www.Cancer-Genetics.org
Navigate
RAD54L; RAD54-like (S. cerevisiae) (1p32)

Gene Summary

Gene:RAD54L; RAD54-like (S. cerevisiae)
Aliases: HR54, hHR54, RAD54A, hRAD54
Location:1p32
Summary:The protein encoded by this gene belongs to the DEAD-like helicase superfamily, and shares similarity with Saccharomyces cerevisiae Rad54, a protein known to be involved in the homologous recombination and repair of DNA. This protein has been shown to play a role in homologous recombination related repair of DNA double-strand breaks. The binding of this protein to double-strand DNA induces a DNA topological change, which is thought to facilitate homologous DNA paring, and stimulate DNA recombination. Alternative splicing results in multiple transcript variants encoding the same protein.[provided by RefSeq, Dec 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:DNA repair and recombination protein RAD54-like
HPRD
Source:NCBI
Updated:14 December, 2014

Gene
Ontology:

What does this gene/protein do?
Show (14)

Pathways:

What pathways are this gene/protein implicaed in?
- Folate biosynthesis KEGG
- Starch and sucrose metabolism KEGG
Data from KEGG and BioCarta [BIOCARTA terms] via CGAP

Cancer Overview

Research Indicators

Publications Per Year (1989-2014)
Graph generated 14 December 2014 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Sulfonamides
  • Germ-Line Mutation
  • RTPCR
  • Gene Expression Profiling
  • Genetic Variation
  • VEGFA
  • Meningioma
  • Neoplasm Proteins
  • Staging
  • DNA Repair
  • DNA-Binding Proteins
  • Transcription Factors
  • Alleles
  • RAD54L
  • Adenocarcinoma
  • Single Nucleotide Polymorphism
  • Lymphatic Metastasis
  • Genetic Recombination
  • Mutation
  • Pancreatic Cancer
  • Tumor Suppressor Proteins
  • Nuclear Proteins
  • Rad52 DNA Repair and Recombination Protein
  • DNA Mutational Analysis
  • Chromosome 1
  • Amino Acid Sequence
  • Loss of Heterozygosity
  • Breast Cancer
  • DNA Sequence Analysis
  • DNA Helicases
  • Polymorphism
  • Colorectal Cancer
  • Single-Stranded Conformational Polymorphism
  • Ovarian Cancer
  • Rad51 Recombinase
  • Risk Assessment
  • Genotype
  • Cancer DNA
  • Case-Control Studies
  • Adenosine Triphosphatases
Tag cloud generated 14 December, 2014 using data from PubMed, MeSH and CancerIndex

Notable (4)

Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Breast CancerRAD54L and Breast Cancer View Publications4
Pancreatic CancerRAD54L and Pancreatic Cancer View Publications3
Colorectal CancerRAD54L and Colorectal Cancer View Publications3
Ovarian CancerRAD54L and Ovarian Cancer View Publications2

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Related Links

Latest Publications: RAD54L (cancer-related)

Dai W, Zeller C, Masrour N, et al.
Promoter CpG island methylation of genes in key cancer pathways associates with clinical outcome in high-grade serous ovarian cancer.
Clin Cancer Res. 2013; 19(20):5788-97 [PubMed] Related Publications
PURPOSE: We aimed to identify DNA methylation biomarkers of progression-free survival (PFS) to platinum-based chemotherapy in high-grade serous ovarian cancer (HGSOC) within biologically relevant ovarian cancer-associated pathways.
EXPERIMENTAL DESIGN: Association with PFS of CpG island (CGI) promoter DNA methylation at genes in the pathways Akt/mTOR, p53, redox, and homologous recombination DNA repair was sought with PFS as the primary objective in a prospectively collected ovarian cancer cohort (n = 150). Significant loci were validated for associations between PFS, methylation, and gene expression in an independent The Cancer Genome Atlas (TCGA) data set of HGSOC (n = 311).
RESULTS: DNA methylation at 29 CGI loci linked to 28 genes was significantly associated with PFS, independent from conventional clinical prognostic factors (adjusted P < 0.05). Of 17 out of the 28 genes represented in the TCGA data set, methylation of VEGFB, VEGFA, HDAC11, FANCA, E2F1, GPX4, PRDX2, RAD54L, and RECQL4 was prognostic in this independent patient cohort (one-sided P < 0.05, false discovery rate < 10%). A multivariate Cox model was constructed, with clinical parameters (age, stage, grade, and histologic type) and significant loci. The final model included NKD1, VEGFB, and PRDX2 as the three best predictors of PFS (P = 6.62 × 10(-6), permutation test P < 0.05). Focussing only on known VEGFs in the TCGA cohort showed that methylation at promoters of VEGFA, VEGFB, and VEGFC was significantly associated with PFS.
CONCLUSIONS: A three loci model of DNA methylation could identify two distinct prognostic groups of patients with ovarian cancer (PFS: HR = 2.29, P = 3.34 × 10(-5); overall survival: HR = 1.87, P = 0.007) and patients more likely to have poor response to chemotherapy (OR = 3.45, P = 0.012).

