Gene Summary

Gene:ST14; suppression of tumorigenicity 14
Aliases: HAI, MTSP1, SNC19, ARCI11, MT-SP1, PRSS14, TADG15, TMPRSS14
Summary:The protein encoded by this gene is an epithelial-derived, integral membrane serine protease. This protease forms a complex with the Kunitz-type serine protease inhibitor, HAI-1, and is found to be activated by sphingosine 1-phosphate. This protease has been shown to cleave and activate hepatocyte growth factor/scattering factor, and urokinase plasminogen activator, which suggest the function of this protease as an epithelial membrane activator for other proteases and latent growth factors. The expression of this protease has been associated with breast, colon, prostate, and ovarian tumors, which implicates its role in cancer invasion, and metastasis. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:suppressor of tumorigenicity 14 protein
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transcription Factors
  • Cell Adhesion
  • Prostate Cancer
  • Cell Movement
  • Gene Expression
  • Chromosome 11
  • Pancreatic Cancer
  • Biomarkers, Tumor
  • Immunohistochemistry
  • Gene Expression Regulation
  • Neoplasm Invasiveness
  • Cell Proliferation
  • Neoplasm Metastasis
  • Carcinoma
  • Polymerase Chain Reaction
  • Up-Regulation
  • MicroRNAs
  • FISH
  • Oligonucleotide Array Sequence Analysis
  • Cancer Gene Expression Regulation
  • Survival Rate
  • ras Proteins
  • Epithelial-Mesenchymal Transition
  • Colorectal Cancer
  • Mammary Neoplasms, Animal
  • Signal Transduction
  • Enzymologic Gene Expression Regulation
  • Proteinase Inhibitory Proteins, Secretory
  • Hepatocyte Growth Factor
  • Mutation
  • Gene Expression Profiling
  • Disease Progression
  • Xenopus
  • Trypsin
  • Western Blotting
  • Transfection
  • Membrane Glycoproteins
  • Ovarian Cancer
  • Breast Cancer
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ST14 (cancer-related)

Tao LY, Zhang LF, Xiu DR, et al.
Prognostic significance of K-ras mutations in pancreatic cancer: a meta-analysis.
World J Surg Oncol. 2016; 14:146 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: K-ras gene mutations are common in patients with pancreatic cancer (PC); however, their prognostic value for PC remains inconclusive. This meta-analysis was performed to quantitatively evaluate the association between K-ras mutations and survival in patients with pancreatic cancer.
METHODS: We performed a comprehensive search of electronic sources including MEDLINE (via PubMed), Web of Science, and the Cochrane Library. The search covered a publication period from inception to November 2015.
RESULTS: Seventeen studies with a total of 2249 patients with pancreatic cancer were included in the tissue detection of this study. The meta-analysis indicated a significant association between mutant K-ras genes and overall survival (OS) (HR = 1.51, 95% CI 1.32-1.72, P < 0.001). Moreover, further subgroup analyses by ethnicity, publication year, therapy method, cancer resectability, and gene detection method all revealed that pancreatic cancer patients with the K-ras mutation had significantly poorer OS (P < 0.05). And results from four studies with 225 patients focused on plasma K-ras mutations enhanced such association (HR = 2.23, 95% CI 1.69-2.95, P < 0.001).
CONCLUSIONS: As a prediction of poor prognosis, the detection of K-ras mutations may be a useful prognostic factor for pancreatic cancer patients.

Wang J, Wu HF, Shen W, et al.
SRPK2 promotes the growth and migration of the colon cancer cells.
Gene. 2016; 586(1):41-7 [PubMed] Related Publications
Colon cancer is one of the major causes of cancer-related death in the world. Understanding the molecular mechanism underlying this malignancy will facilitate the diagnosis and treatment. Serine-arginine protein kinase 2 (SRPK2) has been reported to be upregulated in several cancer types. However, its expression and functions in colon cancer remains unknown. In this study, it was found that the expression of SRPK2 was up-regulated in the clinical colon cancer samples. Overexpression of SRPK2 promoted the growth and migration of colon cancer cells, while knocking down the expression of SRPK2 inhibited the growth, migration and tumorigenecity of colon cancer cells. Molecular mechanism studies revealed that SRPK2 activated ERK signaling in colon cancer cells. Taken together, our study demonstrated the tumor promoting roles of SRPK2 in colon cancer cells and SRPK2 might be a promising therapeutic target for colon cancer.

Cao K, Gong H, Qiu Z, et al.
Hepatitis B virus X protein reduces the stability of Nrdp1 to up-regulate ErbB3 in hepatocellular carcinoma cells.
Tumour Biol. 2016; 37(8):10375-82 [PubMed] Related Publications
Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) is the most widespread type of liver cancer. However, the underlying mechanism of HCC tumorigenesis is very intricate and HBV-encoded X protein (HBx) has been reported to play a key role in this process. It has been reported that HBx up-regulates the transcription of ErbB3. However, it remains unclear whether HBx can regulate ErbB3 expression at post-translational modification level. In this study, we showed that HBx interacts with ubiquitin ligase Nrdp1 (neuregulin receptor degradation protein 1) and decreases its stability, which results in the up-regulation of ErbB3 and promotion of HCC cells. Moreover, the expression of ErbB3 was almost undetectable in normal liver tissues but was relative abundant in HCC tissues, and the level of ErbB3 and Nrdp1 significantly showed a negative correlation in HCC tissues. Taken together, these findings suggest that HBx promotes the progression of HCC by decreasing the stability of Nrdp1, which results in up-regulation of ErbB3, suggesting that ErbB3 may be a target for HCC therapy.

