGF)-induced normal Trk activation plays a key role in nerve growth, NTRK alternations occurring in tumor cells were highly correlated to tumor progression and invasion. Recent clinical data from several pan-Trk inhibitors have demonstrated potential and broad applications in various cancers. This intrigues us to summarize the development of inhibitors targeting Trks with different mechanisms of action and their applications in cancer therapy. We believe that this perspective would be of great help in investigating novel anticancer drugs with better therapeutic index.

Antunes LCM, Cartell A, de Farias CB, et al.
Tropomyosin-Related Kinase Receptor and Neurotrophin Expression in Cutaneous Melanoma Is Associated with a Poor Prognosis and Decreased Survival.
Oncology. 2019; 97(1):26-37 [PubMed] Related Publications
OBJECTIVE: Normally, activation of tropomyosin-related kinase (TRK) receptors by neurotrophins (NTs) stimulates intracellular pathways involved in cell survival and proliferation. Dysregulation of NT/TRK signaling may affect neoplasm prognosis. Data on NT and TRK expression in melanomas are limited, and it is unclear whether NT/TRK signaling pathways are involved in the origin and progression of this neoplasm.
METHODS: We examined whether NT/TRK expression differs across different cutaneous melanoma grades and subtypes, and whether it is associated with melanoma prognosis and survival. A cross-sectional study was performed in which the expression of TrkA, TrkB, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) was analyzed by immunohistochemistry of 154 melanoma samples. We investigated NT/TRK expression associations with prognostic factors for melanoma, relapse-free survival (RFS), and overall survival (OS).
RESULTS: Of the 154 melanoma samples, 77 (55.4%) were TrkA immunopositive, 81 (58.3%) were TrkB immunopositive, 113 (81.3%) were BDNF immunopositive, and 104 (75.4%) were NGF immunopositive. We found NT/TRK expression associated strongly with several clinical prognostic factors, including the tumor-node-metastasis stage (p < 0.001), histological subtype (p < 0.001), and Clark level (p < 0.05), as well as with a worse OS (p < 0.05 for all, except TrkB) and RFS (p < 0.05 for all).
CONCLUSIONS: Our results show strong associations of NT/TRK expression with melanoma stage progression and a poor prognosis.

Viswanathan A, Kute D, Musa A, et al.
2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile as novel inhibitor of receptor tyrosine kinase and PI3K/AKT/mTOR signaling pathway in glioblastoma.
Eur J Med Chem. 2019; 166:291-303 [PubMed] Related Publications
Nerve growth factor receptor (NGFR), a member of kinase protein, is emerging as an important target for Glioblastoma (GBM) treatment. Overexpression of NGFR is observed in many metastatic cancers including GBM, promoting tumor migration and invasion. Hydrazones have been reported to effectively interact with receptor tyrosine kinases (RTKs). We report herein the synthesis of 23 arylhydrazones of active methylene compounds (AHAMCs) compounds and their anti-proliferative activity against GBM cell lines, LN229 and U87. Compound R234, 2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile, was identified as the most active anti-neoplastic compound, with the IC

Wang X, Song P, Huang C, et al.
Weighted gene co‑expression network analysis for identifying hub genes in association with prognosis in Wilms tumor.
Mol Med Rep. 2019; 19(3):2041-2050 [PubMed] Free Access to Full Article Related Publications
Wilms tumor (WT) is the most common type of renal malignancy in children. Survival rates are low and high‑risk WT generally still carries a poor prognosis. To better elucidate the pathogenesis and tumorigenic pathways of high‑risk WT, the present study presents an integrated analysis of RNA expression profiles of high‑risk WT to identify predictive molecular biomarkers, for the improvement of therapeutic decision‑making. mRNA sequence data from high‑risk WT and adjacent normal samples were downloaded from The Cancer Genome Atlas to screen for differentially expressed genes (DEGs) using R software. From 132 Wilms tumor samples and six normal samples, 2,089 downregulated and 941 upregulated DEGs were identified. In order to identify hub DEGs that regulate target genes, weighted gene co‑expression network analysis (WGCNA) was used to identify 11 free‑scale gene co‑expressed clusters. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were annotated using KEGG Orthology Based Annotation System annotation of different module genes. The Search Tool for the Retrieval of Interacting Genes was used to construct a protein‑protein interaction network for the identified DEGs, and the hub genes of WGCNA modules were identified using the Cytohubb plugin with Cytoscape software. Survival analysis was subsequently performed to highlight hub genes with a clinical signature. The present results suggest that epidermal growth factor, cyclin dependent kinase 1, endothelin receptor type A, nerve growth factor receptor, opa‑interacting protein 5, NDC80 kinetochore complex component and cell division cycle associated 8 are essential to high‑risk WT pathogenesis, and they are closely associated with clinical prognosis.