Related: Ovarian Cancer Signal Transduction VEGFA


Li WQ, Hu N, Hyland PL, et al.
Genetic variants in DNA repair pathway genes and risk of esophageal squamous cell carcinoma and gastric adenocarcinoma in a Chinese population.
Carcinogenesis. 2013; 34(7):1536-42 [PubMed] Free Access to Full Article Related Publications
The DNA repair pathways help to maintain genomic integrity and therefore genetic variation in the pathways could affect the propensity to develop cancer. Selected germline single nucleotide polymorphisms (SNPs) in the pathways have been associated with esophageal cancer and gastric cancer (GC) but few studies have comprehensively examined the pathway genes. We aimed to investigate associations between DNA repair pathway genes and risk of esophageal squamous cell carcinoma (ESCC) and GC, using data from a genome-wide association study in a Han Chinese population where ESCC and GC are the predominant cancers. In sum, 1942 ESCC cases, 1758 GC cases and 2111 controls from the Shanxi Upper Gastrointestinal Cancer Genetics Project (discovery set) and the Linxian Nutrition Intervention Trials (replication set) were genotyped for 1675 SNPs in 170 DNA repair-related genes. Logistic regression models were applied to evaluate SNP-level associations. Gene- and pathway-level associations were determined using the resampling-based adaptive rank-truncated product approach. The DNA repair pathways overall were significantly associated with risk of ESCC (P = 6.37 × 10(-4)), but not with GC (P = 0.20). The most significant gene in ESCC was CHEK2 (P = 2.00 × 10(-6)) and in GC was CLK2 (P = 3.02 × 10(-4)). We observed several other genes significantly associated with either ESCC (SMUG1, TDG, TP53, GTF2H3, FEN1, POLQ, HEL308, RAD54B, MPG, FANCE and BRCA1) or GC risk (MRE11A, RAD54L and POLE) (P < 0.05). We provide evidence for an association between specific genes in the DNA repair pathways and the risk of ESCC and GC. Further studies are warranted to validate these associations and to investigate underlying mechanisms.

Related: CHEK2 Cancer of the Esophagus Esophageal Cancer Stomach Cancer Gastric Cancer


Pelttari LM, Kiiski J, Nurminen R, et al.
A Finnish founder mutation in RAD51D: analysis in breast, ovarian, prostate, and colorectal cancer.
J Med Genet. 2012; 49(7):429-32 [PubMed] Related Publications
BACKGROUND: RAD51D and RAD54L are involved in homologous recombination, and rare mutations in RAD51D were recently found in breast-ovarian cancer families. This study investigated RAD51D and RAD54L for mutations in breast and ovarian cancer patients in the Finnish population.
METHODS: The study sequenced the RAD51D and RAD54L genes in 95 breast and/or ovarian cancer families and genotyped the identified mutation in an additional 2200 breast and 553 ovarian cancer patients and 2102 population controls. To investigate the role of the mutation in other common cancers, 1094 prostate and 980 colorectal cancer patients were genotyped.
RESULTS: In the screening of RAD51D, one deleterious founder mutation c.576+1G>A was identified in two breast-ovarian cancer families. No mutations were found in RAD54L. Altogether, the c.576+1G>A mutation was detected in 5/707 patients with a personal or family history of ovarian cancer (OR 9.16, 95% CI 1.07 to 78.56; p=0.024), with the highest frequency among breast-ovarian cancer families (3/105 vs 1/1287 controls, OR 37.82, 95% CI 3.90 to 366.91; p=0.0016), but no elevated frequency among breast cancer patients/families (2/2105, p=1). The mutation was not found among prostate or colorectal cancer patients.
CONCLUSIONS: The results of this study on familial and unselected breast, ovarian, colorectal, and prostate cancer patients suggest that RAD51D is primarily a moderate penetrance susceptibility gene for ovarian cancer, with clinical significance for the carriers.