Li L, Fan B, Zhang LH, et al.
Trichostatin A potentiates TRAIL-induced antitumor effects via inhibition of ERK/FOXM1 pathway in gastric cancer.
Tumour Biol. 2016; 37(8):10269-78 [PubMed] Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an ideal apoptosis inducer and believed to have promise in cancer therapy, yet part of cancer cells exhibit resistance to TRAIL-mediated apoptosis. This necessitates the exploration of agents that resensitizes cancer cells to TRAIL. In our study, we found that Trichostatin A (TSA), an histone deacetylase (HDAC) inhibitor, augmented TRAIL-induced apoptosis in gastric cancer cells in a caspase-dependent manner. Besides, upregulation of DR5 and downregulation of anti-apoptotic proteins including XIAP, Mcl-1, Bcl-2 and Survivin also contributed to this synergism. Noticeably, TSA treatment inhibited Forkhead boxM1 (FOXM1), which expression level showed negative correlation with TRAIL sensitivity. Similarly, silencing of FOXM1 by small interfering RNA (siRNA) resensitized cancer cells to TRAIL and strengthened the TRAIL-augmenting effect of TSA. In addition, we demonstrated the depletion of FOXM1 was a consequence of the inactivation of ERK mediated by TSA. Collectively, it was first shown that TSA potentiated TRAIL sensitivity via ERK/FOXM1 pathway in gastric cancer cells. FOXM1 might serve as a biomarker for predicting sensitivity to TRAIL.

Yoshida T, Song L, Bai Y, et al.
ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer.
PLoS One. 2016; 11(1):e0147344 [PubMed] Free Access to Full Article Related Publications
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.

Chai AC, Robinson AL, Chai KX, Chen LM
Ibuprofen regulates the expression and function of membrane-associated serine proteases prostasin and matriptase.
BMC Cancer. 2015; 15:1025 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The glycosylphosphatidylinositol-anchored extracellular membrane serine protease prostasin is expressed in normal bladder urothelial cells. Bladder inflammation reduces prostasin expression and a loss of prostasin expression is associated with epithelial-mesenchymal transition (EMT) in human bladder transitional cell carcinomas. Non-steroidal anti-inflammatory drugs (NSAIDs) decrease the incidence of various cancers including bladder cancer, but the molecular mechanisms underlying the anticancer effect of NSAIDs are not fully understood.
METHODS: The normal human bladder urothelial cell line UROtsa, the normal human trophoblast cell line B6Tert-1, human bladder transitional cell carcinoma cell lines UM-UC-5 and UM-UC-9, and the human breast cancer cell line JIMT-1 were used for the study. Expression changes of the serine proteases prostasin and matriptase, and cyclooxygenases (COX-1 and COX-2) in these cells following ibuprofen treatments were analyzed by means of reverse-transcription/quantitative polymerase chain reaction (RT-qPCR) and immunoblotting. The functional role of the ibuprofen-regulated prostasin in epithelial tight junction formation and maintenance was assessed by measuring the transepithelial electrical resistance (TEER) and epithelial permeability in the B6Tert-1 cells. Prostasin's effects on tight junctions were also evaluated in B6Tert-1 cells over-expressing a recombinant human prostasin, silenced for prostasin expression, or treated with a functionally-blocking prostasin antibody. Matriptase zymogen activation was examined in cells over-expressing prostasin.
RESULTS: Ibuprofen increased prostasin expression in the UROtsa and the B6Tert-1 cells. Cyclooxygenase-2 (COX-2) expression was up-regulated at both the mRNA and the protein levels in the UROtsa cells by ibuprofen in a dose-dependent manner, but was not a requisite for up-regulating prostasin expression. The ibuprofen-induced prostasin contributed to the formation and maintenance of the epithelial tight junctions in the B6Tert-1 cells. The matriptase zymogen was down-regulated in the UROtsa cells by ibuprofen possibly as a result of the increased prostasin expression because over-expressing prostasin leads to matriptase activation and zymogen down-regulation in the UROtsa, JIMT-1, and B6Tert-1 cells. The expression of prostasin and matriptase was differentially regulated by ibuprofen in the bladder cancer cells.
CONCLUSIONS: Ibuprofen has been suggested for use in treating bladder cancer. Our results bring the epithelial extracellular membrane serine proteases prostasin and matriptase into the potential molecular mechanisms of the anticancer effect of NSAIDs.

Wu Y, Yang L, Zhao J, et al.
Nuclear-enriched abundant transcript 1 as a diagnostic and prognostic biomarker in colorectal cancer.
Mol Cancer. 2015; 14:191 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: High expression of the long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) in whole blood has been reported in colorectal cancer patients; however, its' clinical significance and origin are unclear. We evaluated the diagnostic and prognostic value, and origin of whole blood NEAT1 in colorectal cancer.
METHODS: Expression of NEAT1 variants, NEAT1_v1 and NEAT1_v2 were determined using real-time quantitative PCR. The diagnostic value of whole blood NEAT1 expression was evaluated in test (n = 60) and validation (n = 200) cohorts of colorectal cancer patients and normal controls (NCs). To identify the origin of NEAT1, its expression was analyzed in blood, matched primary tumor tissues, para-tumor tissues, metastatic tissues, and also immune cells from patients or NCs. Function of NEAT1 in colorectal cell lines was also assessed. The correlation of NEAT1 expression with clinical outcomes was assessed in 191 patients.
RESULTS: Whole blood NEAT1 expression was significantly higher in colorectal cancer patients than in NCs. NEAT1_v1 and NEAT1_v2 expression were highly accurate in distinguishing colorectal cancer patients from NCs (area under the curve: 0.787 and 0.871, respectively). Knockdown of NEAT1_v1 in vitro could inhibit cell invasion and proliferation, while knockdown of NEAT1_v2 promoted cell growth. However, whole blood expression was not correlated with matched tissues. An elevated expression was seen in neutrophils from CRC patients. Furthermore, high expression of NEAT1_v1 was correlated with worse overall survival. In contrast, high expression of NEAT1_v2 alone was correlated with better overall survival.
CONCLUSION: Whole blood NEAT1 expression is a novel diagnostic and prognostic biomarker of overall survival in colorectal cancer. Elevated NEAT1 may derive from neutrophils.