Yang X, Shen H, Buckley B, et al.
NTRK1 is a positive regulator of YAP oncogenic function.
Oncogene. 2019; 38(15):2778-2787 [PubMed] Free Access to Full Article Related Publications
Multiple cancer signalling networks take part in regulatory crosstalks with the Hippo tumour suppressor pathway through the transcriptional cofactor Yes-associated protein (YAP). Nevertheless, how YAP is controlled by pathway crosstalks in tumourigenesis remains poorly understood. Here, we performed a targeted kinase inhibitor screen in human cancer cells to identify novel Hippo pathway regulators. Notably, we identified the nerve growth factor (NGF) receptor tyrosine kinase (NTRK1), a molecule not previously associated with Hippo signalling. NTRK1 inhibition decreased YAP-driven transcription, cancer cell proliferation and migration. Furthermore, using a complementary functional genomics approach and mouse xenograft models, we show that NTRK1 regulates YAP oncogenic activity in vivo. Mechanistically, NTRK1 inhibition was found to induce large suppressor kinase 1 (LATS1) phosphorylation and to control YAP subcellular localization. Taken together, these results provide compelling evidence of crosstalks between the NGF-NTRK1 and Hippo cancer pathways.

Liu S, Hou H, Zhang P, et al.
Sphingomyelin synthase 1 regulates the epithelial‑to‑mesenchymal transition mediated by the TGF‑β/Smad pathway in MDA‑MB‑231 cells.
Mol Med Rep. 2019; 19(2):1159-1167 [PubMed] Free Access to Full Article Related Publications
Breast cancer is the most common cancer in women and a leading cause of cancer‑associated mortalities in the world. Epithelial‑to‑mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF‑β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF‑β1‑induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA‑MB‑231 cells were treated by TGF‑β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF‑β1. These results demonstrated that overexpression of SMS1 inhibited TGF‑β1‑induced EMT and the migration and invasion of MDA‑MB‑231 cells, increasing the expression of E‑cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA‑MB‑231 cells via TGF‑β/Smad signaling pathway.

Li L, Huang Y, Gao Y, et al.
EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence.
BMC Cancer. 2018; 18(1):1215 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant central nervous system tumor. Alkylating agent, temozolomide (TMZ), is currently the first-line chemotherapeutic agent for GBM. However, the sensitivity of GBM cells to TMZ is affected by many factors. And, several clinic trials, including co-administration of TMZ with other drugs, have failed in successful treatment of GBM. We have previously reported that Netrin-4 (NTN4), a laminin-like axon guidance protein, plays a protective role in GBM cell senescence upon TMZ-triggered DNA damage. However, the master regulator of NTN4 needs further elucidation. Epidermal growth factor/Epidermal growth factor receptor (EGF/EGFR) can modulate the expression of various extracellular matrix related molecules, and prevent DNA damage in GBM cells. In this study, we investigated the relationship between EGF/EGFR signaling and NTN4, and explored their effect on therapeutic efficacy in GBM cells upon TMZ treatment.
METHODS: Co-expression analysis were performed by using the RNA sequencing data from NIH 934 cell lines and from single cell RNA sequencing data of GBM tumor. The co-expressing genes were used for GO enrichment and signaling pathway enrichment. mRNA expression of the target genes were quantified by qPCR, and cell senescence were investigated by Senescence-Associated Beta-Galactosidase Staining. Protein phosphorylation were observed and analyzed by immunoblotting. The RNA sequencing data and clinical information of TMZ treated patients were extracted from TCGA-glioblastoma project, and then used for Kaplan-Meier survival analysis.
RESULTS: Analysis of RNA sequencing data revealed a potential co-expression relationship between NTN4 and EGFR. GO enrichment of EGFR-correlated genes indicated that EGFR regulates GBM cells in a manner similar to that in central nervous system development and neural cell differentiation. Pathway analysis suggested that EGFR and its related genes contribute to cell adhesion, extracellular matrix (ECM) organization and caspase related signaling. We also show that EGF stimulates NTN4 expression in GBM cells and cooperates with NTN4 to attenuate GBM cell senescence induced by DNA damage, possibly via AKT and ERK. Clinical analysis showed that co-expression of EGFR and NTN4 significantly predicts poor survival in TMZ-treated GBM patients.
CONCLUSIONS: This study indicates that EGF/EGFR regulates and cooperates with NTN4 in DNA damage resistance in GBM. Therefore, our findings provide a potential therapeutic target for GBM.