Related: Breast Cancer Colorectal (Bowel) Cancer Ovarian Cancer


Yu S, Song Z, Luo J, et al.
Over-expression of RAD51 or RAD54 but not RAD51/4 enhances extra-chromosomal homologous recombination in the human sarcoma (HT-1080) cell line.
J Biotechnol. 2011; 154(1):21-4 [PubMed] Related Publications
RAD51 and RAD54, members of the RAD52 epistasis group, play key roles in homologous recombination (HR). The efficiency of homologous recombination (HR) can be increased by over-expression of either of them. A vector that allows co-expression of RAD51 and RAD54 was constructed to investigate interactions between the two proteins during extra-chromosomal HR. The efficiency of extra-chromosomal HR evaluated by GFP extra-chromosomal HR was enhanced (110-245%) in different transfected Human sarcoma (HT-1080) cell colonies. We observed that RAD51 clearly promotes extra-chromosomal HR; however, the actions of RAD54 in extra-chromosomal HR were weak. Our data suggest that RAD51 may function as a universal factor during HR, whereas RAD54 mainly functions in other types of HR (gene targeting or intra-chromosomal HR), which involves interaction with chromosomal DNA.

Related: Soft Tissue Sarcomas


Välk K, Vooder T, Kolde R, et al.
Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers.
Oncology. 2010; 79(3-4):283-92 [PubMed] Related Publications
OBJECTIVES: Despite the well-defined histological types of non-small cell lung cancer (NSCLC), a given stage is often associated with wide-ranging survival rates and treatment outcomes. This disparity has led to an increased demand for the discovery and identification of new informative biomarkers.
METHODS: In the current study, we screened 81 NSCLC samples using Illumina whole-genome gene expression microarrays in an effort to identify differentially expressed genes and new NSCLC biomarkers.
RESULTS: We identified novel genes whose expression was upregulated in NSCLC, including SPAG5, POLH, KIF23, and RAD54L, which are associated with mitotic spindle formation, DNA repair, chromosome segregation, and dsDNA break repair, respectively. We also identified several novel genes whose expression was downregulated in NSCLC, including SGCG, NLRC4, MMRN1, and SFTPD, which are involved in extracellular matrix formation, apoptosis, blood vessel leakage, and inflammation, respectively. We found a significant correlation between RNA degradation and survival in adenocarcinoma cases.
CONCLUSIONS: Even though the follow-up time was too limited to draw final conclusions, we were able to show better prediction p values in a group selection based on molecular profiles compared to histology. The current study also uncovered new candidate biomarker genes that are likely to be involved in diverse processes associated with NSCLC development.

Related: Non-Small Cell Lung Cancer Lung Cancer


Kondo N, Takahashi A, Mori E, et al.
DNA ligase IV is a potential molecular target in ACNU sensitivity.
Cancer Sci. 2010; 101(8):1881-5 [PubMed] Free Access to Full Article Related Publications
Nimustine (ACNU) is a chloroethylating agent which was the most active chemotherapy agent used for patients with high-grade gliomas until the introduction of temozolomide, which became the standard of care for patients with newly diagnosed glioblastomas in Japan. Since temozolomide was established as the standard first-line therapy for glioblastoma multiforme (GBM), ACNU has been employed as a salvage chemotherapy agent for recurrent GBM in combination with other drugs. The acting molecular mechanism in ACNU has yet to be elucidated. ACNU is a cross-linking agent which induces DNA double-strand breaks (DSBs). The work described here was intended to clarify details in repair pathways which are active in the repair of DNA DSBs induced by ACNU. DSBs are repaired through the homologous recombination (HR) and non-homologous end-joining (NHEJ) pathways. Cultured mouse embryonic fibroblasts were used which have deficiencies in DNA DSB repair genes which are involved in HR repair (X-ray repair cross-complementing group 2 [XRCC2] and radiation sensitive mutant 54 [Rad54]), and in NHEJ repair (DNA ligase IV [Lig4]). Cellular sensitivity to ACNU treatment was evaluated with colony forming assays. The most effective molecular target which correlated with ACNU cell sensitivity was Lig4. In addition, it was found that Lig4 small-interference RNA (siRNA) efficiently enhanced cell lethality which was induced by ACNU in human glioblastoma A172 cells. These findings suggest that the down-regulation of Lig4 might provide a useful tool which can be used to increase cell sensitivity in response to ACNU chemotherapy.