Baris HN, Barnes-Kedar I, Toledano H, et al.
Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity.
Pediatr Blood Cancer. 2016; 63(3):418-27 [PubMed] Related Publications
BACKGROUND: Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1.
PROCEDURE: We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer.
RESULTS: In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified.
CONCLUSIONS: CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis.

Jiang YN, Yan HQ, Huang XB, et al.
Interleukin 6 trigged ataxia-telangiectasia mutated activation facilitates lung cancer metastasis via MMP-3/MMP-13 up-regulation.
Oncotarget. 2015; 6(38):40719-33 [PubMed] Free Access to Full Article Related Publications
Our previous studies show that the phosphorylation of ataxia-telangiectasia mutated (ATM) induced by interleukin 6 (IL-6) treatment contributes to multidrug resistance formation in lung cancer cells, but the exact role of ATM activation in IL-6 increased metastasis is still elusive. In the present study, matrix metalloproteinase-3 (MMP-3) and MMP-13 were firstly demonstrated to be involved in IL-6 correlated cell migration. Secondly, IL-6 treatment not only increased MMP-3/MMP-13 expression but also augmented its activities. Thirdly, the inhibition of ATM phosphorylation efficiently abolished IL-6 up-regulating MMP-3/MMP-13 expression and increasing abilities of cell migration. Most importantly, the in vivo test showed that the inhibition of ATM abrogate the effect of IL-6 on lung cancer metastasis via MMP-3/MMP-13 down-regulation. Taken together, these findings demonstrate that IL-6 inducing ATM phosphorylation increases the expression of MMP-3/MMP-13, augments the abilities of cell migration, and promotes lung cancer metastasis, indicating that ATM is a potential target molecule to overcome IL-6 correlated lung cancer metastasis.

Barbarov Y, Timaner M, Alishekevitz D, et al.
Host JDP2 expression in the bone marrow contributes to metastatic spread.
Oncotarget. 2015; 6(35):37737-49 [PubMed] Free Access to Full Article Related Publications
The c-Jun Dimerization Protein 2, JDP2, is a basic leucine zipper protein member of the activator protein-1 (AP-1) family of transcription factors. JDP2 typically suppresses gene transcription through multiple mechanisms and plays a dual role in multiple cellular processes, including cell differentiation and proliferation which is dependent on AP-1 function. Whereas the role of JDP2 expression within cancer cells has been studied, its role in stromal cells at the tumor microenvironment is largely unknown. Here we show that mice lacking JDP2 (JDP2-/-) display a reduced rate of metastasis in Lewis lung carcinoma (LLC) and polyoma middle T-antigen (PyMT) breast carcinoma mouse models. The replacement of wild-type bone marrow derived cells (BMDCs) with JDP2-deficient BMDCs recapitulates the metastatic phenotype of JDP2-/- tumor-bearing mice. In vitro, conditioned medium of wild-type BMDCs significantly potentiates the migration and invasion capacity of LLC cells as compared to that of JDP2-/- BMDCs. Furthermore, wild-type BMDCs secrete CCL5, a chemokine known to contribute to metastasis, to a greater extent than JDP2-/- BMDCs. The supplementation of CCL5 in JDP2-/- BMDC conditioned medium was sufficient to potentiate the invasion capacity of LLC. Overall, this study suggests that JDP2-expressing BMDCs within the tumor microenvironment contribute to metastatic spread.

Yang Q, Zhang RW, Sui PC, et al.
Dysregulation of non-coding RNAs in gastric cancer.
World J Gastroenterol. 2015; 21(39):10956-81 [PubMed] Free Access to Full Article Related Publications
Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC.

Liu X, Lu D, Ma P, et al.
Hugl-1 inhibits glioma cell growth in intracranial model.
J Neurooncol. 2015; 125(1):113-21 [PubMed] Related Publications
Drosophila lethal (2) giant larvae (lgl) has been reported as a tumor suppressor and could regulate the Drosophila hippo signaling. Human giant larvae-1(Hugl-1), one human homologue of Drosophila lgl, also has been reported to be involved in the development of some human cancers. However, whether Hugl-1 is associated with the pathogenesis of malignant gliomas remains poorly understood. In the present work, we examined the effect of Hugl-1 on glioma cell growth both in vitro and in vivo. Firstly, we found that Hugl-1 protein levels decreased in the human glioma tissues, suggesting that Hugl-1 is involved in glioma progression. Unfortunately, either stably or transiently over-expressing Hugl-1 did not affect glioma cell proliferation in vitro. In addition, Hugl-1 over-expression did not regulate hippo signaling pathway. Interestingly, over-expression of Hugl-1 not only inhibited gliomagenesis but also markedly inhibited cell proliferation and promoted the apoptosis of U251 cells in an orthotopic model of nude mice. Taken together, this study provides the evidence that Hugl-1 inhibits glioma cell growth in intracranial model of nude mice, suggesting that Hugl-1 might be a potential tumor target for glioma therapy.