Yao Y, Liu Z, Guo H, et al.
Elevated TRIM23 expression predicts poor prognosis in Chinese gastric cancer.
Pathol Res Pract. 2018; 214(12):2062-2068 [PubMed] Related Publications
The gene TRIM23 (tripartite motif containing 23) is a member of the tripartite motif (TRIM) family whose expression putatively participates in many pathophysiological processes. Nonetheless, the role of TRIM23 in gastric cancer (GC) remains uncertain. Our study evaluated the expression of TRIM23 in GC tissues and cell lines, and investigated an association between TRIM23 and survival. In the present study, our results demonstrated that TRIM23 mRNA and protein were frequently over-expressed in GC cell lines and GC tissues. High level of TRIM23 protein correlated with tumor size, tumor-node-metastasis (TNM) stage, depth of invasion, lymph node metastasis (LNM), tumor differentiation, and nerve invasion. Compared with the low TRIM23 protein group, the high TRIM23 protein group was significantly associated with worse prognosis of GC patients. Consistently, the KM-plot database suggested that high TRIM23 mRNA expression was also linked to a poor prognosis in GC patients both in positive and negative subgroups of human epidermal growth factor receptor 2 (HER2). But in the HER2 positive subgroup, the advantages of the low TRIM23 expression on overall survival were much more statistically significant. The univariate analysis indicated that TRIM23 expression correlated with overall survival. The multivariate analysis showed that independent factors of prognosis in GC were lymph node metastasis, vascular invasion, and depth of invasion. In summary, TRIM23 may be associated with progression of GC, and may be considered a therapeutic target for GC patients.

Yu S, Yang M, Lim KM, et al.
Expression of LRIG1, a Negative Regulator of EGFR, Is Dynamically Altered during Different Stages of Gastric Carcinogenesis.
Am J Pathol. 2018; 188(12):2912-2923 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Leucine-rich repeats and immunoglobulin-like domains (LRIG)-1 is a transmembrane protein that antagonizes epidermal growth factor receptor signaling in epithelial tissues. LRIG1 is down-regulated in various epithelial cancers, including bladder, breast, and colorectal cancer, suggesting that it functions as a tumor suppressor. However, its role in gastric carcinogenesis is not well understood. Here, we investigated the changes in LRIG1 expression during the stages of gastric cancer. We used a DMP-777-induced spasmolytic polypeptide-expressing metaplasia mouse model and a tissue array of human gastric cancer lesions. The effects of LRIG1 knockdown were also assessed using the human gastric cancer cell line SNU638 in a xenograft model. LRIG1 expression varied over the course of gastric carcinogenesis, increasing in spasmolytic polypeptide-expressing metaplasia lesions but disappearing in intestinal metaplasia and cancer lesions, and the increase was concurrent with the up-regulation of epidermal growth factor receptor. In addition, LRIG1 knockdown promoted the tumorigenic potential in vitro, which was manifested as increased proliferation, invasiveness, and migration as well as increased tumor size in vivo in the xenograft model. Furthermore, LRIG1 expression was determined to be a positive prognostic biomarker for the survival of gastric cancer patients. Collectively, our findings indicate that LRIG1 expression is closely related wto gastric carcinogenesis and may play a vital role as a tumor suppressor through the modulation of epidermal growth factor receptor activity.

Abbaszadegan MR, Riahi A, Forghanifard MM, Moghbeli M
WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma.
Cell Mol Biol Lett. 2018; 23:42 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Background: Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer, with a poor prognosis. Deregulation of WNT and NOTCH signaling pathways is important in ESCC progression, which can be due to either malfunction of their components or crosstalk with other pathways. Therefore, identification of new crosstalk between such pathways may be effective to introduce new strategies for targeted therapy of cancer. A correlation study was performed to assess the probable interaction between growth factor receptors and WNT/NOTCH pathways via the epidermal growth factor receptor (EGFR) and Musashi1 (MSI1), respectively.
Methods: Levels of MSI1/EGFR mRNA expression in tumor tissues from 48 ESCC patients were compared to their corresponding normal tissues using real-time polymerase chain reaction.
Results: There was a significant correlation between EGFR and MSI1 expression (
Conclusion: This study confirms a direct correlation between MSI1 and EGFR and may support the important role of MSI1 in activation of EGFR through NOTCH/WNT pathways in ESCC.