Li D, Suzuki H, Liu B, et al.
DNA repair gene polymorphisms and risk of pancreatic cancer.
Clin Cancer Res. 2009; 15(2):740-6 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The current research was undertaken to examine the association between genetic variations in DNA repair and pancreatic cancer risk.
EXPERIMENTAL DESIGN: We analyzed 9 single nucleotide polymorphisms of 7 DNA repair genes (LIG3, LIG4, OGG1, ATM, POLB, RAD54L, and RECQL) in 734 patients with pancreatic adenocarcinoma and 780 healthy controls using the Taqman method. Information on cigarette smoking, alcohol consumption, medical history, and other risk factors was collected by personal interview.
RESULTS: The homozygous mutant genotype of LIG3 G-39A [odds ratio (OR), 0.23; 95% confidence interval (CI), 0.06-0.82; P = 0.027] and ATM D1853N (OR, 2.55; 95% CI, 1.08-6.00; P = 0.032) was significantly associated with altered risk for pancreatic cancer. A statistically significant interaction of ATM D1853N and LIG4 C54T genotype with diabetes on the risk of pancreatic cancer was also detected. Compared with nondiabetics with the ATM D1853N GG genotype, nondiabetics with the GA/AA, diabetics with the GG, and diabetics with the GA/AA genotypes, respectively, had ORs (95% CI) of 0.96 (0.74-1.24), 1.32 (0.89-1.95), and 3.23 (1.47-7.12; P(interaction) = 0.032, likelihood ratio test). The OR (95% CI) was 0.91 (0.71-1.17), 1.11 (0.73-1.69), and 2.44 (1.34-4.46) for nondiabetics carrying the LIG4 CT/TT genotype, diabetics with the CC genotype, and diabetics carrying the CT/TT genotype, respectively, compared with nondiabetics carrying the CC genotype (P(interaction) = 0.02).
CONCLUSIONS: These observations suggest that genetic variations in DNA repair may act alone or in concert with other risk factors on modifying a patient's risk for pancreatic cancer.

Related: Cancer of the Pancreas Pancreatic Cancer Polymorphisms


Sellick G, Fielding S, Qureshi M, et al.
Germline mutations in RAD51, RAD51AP1, RAD51B, RAD51C,RAD51D, RAD52 and RAD54L do not contribute to familial chronic lymphocytic leukemia.
Leuk Lymphoma. 2008; 49(1):130-3 [PubMed] Related Publications
While familial predisposition to B-cell chronic lymphocytic leukemia (CLL) is well recognized no gene which when mutated in the germline has been unambiguously shown to confer susceptibility to the disease. An approach based on mutation screening methods targeted to coding regions of candidate genes offers an attractive strategy for the identification of rare disease-causing alleles. The RAD genes participate in the cellular response to DNA double strand breaks, detecting DNA damage, activating cell cycle checkpoints and apoptosis. Defects in members of these genes are linked to increased chromosomal instability and in lymphoma predisposition, thereby representing strong candidate susceptibility genes a priori. To examine this proposition we screened 75 familial CLL probands for germline mutations in this set of genes. No overt pathogenic mutations were identified. These findings indicate that germline mutations in RAD51, RAD51AP1, RAD51L1, RAD51L3, RAD52 and RAD54L are unlikely to be causal of an inherited predisposition to CLL.

Related: Chronic Lymphocytic Leukemia (CLL) CLL - Molecular Biology RAD51L1 gene


Ryu B, Kim DS, Deluca AM, Alani RM
Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.
PLoS One. 2007; 2(7):e594 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.
METHODOLOGY/PRINCIPLE FINDINGS: In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1) Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR), 2) Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2), 3) Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin). While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class of transcripts are novel. In addition, the transcription factor NF-KB was specifically identified as being a potential "master regulator" of melanoma invasion since NF-KB binding sites were identified as consistent consensus sequences within promoters of progression-associated genes.
CONCLUSIONS/SIGNIFICANCE: We conclude that tumor cell lines are a valuable resource for the early identification of gene signatures associated with malignant progression in tumors with significant heterogeneity like melanoma. We further conclude that the development of novel data reduction algorithms for analysis of microarray studies is critical to allow for optimized mining of important, clinically-relevant datasets. It is expected that subsequent validation studies in primary human tissues using such an approach will lead to more rapid translation of such studies to the identification of novel tumor biomarkers and therapeutic targets.

Related: Melanoma


Nowacka-Zawisza M, Bryś M, Hanna RM, et al.
Loss of heterozygosity and microsatellite instability at RAD52 and RAD54 loci in breast cancer.
Pol J Pathol. 2006; 57(2):83-9 [PubMed] Related Publications
This study was carried out to evaluate the loss of heterozygosity (LOH) and microsatellite instability (MSI) in breast cancer, in the 12p13.3 and 1p32 chromosomal regions where RAD52 and RAD54 genes are localized. Polymorphic markers D12S98, D12S1698 for RAD52 and D1S209, D1S411 for RAD54 were used. Relationships between LOH and clinicopathological parameters, i.e. tumor type and grade, patient's age, steroid receptors status and lymph node and distal metastases were assessed. For alleles frequency estimation 100 primary breast cancers were tested. DNA isolated from paraffin-embedded tissues and their matched blood samples were analyzed for PCR-based LOH and MSI by fluorescence-based DNA sequencing technology. In analyzed cases LOH was found in 14% and 11% of informative cases for D12S98 and D12S1698 markers, respectively and in 18% and 17% of informative cases for D1S209 and D1S411 markers, respectively. The highest frequency of MSI was identified at loci D12S98 (10%) and D1S209 (11%). Significant correlations between RAD52 and RAD54 regions with concomitant LOH and histological type and progesterone receptor status were observed. In the case of RAD54 further correlations with respect to tumor grade and the presence of distal metastases were noticed.