Shi Y, Qiu M, Wu Y, Hai L
MiR-548-3p functions as an anti-oncogenic regulator in breast cancer.
Biomed Pharmacother. 2015; 75:111-6 [PubMed] Related Publications
Emerging evidence has found that microRNAs (miRNA) play an important role in breast cancer. MiR-548 family has been demonstrated to be involved in the pathogenesis of several cancers. However, its role in breast cancer has not yet been elucidated. To explore this concern, we explored the expression of miR-548-3p in clinical specimens and breast cancer cells by qRT-PCR. In addition, an CCK-8 assay and Caspase 3/7 activity were used to evaluated the rates of cell proliferation and apoptosis. Protein expression was analyzed by western blotting and the target gene was confirmed using a luciferase reporter assay. Our results illustrated that miR-548-3p was significantly downregulated in breast cancer. Overexpression of miR-548-3p inhibited the proliferation and promoted the apoptosis of breast cancer cells. In addition, ECHS1 expression was demonstrated to be significantly upregulated in breast cancer tissues and cells, and the ECHS1 gene was identified to be one target of miR-548-3p. Therefore, our results demonstrated that miR-548-3p inhibited the proliferation of breast cancer cells by regulating the expression of ECHS1, indicating its potential as a therapeutic target for breast cancer.

Feng J, Hao S, Pan C, et al.
The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults.
Hum Pathol. 2015; 46(11):1626-32 [PubMed] Related Publications
Brainstem and thalamic gliomas are rare, and they are poorly understood in adults. Genetic aberrations that occur in these tumors are still unknown. In this study, we investigated whether thalamic gliomas have different genetic aberrations and clinical outcomes compared with brainstem gliomas in adults. Forty-three glioma samples were selected, including 28 brainstem and 15 thalamic gliomas. The frequency of the K27M mutation in adult midline gliomas was 58.1%. High-grade gliomas in the thalamus were statistically significantly more numerous than brainstem gliomas. Patients with K27M mutant brainstem gliomas had a significantly shorter overall survival than patients with wild-type tumors (P = .020) by Cox regression after adjustment for other independent risk factors. However, there was no statistical tendency toward a poorer overall survival in thalamic gliomas containing the K27M mutation compared with wild-type tumors. The presence of the K27M mutation significantly corresponded with mutations in TP53 in thalamic gliomas. Interestingly, the K27M mutation was mutually exclusive with mutations in IDH1, which was detected only in brainstem gliomas. The microarray data identified 86 differentially expressed genes between brainstem and thalamic gliomas with the K27M mutation. The cyclin-dependent kinase 6 (CDK6) gene, which plays an important role in cancer pathways, was found to be differentially expressed between brainstem and thalamic gliomas with K27M mutations. Although the K27M mutation was frequently observed in adult brainstem and thalamic gliomas, this mutation tended to be associated with a poorer prognosis in brainstem gliomas but not in thalamic gliomas. Brainstem gliomas may present different genetic aberrations from thalamic gliomas. These differences may provide guidance for therapeutic decisions for the treatment of adult brainstem and thalamic gliomas, which may have different molecular targets.

Phan LM, Fuentes-Mattei E, Wu W, et al.
Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma.
Cancer Res. 2015; 75(19):4131-42 [PubMed] Free Access to Full Article Related Publications
Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited response to chemotherapy. Hepatocyte growth factor (HGF) and its receptor cMET augment cancer growth and resistance to chemotherapy, but their role in adrenocortical carcinoma has not been examined. In this study, we investigated the association between HGF/cMET expression and cancer hallmarks of adrenocortical carcinoma. Transcriptomic and immunohistochemical analyses indicated that increased HGF/cMET expression in human adrenocortical carcinoma samples was positively associated with cancer-related biologic processes, including proliferation and angiogenesis, and negatively correlated with apoptosis. Accordingly, treatment of adrenocortical carcinoma cells with exogenous HGF resulted in increased cell proliferation in vitro and in vivo while short hairpin RNA-mediated knockdown or pharmacologic inhibition of cMET suppressed cell proliferation and tumor growth. Moreover, exposure of cells to mitotane, cisplatin, or radiation rapidly induced pro-cMET expression and was associated with an enrichment of genes (e.g., CYP450 family) related to therapy resistance, further implicating cMET in the anticancer drug response. Together, these data suggest an important role for HGF/cMET signaling in adrenocortical carcinoma growth and resistance to commonly used treatments. Targeting cMET, alone or in combination with other drugs, could provide a breakthrough in the management of this aggressive cancer.