Yang WH, Cheng CY, Chen MF, Wang TC
Cell Subpopulations Overexpressing p75NTR Have Tumor-initiating Properties in the C6 Glioma Cell Line.
Anticancer Res. 2018; 38(9):5183-5192 [PubMed] Related Publications
BACKGROUND/AIM: Glioma is the most common and lethal primary brain tumor. Even with the development of multidisciplinary treatment approaches, results are disappointing because of the unavoidable tumor recurrence, which may be caused by the existence of tumor-initiating cells. The p75 neurotrophin receptor (p75NTR), which belongs to the tumor necrosis factor receptor superfamily, is not only involved in various cellular functions but also related to tumor growth. This study is focused, on the possible role of p75NTR in glioma tumor initiation.
MATERIALS AND METHODS: C6 cells with high and low expression of p75NTR were sorted using flow cytometry. The neurosphere characteristics and properties of these two subpopulations were assessed and compared with those of parental cells. Radiation and chemotherapy sensitivity was also analyzed in these cell populations. Finally, in vivo tumorigenicity of cells was tested in a rat model.
RESULTS: Cells overexpressing p75NTR (C6p75+++ cells) demonstrated greater ability of neurosphere formation, colony proliferation, and certain stem cell marker overexpression than cells with low p75NTR expression (C6p75+) and parental cells. In addition, following irradiation or temozolomide treatment, more viable C6p75+++ cells remained, and they proliferated into more colonies. In vivo, C6p75+++ cell implantation in Sprague Dawley rats reduced the survival time.
CONCLUSION: Cells with p75NTR overexpression demonstrated certain unique characteristics of tumor-initiating cells, such as neurosphere formation, high colony proliferation, and resistance to radio- and chemotherapy. With regard to the heterogeneous composition of glioma cells, p75NTR can be used as an alternative marker to identify a glioma subpopulation with tumor-initiating properties.

Saloman JL, Singhi AD, Hartman DJ, et al.
Systemic Depletion of Nerve Growth Factor Inhibits Disease Progression in a Genetically Engineered Model of Pancreatic Ductal Adenocarcinoma.
Pancreas. 2018; 47(7):856-863 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
OBJECTIVES: In patients with pancreatic ductal adenocarcinoma (PDAC), increased expression of proinflammatory neurotrophic growth factors (eg, nerve growth factor [NGF]) correlates with a poorer prognosis, perineural invasion, and, with regard to NGF, pain severity. We hypothesized that NGF sequestration would reduce inflammation and disease in the KPC mouse model of PDAC.
METHODS: Following biweekly injections of NGF antibody or control immunoglobulin G, beginning at 4 or 8 weeks of age, inflammation and disease stage were assessed using histological, protein expression, and quantitative polymerase chain reaction analyses.
RESULTS: In the 8-week anti-NGF group, indicators of neurogenic inflammation in the dorsal root ganglia (substance P and calcitonin gene-related peptide) and spinal cord (glial fibrillary acidic protein) were significantly reduced. In the 4-week anti-NGF group, TRPA1 mRNA in dorsal root ganglia and spinal phosphorylated ERK protein were elevated, but glial fibrillary acidic protein expression was unaffected. In the 8-week anti-NGF group, there was a 40% reduction in the proportion of mice with microscopic perineural invasion, and no macrometastases were observed.
CONCLUSIONS: Anti-NGF treatment beginning at 4 weeks may increase inflammation and negatively impact disease. Treatment starting at 8 weeks (after disease onset), however, reduces neural inflammation, neural invasion, and metastasis. These data indicate that NGF impacts PDAC progression and metastasis in a temporally dependent manner.

Serandour AA, Mohammed H, Miremadi A, et al.
TRPS1 regulates oestrogen receptor binding and histone acetylation at enhancers.
Oncogene. 2018; 37(39):5281-5291 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
The chromatin state is finely tuned to regulate function and specificity for transcription factors such as oestrogen receptor alpha (ER), which contributes to cell growth in breast cancer. ER transcriptional potential is mediated, in large part, by the specific associated proteins and co-factors that interact with it. Despite the identification and characterisation of several ER coregulators, a complete and systematic view of ER-regulating chromatin modifiers is lacking. By exploiting a focused siRNA screen that investigated the requirement for a library of 330 chromatin regulators in ER-mediated cell growth, we find that the NuRD and coREST histone deacetylation complexes are critical for breast cancer cell proliferation. Further, by proteomic and genomics approaches, we discover the transcription factor TRPS1 to be a key interactor of the NuRD and coREST complexes. Interestingly, TRPS1 gene amplification occurs in 28% of human breast tumours and is associated with poor prognosis. We propose that TRPS1 is required to repress spurious binding of ER, where it contributes to the removal of histone acetylation. Our data suggest that TRPS1 is an important ER-associated transcriptional repressor that regulates cell proliferation, chromatin acetylation and ER binding at the chromatin of cis-regulatory elements.