Related: Breast Cancer


Li D, Liu H, Jiao L, et al.
Significant effect of homologous recombination DNA repair gene polymorphisms on pancreatic cancer survival.
Cancer Res. 2006; 66(6):3323-30 [PubMed] Free Access to Full Article Related Publications
Genetic variation in DNA repair may affect the clinical response to cytotoxic therapies. We investigated the effect of six single nucleotide polymorphisms of the RecQ1, RAD54L, XRCC2, and XRCC3 genes on overall survival of 378 patients with pancreatic adenocarcinoma who were treated at University of Texas M.D. Anderson Cancer Center during February 1999 to October 2004 and were followed up to October 2005. Genotypes were determined using the MassCode method. Survival was determined from pathologic diagnosis to death. Patients who were alive at the last follow-up evaluation were censored at that time. Kaplan-Meier plot, log-rank test, and Cox regression were used to compare overall survival by genotypes. A significant effect on survival of all patients was observed for RecQ1 and RAD54L genes. The median survival time was 19.2, 14.7, and 13.2 months for the RecQ1 159 AA, AC, and CC genotypes, and 16.4, 13.3, and 10.3 months for RAD54L 157 CC, CT, and TT genotypes, respectively. A significantly reduced survival was associated with the variant alleles of XRCC2 R188H and XRCC3 A17893G in subgroup analysis. When the four genes were analyzed in combination, an increasing number of adverse alleles were associated with a significantly decreased survival. Subgroup analyses have shown that the genotype effect on survival was present among patients without metastatic disease or among patients who receive radiotherapy. These observations suggest that polymorphisms of genes involved in the repair of DNA double-strand breaks significantly affect the clinical outcome of patients with pancreatic cancer.

Related: Cancer of the Pancreas Pancreatic Cancer


Li D, Frazier M, Evans DB, et al.
Single nucleotide polymorphisms of RecQ1, RAD54L, and ATM genes are associated with reduced survival of pancreatic cancer.
J Clin Oncol. 2006; 24(11):1720-8 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Our goal was to determine whether single nucleotide polymorphisms (SNPs) in DNA repair genes influence the clinical outcome of pancreatic cancer.
PATIENTS AND METHODS: We evaluated 13 SNPs of eight DNA damage response and repair genes in 92 patients with potentially resectable pancreatic adenocarcinoma. All patients were treated with neoadjuvant concurrent gemcitabine and radiotherapy with or without a component of induction gemcitabine/cisplatin at The University of Texas M.D. Anderson Cancer Center (Houston, TX) from February 1999 to August 2004 and observed through August 2005. Response to the pretreatment was assessed by evaluating time to tumor progression and overall survival. Kaplan-Meier plot, log-rank test, and Cox regression were used to compare survival of patients according to genotype.
RESULTS: The RecQ1 A159C, RAD54L C157T, XRCC1 R194W, and ATM T77C genotypes had a significant effect on the overall survival with log-rank P values of .001, .004, .001, and .02, respectively. A strong combined effect of the four genotypes was observed. Patients with none of the adverse genotypes had a mean survival time of 62.1 months, and those with one, two, or three or more at-risk alleles had median survival times of 27.5, 14.4, and 9.9 months, respectively (log-rank P < .001). There is a significant interaction between the RecQ1 gene and other genotypes. All four genes except XRCC1 remained as independent predictors of survival in multivariate Cox regression models adjusted for other clinical predictors.
CONCLUSION: These observations support the hypothesis that polymorphic variants of DNA repair genes affect clinical prognosis of patients with pancreatic cancer.