Liu YH, Wang OC, Chen ED, et al.
Unexpected features of breast cancer subtype.
World J Surg Oncol. 2015; 13:249 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gene expression profiling of breast cancers identifies distinct molecular subtypes that affect prognosis. The aim of this study was to determine whether features of tumors especially the risks of lymph node (LN) metastases differ among molecular subtypes.
METHODS: Subtypes were classified by immunohistochemical surrogates as luminal A, luminalHer2-, luminalHer2+, TNBC, and HER-2+. Data were obtained from an established, registered database of patients with invasive breast cancer treated at our hospital between July 2012 and October 2014. A total of 929 tumors were classifiable into molecular subtypes.
RESULTS: The distribution of subtypes was luminal A (24.2%), luminalHer2- (27.8%), luminalHer2+ (9.1%), TNBC (21.3%), and HER-2+ (17.5%). Marked differences in age, tumor size, extent of lymph node involvement, and grade were observed among subtypes. On univariate analysis, the LN positivity varied across subtypes with 33.6% in luminal A, 40.3% in luminalHer2-, 37.3% in luminalHer2+, 37.6% in TNBC, and 47.4 % in HER-2+ (p=0.201). There was no significant difference in LN positivity among subtypes. On multivariable analysis, grade and tumor size were independent predictors of LN positivity.
CONCLUSIONS: Predictors of LN metastases include higher grade and larger tumor size. Even though breast cancer subtype is not a statistically significant predictor of LN positivity, this information may still be useful in selecting the appropriate therapy in clinical practice.

Zhang ST, Zuo C, Li WN, et al.
Identification of key genes associated with the effect of estrogen on ovarian cancer using microarray analysis.
Arch Gynecol Obstet. 2016; 293(2):421-7 [PubMed] Related Publications
PURPOSE: To identify key genes related to the effect of estrogen on ovarian cancer.
METHODS: Microarray data (GSE22600) were downloaded from Gene Expression Omnibus. Eight estrogen and seven placebo treatment samples were obtained using a 2 × 2 factorial designs, which contained 2 cell lines (PEO4 and 2008) and 2 treatments (estrogen and placebo). Differentially expressed genes were identified by Bayesian methods, and the genes with P < 0.05 and |log2FC (fold change)| ≥0.5 were chosen as cut-off criterion. Differentially co-expressed genes (DCGs) and differentially regulated genes (DRGs) were, respectively, identified by DCe function and DRsort function in DCGL package. Topological structure analysis was performed on the important transcriptional factors (TFs) and genes in transcriptional regulatory network using tYNA. Functional enrichment analysis was, respectively, performed for DEGs and the important genes using Gene Ontology and KEGG databases.
RESULTS: In total, 465 DEGs were identified. Functional enrichment analysis of DEGs indicated that ACVR2B, LTBP1, BMP7 and MYC involved in TGF-beta signaling pathway. The 2285 DCG pairs and 357 DRGs were identified. Topological structure analysis showed that 52 important TFs and 65 important genes were identified. Functional enrichment analysis of the important genes showed that TP53 and MLH1 participated in DNA damage response and the genes (ACVR2B, LTBP1, BMP7 and MYC) involved in TGF-beta signaling pathway.
CONCLUSION: TP53, MLH1, ACVR2B, LTBP1 and BMP7 might participate in the pathogenesis of ovarian cancer.

Zhou HB, Chen JM, Shao LM, Chen ZG
Apoptosis of human pancreatic carcinoma cell-1 cells induced by Yin Chen Hao Decoction.
World J Gastroenterol. 2015; 21(27):8352-7 [PubMed] Free Access to Full Article Related Publications
AIM: To evaluate human pancreatic carcinoma cell line (PANC-1) cells apoptosis and Bcl-2 and Bax expression induced by Yin Chen Hao Decoction (YCHD).
METHODS: The cell growth inhibitory rate was determined by MTT assay. Apoptosis of PANC-1 cells before and after treatment with YCHD was determined by TUNEL staining. Expression of the apoptosis-associated genes, Bcl-2 and Bax, was detected by immunohistochemical staining and reverse transcription -PCR.
RESULTS: YCHD inhibited the growth of PANC-1 cells. Following treatment with YCHD for 24-96 h, the apoptotic rate of PANC-1 cells increased with time. In addition, the positive rate of Bcl-2 protein expression decreased in a time-dependent manner, whereas the positive rate of Bax protein expression increased in a time-dependent manner. Following treatment of with YCHD for 24-96h, expression of BAX mRNA increased gradually and BCL-2 mRNA reduced gradually with time.
CONCLUSION: YCHD induces apoptosis of PANC-1 cells mediated in part via up-regulation of BAX and down-regulation of BCL-2.

Jiang W, Zhao S, Xu L, et al.
The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer.
Biomed Pharmacother. 2015; 73:40-7 [PubMed] Related Publications
Pancreatic cancer (PC) is one of the most lethal human malignancies worldwide. Here, we demonstrated that xanthohumol (XN), the most abundant prenylated chalcone isolated from hops, inhibited the growth of cultured PC cells and their subcutaneous xenograft tumors. XN treatment was found to induce cell cycle arrest and apoptosis of PC cells (PANC-1, BxPC-3) by inhibiting phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of its downstream targeted genes cyclinD1, survivin, and Bcl-xL at the messenger RNA level, which involved in regulation of apoptosis and the cell cycle. Overall, our results suggested that XN presents a promising candidate therapeutic agent against human PC and the STAT3 signaling pathway is its key molecular target.