Wang L, Wu Q, Zhu S, et al.
Quantum dot-based immunofluorescent imaging and quantitative detection of DNER and prognostic value in prostate cancer.
Cancer Biomark. 2018; 22(4):683-691 [PubMed] Related Publications
DNER, Delta/Notch-like epidermal growth factor (EGF)-related receptor, is a neuron-specific transmembrane protein carrying extracellular EGF-like repeats. The prognostic value of DNER in prostate cancer has not been evaluated. Here we showed that the up-regulation of DNER protein was observed in prostate cancer detected by immunohistochemistry (IHC) and quantum dot-based immunofluorescent imaging and quantitative analytical system (QD-IIQAS). However, a higher accuracy of measurements of DNER expression in prostate cancer was found by QD-IIQAS than by IHC (AUC = 0.817 and 0.617, respectively). DNER was significantly higher in patients undergoing bone metastasis (P = 0.045, RR = 3.624). In addition, DNER overexpression was associated with poor overall survival (OS) (P = 0.028, adjusted HR = 8.564) and recurrence-free survival (RFS) (P = 0.042, adjusted HR = 3.474) in patients suffering prostate cancer. Thus, QD-IIQAS is an easy and accurate method for assessing DNER and the DNER expression was an independent prognostic factor in prostate cancer.

Rudzinski ER, Lockwood CM, Stohr BA, et al.
Pan-Trk Immunohistochemistry Identifies NTRK Rearrangements in Pediatric Mesenchymal Tumors.
Am J Surg Pathol. 2018; 42(7):927-935 [PubMed] Related Publications
Activating neurotrophic receptor kinase (NTRK) fusions define certain pediatric mesenchymal tumors, including infantile fibrosarcoma and cellular mesoblastic nephroma. Traditionally, molecular confirmation of these fusions has included either fluorescent in situ hybridization for ETV6 rearrangements or reverse-transcriptase polymerase chain reaction for the classic ETV6-NTRK3 fusion. However, these methods overlook variant NTRK rearrangements, which are increasingly appreciated as recurrent events in a subset of pediatric mesenchymal tumors. New therapeutic agents successfully target these fusions and may prevent morbid surgeries in very young children, making recognition of tumors harboring NTRK rearrangements of increasing importance. We evaluated the performance of immunohistochemical (IHC) staining using pan-Trk and TrkA antibodies in 79 pediatric mesenchymal tumors. Negative controls included pediatric mesenchymal tumors not harboring (n=28) or not expected to harbor (n=22) NTRK fusions. NTRK rearrangements were detected predominantly by DNA-based next-generation sequencing assays, specifically UW OncoPlex and UCSF500 Cancer Gene Panel. Pan-Trk IHC (EPR17341) was 97% sensitive and 98% specific for the presence of an NTRK rearrangement, and TrkA IHC (EP1058Y) was 100% sensitive and 63% specific for the presence of an NTRK rearrangement. Tumors with NTRK1 or NTRK2 rearrangements showed cytoplasmic staining, whereas tumors with NTRK3 rearrangements showed nuclear +/- cytoplasmic staining. We conclude that pan-Trk IHC is a highly sensitive and specific marker for NTRK rearrangements in pediatric mesenchymal tumors.

Zhu L, Xie J, Liu Z, et al.
Pigment epithelium-derived factor/vascular endothelial growth factor ratio plays a crucial role in the spontaneous regression of infant hemangioma and in the therapeutic effect of propranolol.
Cancer Sci. 2018; 109(6):1981-1994 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Infantile hemangioma (IH) is a benign tumor that is formed by aberrant angiogenesis and that undergoes spontaneous regression over time. Propranolol, the first-line therapy for IH, inhibits angiogenesis by downregulating activation of the vascular endothelial growth factor (VEGF) pathway, which is hyperactivated in IH. However, this treatment is reportedly ineffective for 10% of tumors, and 19% of patients relapse after propranolol treatment. Both pro-angiogenic and anti-angiogenic factors regulate angiogenesis, and pigment epithelium-derived factor (PEDF) is the most effective endogenous anti-angiogenic factor. PEDF/VEGF ratio controls many angiogenic processes, but its role in IH and the relationship between this ratio and propranolol remain unknown. Results of the present study showed that the PEDF/VEGF ratio increased during the involuting phase of IH compared with the proliferating phase. Similarly, in hemangioma-derived endothelial cells (HemEC), which were isolated with magnetic beads, increasing the PEDF/VEGF ratio inhibited proliferation, migration, and tube formation and promoted apoptosis. Mechanistically, the VEGF receptors (VEGFR1 and VEGFR2) and PEDF receptor (laminin receptor, LR) were highly expressed in both IH tissues and HemEC, and PEDF inhibited HemEC function by binding to LR. Interestingly, we found that propranolol increased the PEDF/VEGF ratio but did so by lowering VEGF expression rather than by upregulating PEDF as expected. Furthermore, the combination of PEDF and propranolol had a more suppressive effect on HemEC. Consequently, our results suggested that the PEDF/VEGF ratio played a pivotal role in the spontaneous regression of IH and that the combination of PEDF and propranolol might be a promising treatment strategy for propranolol-resistant IH.