Related: Cancer of the Pancreas Pancreatic Cancer Gemcitabine


Smirnova M, Van Komen S, Sung P, Klein HL
Effects of tumor-associated mutations on Rad54 functions.
J Biol Chem. 2004; 279(23):24081-8 [PubMed] Related Publications
Yeast RAD54 gene, a member of the RAD52 epistasis group, plays an important role in homologous recombination and DNA double strand break repair. Rad54 belongs to the Snf2/Swi2 protein family, and it possesses a robust DNA-dependent ATPase activity, uses free energy from ATP hydrolysis to supercoil DNA, and cooperates with the Rad51 recombinase in DNA joint formation. There are two RAD54-homologous genes in human cells, hRAD54 and RAD54B. Mutations in these human genes have been found in tumors. These tumor-associated mutations map to conserved regions of the hRad54 and hRad54B proteins. Here we introduced the equivalent mutations into the Saccharomyces cerevisiae RAD54 gene in an effort to examine the functional consequences of these gene changes. One mutant, rad54 G484R, showed sensitivity to DNA-damaging agents and reduced homologous recombination rates, indicating a loss of function. Even though the purified rad54 G484R mutant protein retained the ability to bind DNA and interact with Rad51, it was nearly devoid of ATPase activity and was similarly defective in DNA supercoiling and D-loop formation. Two other mutants, rad54 N616S and rad54 D442Y, were not sensitive to genotoxic agents and behaved like the wild type allele in homologous recombination assays. Consistent with the mild phenotype associated with the rad54 N616S allele, its encoded protein was similar to wild type Rad54 protein in biochemical attributes. Because dysfunctional homologous recombination gives rise to genome instability, our results are consistent with the premise that tumor-associated mutations in hRad54 and Rad54B could contribute to the tumor phenotype or enhance the genome instability seen in tumor cells.

Related: TOP1 gene Cancer Prevention and Risk Reduction


Sulman EP, White PS, Brodeur GM
Genomic annotation of the meningioma tumor suppressor locus on chromosome 1p34.
Oncogene. 2004; 23(4):1014-20 [PubMed] Related Publications
Meningioma is a frequently occurring tumor of the meninges surrounding the central nervous system. Loss of the short arm of chromosome 1 (1p) is the second most frequent chromosomal abnormality observed in these tumors. Previously, we identified a 3.7 megabase (Mb) region of consistent deletion on 1p33-p34 in a panel of 157 tumors. Loss of this region was associated with advanced disease and predictive for tumor relapse. In this report, a high-resolution integrated map of the region was constructed (CompView) to identify all markers in the smallest region of overlapping deletion (SRO). A regional somatic cell hybrid panel was used to more precisely localize those markers identified in CompView as within or overlapping the region. Additional deletion mapping using microsatellites localized to the region narrowed the SRO to approximately 2.8 Mb. The 88 markers remaining in the SRO were used to screen genomic databases to identify large-insert clones. Clones were assembled into a physical map of the region by PCR-based, sequence-tagged site (STS) content mapping. A sequence from clones was used to validate STS content by electronic PCR and to identify transcripts. A minimal tiling path of 43 clones was constructed across the SRO. Sequence data from the most current sequence assembly were used for further validation. A total of 59 genes were ordered within the SRO. In all, 17 of these were selected as likely candidates based on annotation using Gene Ontology Consortium terms, including the MUTYH, PRDX1, FOXD2, FOXE3, PTCH2, and RAD54L genes. This annotation of a putative tumor suppressor locus provides a resource for further analysis of meningioma candidate genes.

Related: Chromosome 1


Leone PE, Mendiola M, Alonso J, et al.
Implications of a RAD54L polymorphism (2290C/T) in human meningiomas as a risk factor and/or a genetic marker.
BMC Cancer. 2003; 3:6 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: RAD54L (OMIM 603615, Locus Link 8438) has been proposed as a candidate oncosupressor in tumours bearing a non-random deletion of 1p32, such as breast or colon carcinomas, lymphomas and meningiomas. In a search for RAD54L mutations in 29 menigiomas with allelic deletions in 1p, the only genetic change observed was a silent C/T transition at nucleotide 2290 in exon 18. In this communication the possible association of the 2290C/T polymorphism with the risk of meningiomas was examined. In addition, the usefulness of this polymorphism as a genetic marker within the meningioma consensus deletion region in 1p32 was also verified. The present study comprises 287 blood control samples and 70 meningiomas from Spain and Ecuador. Matched blood samples were only available from Spanish patients.
RESULTS: The frequency of the rare allele-T and heterozygotes for the 2290C/T polymorphism in the blood of Spanish meningioma patients and in the Ecuadorian meningioma tumours was higher than in the control population (P < 0.05). Four other rare variants (2290C/G, 2299C/G, 2313G/A, 2344A/G) were found within 50 bp at the 3' end of RAD54L. Frequent loss of heterozygosity for the 2290C/T SNP in meningiomas allowed to further narrow the 1p32 consensus region of deletion in meningiomas to either 2.08 Mbp - within D1S2713 (44.35 Mbp) and RAD54L (46.43 Mbp) - or to 1.47 Mbp - within RAD54L and D1S2134 (47.90 Mbp) - according to recent gene mapping results.
CONCLUSION: The statistical analysis of genotypes at the 2290C/T polymorphism suggest an association between the rare T allele and the development of meningeal tumours. This polymorphism can be used as a genetic marker inside the consensus deletion region at 1p32 in meningiomas.