Tervonen TA, Belitškin D, Pant SM, et al.
Deregulated hepsin protease activity confers oncogenicity by concomitantly augmenting HGF/MET signalling and disrupting epithelial cohesion.
Oncogene. 2016; 35(14):1832-46 [PubMed] Related Publications
Hepsin belongs to a family of cell-surface serine proteases, which have sparked interest as therapeutic targets because of the accessibility of extracellular protease domain for inhibitors. Hepsin is frequently amplified and/or overexpressed in epithelial cancers, but it is not clear how enhanced hepsin expression confers a potential for oncogenicity. We show that hepsin is consistently overexpressed in more than 40% of examined breast cancers, including all major biological subtypes. The effects of doxycycline-induced hepsin overexpression were examined in mammary epithelial organoids, and we found that induced hepsin acutely downmodulates its cognate inhibitor, hepatocyte growth factor (HGF) activator inhibitor type 1 (HAI-1). Hepsin-induced depletion of cellular HAI-1 led to a sharp increase in pericellular serine protease activity. The derepressed hepsin proteolytically activated downstream serine proteases, augmented HGF/MET signalling and caused deterioration of desmosomes and hemidesmosomes; structures important for cell cohesion and cell-basement membrane interaction. Moreover, chronic induction of hepsin considerably shortened the latency of Myc-dependent tumourigenesis in the mouse mammary gland. The serine protease and uPA system inhibitor WX-UK1, identified as a micromolar range hepsin inhibitor, prevented hepsin from augmenting HGF/MET signalling and disrupting desmosomes and hemidesmosomes. The findings suggest that the oncogenic activity of hepsin arises not only from elevated expression level but also from depletion of HAI-1, events which together trigger gain-of-function activity impacting HGF/MET signalling and epithelial cohesion. Thus, hepsin overexpression is a major oncogenic conferrer to a serine protease activity involved in breast cancer dissemination.

Najy AJ, Dyson G, Jena BP, et al.
Matriptase activation and shedding through PDGF-D-mediated extracellular acidosis.
Am J Physiol Cell Physiol. 2016; 310(4):C293-304 [PubMed] Free Access to Full Article Related Publications
Activation of β-platelet-derived growth factor receptor (β-PDGFR) is associated with prostate cancer (PCa) progression and recurrence after prostatectomy. Analysis of the β-PDGFR ligands in PCa revealed association between PDGF-D expression and Gleason score as well as tumor stage. During the course of studying the functional consequences of PDGF ligand-specific β-PDGFR signaling in PCa, we discovered a novel function of PDGF-D for activation/shedding of the serine protease matriptase leading to cell invasion, migration, and tumorigenesis. The present study showed that PDGF-D, not PDGF-B, induces extracellular acidification, which correlates with increased matriptase activation. A cDNA microarray analysis revealed that PDGF-D/β-PDGFR signaling upregulates expression of the acidosis regulator carbonic anhydrase IX (CAIX), a classic target of the transcriptional factor hypoxia-inducible factor-1α (HIF-1α). Cellular fractionation displayed a strong HIF-1α nuclear localization in PDGF-D-expressing cells. Treatment of vector control or PDGF-B-expressing cells with the HIF-1α activator CoCl2 led to increased CAIX expression accompanied by extracellular acidosis and matriptase activation. Furthermore, the analysis of the CAFTD cell lines, variants of the BPH-1 transformation model, showed that increased PDGF-D expression is associated with enhanced HIF-1α activity, CAIX induction, cellular acidosis, and matriptase shedding. Importantly, shRNA-mediated knockdown of CAIX expression effectively reversed extracellular acidosis and matriptase activation in PDGF-D-transfected BPH-1 cells and in CAFTD variants that express endogenous PDGF-D at a high level. Taken together, these novel findings reveal a new paradigm in matriptase activation involving PDGF-D-specific signal transduction leading to extracellular acidosis.

Navab R, Strumpf D, To C, et al.
Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer.
Oncogene. 2016; 35(15):1899-908 [PubMed] Free Access to Full Article Related Publications
Integrin α11β1 is a stromal cell-specific receptor for fibrillar collagens and is overexpressed in carcinoma-associated fibroblasts (CAFs). We have investigated its direct role in cancer progression by generating severe combined immune deficient (SCID) mice deficient in integrin α11 (α11) expression. The growth of A549 lung adenocarcinoma cells and two patient-derived non-small cell lung carcinoma (NSCLC) xenografts in these α11 knockout (α11(-/-)) mice was significantly impeded, as compared with wild-type (α11(+/+)) SCID mice. Orthotopic implantation of a spontaneously metastatic NCI-H460SM cell line into the lungs of α11(-/-) and α11(+/+) mice showed significant reduction in the metastatic potential of these cells in the α11(-/-) mice. We identified that collagen cross-linking is associated with stromal α11 expression, and the loss of tumor stromal α11 expression was correlated with decreased collagen reorganization and stiffness. This study shows the role of integrin α11β1, a receptor for fibrillar collagen in differentiation of fibroblasts into CAFs. Furthermore, our data support an important role for α11 signaling pathway in CAFs, promoting tumor growth and metastatic potential of NSCLC cells and being closely associated with collagen cross-linking and the organization and stiffness of fibrillar collagen matrices.

Liu R, Fan M, Candas D, et al.
CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance.
Mol Cancer Ther. 2015; 14(9):2090-102 [PubMed] Free Access to Full Article Related Publications
Tumor adaptive resistance to therapeutic radiation remains a barrier for further improvement of local cancer control. SIRT3, a member of the sirtuin family of NAD(+)-dependent protein deacetylases in mitochondria, promotes metabolic homeostasis through regulation of mitochondrial protein deacetylation and plays a key role in prevention of cell aging. Here, we demonstrate that SIRT3 expression is induced in an array of radiation-treated human tumor cells and their corresponding xenograft tumors, including colon cancer HCT-116, glioblastoma U87, and breast cancer MDA-MB231 cells. SIRT3 transcriptional activation is due to SIRT3 promoter activation controlled by the stress transcription factor NF-κB. Posttranscriptionally, SIRT3 enzymatic activity is further enhanced via Thr150/Ser159 phosphorylation by cyclin B1-CDK1, which is also induced by radiation and relocated to mitochondria together with SIRT3. Cells expressing Thr150Ala/Ser159Ala-mutant SIRT3 show a reduction in mitochondrial protein lysine deacetylation, Δψm, MnSOD activity, and mitochondrial ATP generation. The clonogenicity of Thr150Ala/Ser159Ala-mutant transfectants is lower and significantly decreased under radiation. Tumors harboring Thr150Ala/Ser159Ala-mutant SIRT3 show inhibited growth and increased sensitivity to in vivo local irradiation. These results demonstrate that enhanced SIRT3 transcription and posttranslational modifications in mitochondria contribute to adaptive radioresistance in tumor cells. CDK1-mediated SIRT3 phosphorylation is a potential effective target to sensitize tumor cells to radiotherapy.