Tsao SC, Wang J, Wang Y, et al.
Characterising the phenotypic evolution of circulating tumour cells during treatment.
Nat Commun. 2018; 9(1):1482 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Real-time monitoring of cancer cells' phenotypic evolution during therapy can provide vital tumour biology information for treatment management. Circulating tumour cell (CTC) analysis has emerged as a useful monitoring tool, but its routine usage is restricted by either limited multiplexing capability or sensitivity. Here, we demonstrate the use of antibody-conjugated and Raman reporter-coated gold nanoparticles for simultaneous labelling and monitoring of multiple CTC surface markers (named as "cell signature"), without the need for isolating individual CTCs. We observe cell heterogeneity and phenotypic changes of melanoma cell lines during molecular targeted treatment. Furthermore, we follow the CTC signature changes of 10 stage-IV melanoma patients receiving immunological or molecular targeted therapies. Our technique maps the phenotypic evolution of patient CTCs sensitively and rapidly, and shows drug-resistant clones having different CTC signatures of potential clinical value. We believe our proposed method is of general interest in the CTC relevant research and translation fields.

Rudat S, Pfaus A, Cheng YY, et al.
RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia.
Leukemia. 2018; 32(10):2189-2202 [PubMed] Related Publications
Many cases of AML are associated with mutational activation of receptor tyrosine kinases (RTKs) such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK, as an essential gene in multiple subtypes of AML, and observed that AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes. Interrogation of downstream pathways identified mTORC1-mediated suppression of autophagy and subsequent stabilization of leukemogenic drivers such as mutant FLT3 as important RET effectors. Accordingly, genetic or pharmacologic RET inhibition impaired the growth of FLT3-dependent AML cell lines and was accompanied by upregulation of autophagy and FLT3 depletion. RET dependence was also evident in mouse models of AML and primary AML patient samples, and transcriptome and immunohistochemistry analyses identified elevated RET mRNA levels and co-expression of RET and FLT3 proteins in a substantial proportion of AML patients. Our results indicate that RET-mTORC1 signaling promotes AML through autophagy suppression, suggesting that targeting RET or, more broadly, depletion of leukemogenic drivers via autophagy induction provides a therapeutic opportunity in a relevant subset of AML patients.

Wojciech S, Ahmad R, Belaid-Choucair Z, et al.
The orphan GPR50 receptor promotes constitutive TGFβ receptor signaling and protects against cancer development.
Nat Commun. 2018; 9(1):1216 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Transforming growth factor-β (TGFβ) signaling is initiated by the type I, II TGFβ receptor (TβRI/TβRII) complex. Here we report the formation of an alternative complex between TβRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TβRI induces spontaneous TβRI-dependent Smad and non-Smad signaling by stabilizing the active TβRI conformation and competing for the binding of the negative regulator FKBP12 to TβRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TβRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFβ-independent activation mode of TβRI and identifies GPR50 as a TβRI co-receptor with potential impact on cancer development.

Bao X, Shi J, Xie F, et al.
Proteolytic Release of the p75
Cancer Res. 2018; 78(9):2262-2276 [PubMed] Related Publications
Resistance to anoikis allows cancer cells to survive during systemic circulation; however, the mechanism underlying anoikis resistance remains unclear. Here we show that A disintegrin and metalloprotease 10 (ADAM10)-mediated cleavage of p75 neurotrophin receptor (p75

Dzieran J, Rodriguez Garcia A, Westermark UK, et al.
Proc Natl Acad Sci U S A. 2018; 115(6):E1229-E1238 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Neuroblastoma (NB) is a remarkably heterogenic childhood tumor of the sympathetic nervous system with clinical behavior ranging from spontaneous regression to poorly differentiated tumors and metastasis.

Zhou J, Liu X, Wang C, Li C
The correlation analysis of miRNAs and target genes in metastasis of cervical squamous cell carcinoma.
Epigenomics. 2018; 10(3):259-275 [PubMed] Related Publications
AIM: This study was intended to identify the metastasis-related miRNAs and target genes in cervical squamous cell carcinoma.
MATERIALS & METHODS: The mRNA and miRNA next-generation sequencing data were downloaded. Differential expression analysis was carried out, followed by target gene prediction of differentially expressed miRNAs. The biological function of differentially expressed genes was performed. Validation was carried out by survival analysis and qRT-PCR.
RESULTS: N4BP3 were associated with the survival time of patients. Hsa-mir-451 and hsa-mir-486 were related to tumor differentiation stage. Validated expression of hsa-mir-24-2, hsa-mir-582, NOTCH1, PIP4K2B, DIP2B and IGFBP5 was consistent with the bioinformatics analysis.
CONCLUSION: Alterations of miRNAs and target genes may be useful in understanding the metastasis mechanisms of cervical squamous cell carcinoma.