Related: Polymorphisms


Bello MJ, de Campos JM, Vaquero J, et al.
hRAD54 gene and 1p high-resolution deletion-mapping analyses in oligodendrogliomas.
Cancer Genet Cytogenet. 2000; 116(2):142-7 [PubMed] Related Publications
The hRAD54 protein belongs to a superfamily of DNA helicases, and mutations in genes with DNA helicase function have been found to be responsible for cancer-prone syndromes (xeroderma pigmentosum, Bloom syndrome, Werner syndrome). hRAD54 thus could be a candidate modifier gene in tumors characterized by allelic imbalance at 1p32, the chromosome region in which this gene is located. Using a panel of 38 1p and five 1q markers, we therefore performed deletion-mapping analysis on a series of 35 oligodendrogliomas, which were also studied for mutations in the hRAD54 gene. Deletions of the short arm of chromosome 1 were evidenced in 26 tumors, mostly involving 1p36-1p13; all thus displayed loss of the 1p32 region. We used PCR/SSCP to examine all 18 exons of the hRAD54 gene for mutations in 25 tumors, but the mobility shifts detected corresponded to previously identified polymorphic changes: T-to-C transition at nucleotide 2865 (with no amino acid change) and at nucleotide 3008, at the 3' untranslated region. We conclude that hRAD54 gene alterations are not required for malignant transformation of oligodendrogliomas.

Related: Chromosome 1


Bièche I, Khodja A, Lidereau R
Deletion mapping of chromosomal region 1p32-pter in primary breast cancer.
Genes Chromosomes Cancer. 1999; 24(3):255-63 [PubMed] Related Publications
Distal alterations of the short arm of chromosome 1 are among the most frequent cytogenetic abnormalities in human breast carcinoma. We studied 96 primary human breast carcinomas for allelic imbalance using a panel of 31 polymorphic microsatellite, restriction fragment length polymorphism, and variable number of tandem repeat markers located mainly in the 1p32-pter region. Allelic imbalance at one or more loci was observed on the short arm of chromosome 1 in 56 (58.3%) of the 96 tumors. The 56 1p-altered tumor DNAs showed loss of heterozygosity (LOH), 12 (21.4%) at all informative loci tested and 44 (78.6%) at some loci. The LOH pattern of these 44 partially deleted tumors identified two distinct consensus regions of deletion on 1p32-pter (1p36.3 and 1p32). These regions match those described by other investigators but are considerably smaller. The 1p32 band is located within one of the two 1p regions of LOH in neuroblastoma, suggesting the involvement of the same unidentified tumor suppressor gene in both human breast cancer and neuroblastoma. The candidate tumor suppressor genes TNFR2, RIZ, DAN, RAP1GA1, FGR, MDGI, EXTL, and hRAD54 were excluded from the two consensus regions of deletion identified at 1p32-pter. Analysis of six polymorphic markers chosen to map within the other deleted regions described in breast tumors confirmed that two additional breast tumor suppressor genes are located in the proximal part (1p22 and 1p13) of chromosome arm 1p. Taken together, these results suggest that several unknown suppressor genes on 1p might be involved in the development of breast cancer. The refinement of the regions of LOH to within a few cM, and the recent publication of transcript maps of the human genome, mean that candidate genes and expressed sequence tags mapping to these deleted regions can now be investigated.

Related: Breast Cancer Chromosome 1


Matsuda M, Miyagawa K, Takahashi M, et al.
Mutations in the RAD54 recombination gene in primary cancers.
Oncogene. 1999; 18(22):3427-30 [PubMed] Related Publications
Association of a recombinational repair protein RAD51 with tumor suppressors BRCA1 and BRCA2 suggests that defects in homologous recombination are responsible for tumor formation. Also recent findings that a protein associated with the MRE11/RAD50 repair complex is mutated in Nijmegen breakage syndrome characterized by increased cancer incidence and ionizing radiation sensitivity strongly support this idea. However, the direct roles of BRCA proteins and the protein responsible for NBS in recombinational repair are not clear though they are associated with the recombinational repair complexes. Since RAD51 forms a complex with other members of the RAD52 epistasis group and with BRCA proteins, it is reasonable to ask if alterations of members of the RAD52 epistasis group lead to tumor development. Here we describe missense mutations at functional regions of RAD54 and the absence of the wild-type RAD54 expression resulting from aberrant splicing in primary cancers. Since RAD54 is a recombinational protein associated with RAD51, this is the first genetic evidence that cancer arises from a defect in repair processes involving homologous recombination.