Dong Y, Cao B, Zhang M, et al.
Epigenetic silencing of NKD2, a major component of Wnt signaling, promotes breast cancer growth.
Oncotarget. 2015; 6(26):22126-38 [PubMed] Free Access to Full Article Related Publications
Naked cuticle homolog 2 (NKD2) has been reported to antagonize Wnt signaling in zebrafish, mouse and mammals. The aim of this study is to investigate the epigenetic changes and mechanisms of NKD2 in human breast cancer development. Six breast cancer cell lines (MCF-7, ZR75-1, MDA-MB-468, MDA-MB-231, T47D and BT474) and 68 cases of primary human breast cancer were studied using methylation specific PCR, immunohistochemistry, western blot, flow cytometry techniques and a xenograft mouse model. The expression of NKD1 and NKD2 was regulated by promoter region methylation in breast cancer cells. No NKD1 methylation was found in primary human breast cancer. NKD2 was methylated in 51.4% (35/68) of human primary breast cancer samples. NKD2 methylation was significantly associated with reduction of NKD2 expression, and tumor stage (p < 0.05). NKD2 suppressed breast cancer cell proliferation both in vitro and in vivo. NKD2 induced G1/S arrest and inhibited Wnt signaling in breast cancer cells. In conclusion, NKD2 is frequently methylated in human breast cancer, and the expression of NKD2 is regulated by promoter region methylation. NKD2 suppresses breast cancer proliferation by inhibiting Wnt signaling.

Shi H, Gong H, Cao K, et al.
Nrdp1-mediated ErbB3 degradation inhibits glioma cell migration and invasion by reducing cytoplasmic localization of p27(Kip1).
J Neurooncol. 2015; 124(3):357-64 [PubMed] Related Publications
We previously reported that loss of Nrdp1 contributes to human glioma progression by reducing apoptosis. However, the role of Nrdp1 in glioma migration and invasion has not been investigated. Here, we report that ErbB3, a substrate of Nrdp1, is undetectable in normal brain tissues and grade II/III glioma tissues, but is abundant in a certain percentage of grade IV glioma tissues and is associated with the loss of Nrdp1. This suggests that Nrdp1 may be involved in glioma migration and invasion by regulating ErbB3. Thus, the role of Nrdp1/ErbB3 signaling in glioma cell migration and invasion was investigated using Nrdp1 loss- and gain-of-function. The results show that down-regulation of Nrdp1 by use of short hairpin RNA promoted glioma cell migration and invasion. In contrast, overexpression of Nrdp1 significantly inhibited glioma cell migration and invasion. Further investigation on molecular targets revealed that Nrdp1 decreased the level of ErbB3, which resulted in decreasing p-AKT thereby reducing cytoplasmic p27(Kip1). Taken together, these findings suggest that Nrdp1-mediated ErbB3 degradation suppresses glioma migration and invasion and that loss of Nrdp1 may amplify ErbB3 signaling to contribute to glioma migration and invasion. These findings suggest that Nrdp1 may be a target for glioma therapy.

Sang MM, Du WQ, Zhang RY, et al.
Suppression of CSN5 promotes the apoptosis of gastric cancer cells through regulating p53-related apoptotic pathways.
Bioorg Med Chem Lett. 2015; 25(15):2897-901 [PubMed] Related Publications
As one of the COP9 signalosome complex, CSN5 (also known as Jab1) has been confirmed overexpression in many human cancers and affected multiple pathways associating with cell proliferation and apoptosis. Correlation of CSN5 overexpression with poor prognosis for cancer provides evidence that it is involved in the tumorigenesis. However, little is known about the functional role and the underlying mechanism of CSN5 in gastric cancer progression. In the current study, the effect of CSN5 siRNA (small-interfering RNA) on the proliferation and apoptosis of human gastric cancer cells (AGS and MKN45) were examined. Our results showed that knockdown of CSN5 could inhibit proliferation and promote apoptosis of gastric cancer cells. Additionally, suppression of CSN5 expression contributed to the increased expression levels of p53 and Bax. In conclusion, CSN5 overexpression is significantly correlated with gastric cancer progression, and CSN5 could be a novel target in gastric cancer therapy.