Chen J, Nagle AM, Wang YF, et al.
Controlled dimerization of insulin-like growth factor-1 and insulin receptors reveals shared and distinct activities of holo and hybrid receptors.
J Biol Chem. 2018; 293(10):3700-3709 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Breast cancer development and progression are influenced by insulin-like growth factor receptor 1 (IGF1R) and insulin receptor (InsR) signaling, which drive cancer phenotypes such as cell growth, proliferation, and migration. IGF1R and InsR form IGF1R/InsR hybrid receptors (HybRs) consisting of one molecule of IGF1R and one molecule of InsR. The specific signaling and functions of HybR are largely unknown, as HybR is activated by both IGF1 and insulin, and no cellular system expresses HybR in the absence of holo-IGF1R or holo-InsR. Here we studied the role of HybR by constructing inducible chimeric receptors and compared HybR signaling with that of holo-IGF1R and holo-InsR. We cloned chemically inducible chimeric IGF1R and InsR constructs consisting of the extracellular domains of the p75 nerve growth factor receptor fused to the intracellular β subunit of IGF1R or InsR and a dimerization domain. Dimerization with the drugs AP20187 or AP21967 allowed specific and independent activation of holo-IGF1R, holo-InsR, or HybR, resulting in activation of the PI3K pathway. Holo-IGF1R and HybR both promoted cell proliferation and glucose uptake, whereas holo-InsR only promoted glucose uptake, and only holo-IGF1R showed anti-apoptotic effects. We also found that the three receptors differentially regulated gene expression: holo-IGF1R and HybR up-regulated EGR3; holo-InsR specifically down-regulated JUN and BCL2L1; holo-InsR down-regulated but HybR up-regulated HK2; and HybR specifically up-regulated FHL2, ITGA6, and PCK2. Our findings suggest that, when expressed and activated in mammary epithelial cells, HybR acts in a manner similar to IGF1R and support further investigation of the role of HybR in breast cancer.

Stypulkowski E, Asangani IA, Witze ES
The depalmitoylase APT1 directs the asymmetric partitioning of Notch and Wnt signaling during cell division.
Sci Signal. 2018; 11(511) [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Asymmetric cell division results in two distinctly fated daughter cells. A molecular hallmark of asymmetric division is the unequal partitioning of cell fate determinants. We have previously established that growth factor signaling promotes protein depalmitoylation to foster polarized protein localization, which, in turn, drives migration and metastasis. We report protein palmitoylation as a key mechanism for the asymmetric partitioning of the cell fate determinants Numb and β-catenin through the activity of the depalmitoylating enzyme APT1. Using point mutations, we showed that specific palmitoylated residues on Numb were required for its asymmetric localization. By live-cell imaging, we showed that reciprocal interactions between APT1 and the Rho family GTPase CDC42 promoted the asymmetric localization of Numb and β-catenin to the plasma membrane. This, in turn, restricted Notch- or Wnt-responsive transcriptional activity to one daughter cell. Moreover, we showed that altering APT1 abundance changed the transcriptional signatures of MDA-MB-231 triple receptor-negative breast cancer cells, similar to changes in Notch and β-catenin-mediated Wnt signaling. We also showed that loss of APT1 depleted a specific subpopulation of tumorigenic cells in colony formation assays. Together, our findings suggest that APT1-mediated depalmitoylation is a major mechanism of asymmetric cell division that maintains Notch- and Wnt-associated protein dynamics, gene expression, and cellular functions.

Ping W, Gao Y, Fan X, et al.
MiR-181a contributes gefitinib resistance in non-small cell lung cancer cells by targeting GAS7.
Biochem Biophys Res Commun. 2018; 495(4):2482-2489 [PubMed] Related Publications
Tyrosine kinase inhibitors (TKIs) exert potent therapeutic efficacy in non-small cell lung cancers (NSCLC) harboring epidermal growth factor receptor (EGFR) activating mutations. However, a major impediment for the effective treatment is the development of drug resistance. Some evidence supports a role for miRNAs in modulating NSCLC TKIs resistance. Here we show that miR-181a is significantly up-regulated in gefitinib-resistant cells compared with gefitinib-sensitive cells. Upregulation of miR-181a caused resistance of gefitinib, whereas downregulation of miR-181a sensitized NSCLC cells to gefitinib. Furthermore, the miR-181a plasma levels were significantly increased in acquired gefitinib resistant NSCLC patients compared with the plasma levels prior to gefitinib treatment in each patient. Bioinformatics analysis and luciferase reporter assay showed that growth arrest-specific 7 (GAS7) was a direct target gene of miR-181a. A significant inverse correlation between the expression of miR-181a and GAS7 was identified in NSCLC tissues. Downregulation of GAS7 expression could antagonize gefitinib re-sensitivity in PC9GR mediated by knockdown of miR-181a via AKT/ERK pathways and epithelial-to-mesenchymal transition markers. Additionally, GAS7 expression was downregulated in a large cohort of NSCLC patients, and a high mRNA level of GAS7 was associated with improved overall survival. Collectively, our findings provide a novel basis for using miR-181a/GAS7-based therapeutic strategies to reverse gefitinib resistance in NSCLC.