Related: Breast Cancer Colorectal (Bowel) Cancer


Hiramoto T, Nakanishi T, Sumiyoshi T, et al.
Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer.
Oncogene. 1999; 18(22):3422-6 [PubMed] Related Publications
Association of breast tumor susceptibility gene products BRCA1 and BRCA2 with the RAD51 recombination protein suggested that cancer could arise through defects in recombination. The identification of NBS1, responsible for Nijmegen breakage syndrome, from the MRE11/RAD50 recombination protein complex also supports this hypothesis. However, our mutation analysis revealed that known members of the RAD52 epistasis group are rarely mutated in human primary cancer. Here we describe the isolation of a novel member of the SNF2 superfamily, characterized with sequence motifs similar to those in DNA and RNA helicases. The gene, designated RAD54B, is significantly homologous to the RAD54 recombination gene. The expression of RAD54B was high in testis and spleen, which are active in meiotic and mitotic recombination. These findings suggest that RAD54B may play an active role in recombination processes in concert with other members of the RAD52 epistasis group. RAD54B maps to human chromosome 8q21.3-q22 in a region associated with cancer-related chromosomal abnormalities. Homozygous mutations at highly conserved positions of RAD54B were observed in human primary lymphoma and colon cancer. These findings suggest that some cancers arise through alterations of the RAD54B function.

Related: Chromosome 8 Colorectal (Bowel) Cancer Polymorphisms


Mendiola M, Bello MJ, Alonso J, et al.
Search for mutations of the hRAD54 gene in sporadic meningiomas with deletion at 1p32.
Mol Carcinog. 1999; 24(4):300-4 [PubMed] Related Publications
The hRAD54 gene is related to a family of genes involved in DNA recombination and repair and encodes a protein with DNA helicase activity. hRAD54 has been mapped to 1p32, a region frequently involved in deletions in a variety of tumor types, including atypical and anaplastic meningiomas. To determine whether alterations of hRAD54 are a common event in meningeal tumors, by means of polymerase chain reaction-single-stranded conformation analysis we examined 29 tumor samples characterized by 1p deletions for hRAD54 mutations. Although 18 tumors displayed allelic loss at the gene region (1p32) as determined by microsatellite marker analysis, the sole coding-sequence alteration detected corresponded to a T-->C transition, with no amino-acid change. The genotype distribution was 10.34% TT, 44.8% TC, and 44.8% CC, whereas in the normal controls it was 3.77% TT, 13.2% TC, and 83.01% CC, and most meningiomas with 1 p32 deletion retained allele C. Another polymorphism due to a T-->C change was evidenced at nt 3008, in the 3' untranslated region. This change was evidenced in all cases we sequenced. These results appear to exclude the involvement of the hRAD54 gene in the pathogenesis of the nontypical meningiomas, although a detrimental effect of the hRAD54 polymorphisms cannot be ruled out.

Related: Chromosome 1 Polymorphisms


Rasio D, Murakumo Y, Robbins D, et al.
Characterization of the human homologue of RAD54: a gene located on chromosome 1p32 at a region of high loss of heterozygosity in breast tumors.
Cancer Res. 1997; 57(12):2378-83 [PubMed] Related Publications
A search of the Human Genome Sciences database of expressed sequence-tagged DNA fragments, for sequences containing homology to known yeast DNA recombination and repair genes, yielded a cDNA fragment with high homology to RAD54. Here we describe the complete cDNA sequence and the characterization of the genomic locus coding for the human homologue of the yeast RAD54 gene (hRAD54). The yeast RAD54 belongs to the RAD52 epistasis group and appears to be involved in both DNA recombination and repair. The hRAD54 gene maps to chromosome 1p32 in a region of frequent loss of heterozygosity in breast tumors and encodes a protein of M(r) 93,000 that displays 52% identity to the yeast RAD54 protein. The hRAD54 protein sequence additionally contains all seven of the consensus segments of a superfamily of proteins with presumed or proven DNA helicase activity. Mutations in genes with consensus helicase homology have been found in cancer-prone syndromes such as xeroderma pigmentosum and Bloom syndrome as well as Werner's syndrome, in which patients age prematurely, and the X-linked mental retardation with alpha-thalassemia syndrome, ATR-X. We have examined the hRAD54 gene in several breast tumors and breast tumor cell lines and, although the gene region appears to be deleted in several tumors, at present we have found no coding sequence mutations.

Related: Breast Cancer Chromosome 1


Contents

Found this page useful?

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAD54L, Cancer Genetics Web: http://www.cancerindex.org/geneweb/RAD54L.htm Accessed: date

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 December, 2014     Cancer Genetics Web, Established 1999