Mancini M, Gaborit N, Lindzen M, et al.
Combining three antibodies nullifies feedback-mediated resistance to erlotinib in lung cancer.
Sci Signal. 2015; 8(379):ra53 [PubMed] Related Publications
Despite initial responses to targeted kinase inhibitors, lung cancer patients presenting with primary epidermal growth factor receptor (EGFR) mutations acquire resistance, often due to a second-site mutation (T790M). However, clinical trials found no survival benefits in patients treated with a monoclonal antibody (mAb) to EGFR that should block activation of the mutated receptor and thus bypass resistance to molecules that target the catalytic or ATP-binding site. Using cell lines with the T790M mutation, we discovered that prolonged exposure to mAbs against only the EGFR triggered network rewiring by (i) stimulating the extracellular signal-regulated kinase (ERK) pathway; (ii) inducing the transcription of HER2 (human epidermal growth factor receptor 2) and HER3, which encode other members of the EGFR family, and the gene encoding HGF, which is the ligand for the receptor tyrosine kinase MET; and (iii) stimulating the interaction between MET and HER3, which promoted MET activity. Supplementing the EGFR-specific mAb with those targeting HER2 and HER3 suppressed these compensatory feedback loops in cultured lung cancer cells. The triple mAb combination targeting all three receptors prevented the activation of ERK, accelerated the degradation of the receptors, inhibited the proliferation of tumor cells but not of normal cells, and markedly reduced the growth of tumors in mice xenografted with cells that were resistant to combined treatment with erlotinib and the single function-blocking EGFR mAb. These findings uncovered feedback loops that enable resistance to treatment paradigms that use a single antibody and indicate a new strategy for the treatment of lung cancer patients.

Ramadan RA, Zaki MA, Awad AM, El-Ghalid LA
Aberrant methylation of promoter region of SPINT2/HAI-2 gene: an epigenetic mechanism in hepatitis C virus-induced hepatocarcinogenesis.
Genet Test Mol Biomarkers. 2015; 19(7):399-404 [PubMed] Related Publications
BACKGROUND: Epigenetic changes, including DNA methylation, are recognized as one of the potential mechanisms involved in the pathogenesis of hepatocellular carcinoma (HCC).
AIMS: We aimed to study the methylation status of the promoter region of Serine peptidase inhibitor/hepatocyte growth factor activator inhibitor type 2 (SPINT2/HAI-2) tumor suppressor gene in hepatitis C virus (HCV)-infected cirrhotic patients with and without HCC.
METHODS: Methyl-specific polymerase (MSP) chain reaction was used to detect CpG methylation of the SPINT2/HAI-2 gene promoter in peripheral blood samples of 30 HCC and 50 HCV cirrhotic cases, along with 50 normal individuals.
RESULTS: Aberrant methylation showed a stepwise increase in frequency from 40% in controls to 64% in HCV cirrhotics, and 66.7% in HCC cases with a significant difference among the studied groups (p=0.021). The combined patient groups had an increased risk of aberrant methylation with an odds ratio (OR) of 2.52, a 95% confidence interval (CI) of 1.23-5.14, and a p-value of 0.05 that became more statistically significant after adjusting for age (OR=2.4, 95% CI=1.13-5.26, p-value=0.012), thereby confirming the association between HCV infection and aberrant methylation.
CONCLUSIONS: Our study highlights the role of promoter hypermethylation in the multistep process of hepatocarcinogenesis, providing potential clinical applications in diagnosis and prognosis.

Cafri G, Sharbi-Yunger A, Tzehoval E, et al.
mRNA-transfected Dendritic Cells Expressing Polypeptides That Link MHC-I Presentation to Constitutive TLR4 Activation Confer Tumor Immunity.
Mol Ther. 2015; 23(8):1391-400 [PubMed] Free Access to Full Article Related Publications
Recently, we have developed a novel genetic platform for improving dendritic cell (DC) induction of peptide-specific CD8 T cells, based on membrane-anchored β2-microglobulin (β2m) linked to a selected antigenic peptide at its N-terminus and to the cytosolic domain of toll-like receptor (TLR)4 C-terminally. In vitro transcribed mRNA transfection of antigen presenting cells resulted in polypeptides that efficiently coupled peptide presentation to cellular activation. In the present study, we evaluated the immunogenicity of such constructs in mRNA-transfected immature murine bone marrow-derived DCs. We show that the encoded peptide β2m-TLR4 products were expressed at the cell surface up to 72 hours and stimulated the maturation of DCs. In vivo, these DCs prompted efficient peptide-specific T-cell activation and target cell killing which were superior to those induced by peptide-loaded, LPS-stimulated DCs. This superiority was also evident in the ability to protect mice from tumor progression following the administration of B16F10.9 melanoma cells and to inhibit the development of pre-established B16F10.9 tumors. Our results provide evidence that the products of two recombinant genes encoding for peptide-hβ2m-TLR4 and peptide-hβ2m-K(b) expressed from exogenous mRNA can cooperate to couple Major Histocompatibility Complex (MHC-I) peptide presentation to TLR-mediated signaling, offering a safe, economical and highly versatile genetic platform for a novel category of CTL-inducing vaccines.

Wang C, Hai Y, Liu X, et al.
Prediction of high-risk types of human papillomaviruses using statistical model of protein "sequence space".
Comput Math Methods Med. 2015; 2015:756345 [PubMed] Free Access to Full Article Related Publications
Discrimination of high-risk types of human papillomaviruses plays an important role in the diagnosis and remedy of cervical cancer. Recently, several computational methods have been proposed based on protein sequence-based and structure-based information, but the information of their related proteins has not been used until now. In this paper, we proposed using protein "sequence space" to explore this information and used it to predict high-risk types of HPVs. The proposed method was tested on 68 samples with known HPV types and 4 samples without HPV types and further compared with the available approaches. The results show that the proposed method achieved the best performance among all the evaluated methods with accuracy 95.59% and F1-score 90.91%, which indicates that protein "sequence space" could potentially be used to improve prediction of high-risk types of HPVs.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ST14, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999