Lu Y, Xu Q, Zuo Y, et al.
Isoprenaline/β2-AR activates Plexin-A1/VEGFR2 signals via VEGF secretion in gastric cancer cells to promote tumor angiogenesis.
BMC Cancer. 2017; 17(1):875 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
BACKGROUND: The role of stress signals in regulating gastric cancer initiation and progression is not quite clear. It is known that stress signals modulate multiple processes such as immune function, cell migration and angiogenesis. However, few studies have investigated the mechanisms of how stress signals contribute to gastric cancer angiogenesis.
METHODS: Here, we used β2-adrenergic receptor (β2-AR) agonist isoprenaline to imitate a stress signal and demonstrated the molecular mechanism underlying stress's influence on tumor angiogenesis.
RESULTS: We found that isoprenaline stimulated vascular endothelial growth factor (VEGF) secretion in gastric cancer cells and plexin-A1 expression was induced by human recombinant VEGF165 in both gastric cancer cells and vascular endothelial cells. Furthermore, interfere with plexin-A1 expression in gastric cancer cells influence HUVEC tube formation, migration and tumor growth in vivo.
CONCLUSIONS: These findings suggest that isoprenaline stimulate VGEF secretion and subsequently up-regulate the expression of plexin-A1 and VEGFR2 in gastric cancer cells, which form a positive impetus to promote tumor angiogenesis. This study reveals a novel molecular mechanism that a stress signal like isoprenaline may enhance angiogenesis via activating plexin-A1/VEGFR2 signaling pathway in gastric cancer, which may be a potential target in development of an anti-angiogenic therapy for gastric cancer.

Restivo G, Diener J, Cheng PF, et al.
low neurotrophin receptor CD271 regulates phenotype switching in melanoma.
Nat Commun. 2017; 8(1):1988 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic capacity. According to the "phenotype switching" model, the aggressive nature of melanoma cells results from their intrinsic potential to dynamically switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state. Here we identify the low affinity neurotrophin receptor CD271 as a key effector of phenotype switching in melanoma. CD271 plays a dual role in this process by decreasing proliferation, while simultaneously promoting invasiveness. Dynamic modification of CD271 expression allows tumor cells to grow at low levels of CD271, to reduce growth and invade when CD271 expression is high, and to re-expand at a distant site upon decrease of CD271 expression. Mechanistically, the cleaved intracellular domain of CD271 controls proliferation, while the interaction of CD271 with the neurotrophin receptor Trk-A modulates cell adhesiveness through dynamic regulation of a set of cholesterol synthesis genes relevant for patient survival.

Marwitz S, Heinbockel L, Scheufele S, et al.
Epigenetic modifications of the VGF gene in human non-small cell lung cancer tissues pave the way towards enhanced expression.
Clin Epigenetics. 2017; 9:123 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Hwang et al. recently showed that VGF substantially contributes to the resistance of human lung cancer cells towards epidermal growth factor receptor kinase inhibitors. This was further linked to enhanced epithelial-mesenchymal transition. Here, we demonstrate that VGF is epigenetically modified in non-small cell lung cancer tissues compared to corresponding tumor-free lung tissues from the same donors by using methylome bead chip analyses. These epigenetic modifications trigger an increased transcription of the VGF gene within the tumors, which then leads to an increased expression of the protein, facilitating epithelial-mesenchymal transition, and the resistance to kinase inhibitors. These results should be taken into account in the design of novel therapeutic and diagnostic approaches.

Zahalka AH, Arnal-Estapé A, Maryanovich M, et al.
Adrenergic nerves activate an angio-metabolic switch in prostate cancer.
Science. 2017; 358(6361):321-326 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Nerves closely associate with blood vessels and help to pattern the vasculature during development. Recent work suggests that newly formed nerve fibers may regulate the tumor microenvironment, but their exact functions are unclear. Studying mouse models of prostate cancer, we show that endothelial β-adrenergic receptor signaling via adrenergic nerve-derived noradrenaline in the prostate stroma is critical for activation of an angiogenic switch that fuels exponential tumor growth. Mechanistically, this occurs through alteration of endothelial cell metabolism. Endothelial cells typically rely on aerobic glycolysis for angiogenesis. We found that the loss of endothelial

Meldolesi J
Neurotrophin Trk Receptors: New Targets for Cancer Therapy.
Rev Physiol Biochem Pharmacol. 2018; 174:67-79 [PubMed] Related Publications
In the last few years, exciting reports have emerged regarding the role of the two types of neurotrophin receptors, p75

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NGFR, Cancer Genetics Web: http://www.cancer-genetics.org/NGFR.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999