Gene Summary

Gene:TUBE1; tubulin epsilon 1
Aliases: TUBE, dJ142L7.2
Summary:This gene encodes a member of the tubulin superfamily. This protein localizes to the centriolar sub-distal appendages that are associated with the older of the two centrioles after centrosome duplication. This protein plays a central role in organization of the microtubules during centriole duplication. A pseudogene of this gene is found on chromosome 5.[provided by RefSeq, Jan 2009]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tubulin epsilon chain
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TUBE1 (cancer-related)

Chudecka-Głaz A, Cymbaluk-Płoska A, Strojna A, Menkiszak J
HE4 Serum Levels in Patients with BRCA1 Gene Mutation Undergoing Prophylactic Surgery as well as in Other Benign and Malignant Gynecological Diseases.
Dis Markers. 2017; 2017:9792756 [PubMed] Free Access to Full Article Related Publications
Objective. We assess the behavior of serum concentrations of HE4 marker in female carriers of BRCA1 and assess the diagnostic usefulness of HE4 in ovarian and endometrial cancer. Methods. A total of 619 women with BRCA1 gene mutation, ovarian, endometrial, metastatic, other gynecological cancers, or benign gynecological diseases were included. Intergroup comparative analyses were carried out, the BRCA1 gene carriers subgroup was subjected to detailed analysis, and ROC curves were determined for the assessment of diagnostic usefulness of HE4 in ovarian and endometrial cancer. Results. Statistically lower serum HE4 and CA 125 levels were observed in BRCA1 gene mutation premenopausal carriers. Occult ovarian/fallopian tube cancer was found 3.6%. Each of those patients was characterized by slightly elevated levels of either CA 125 (63.9 and 39.4 U/mL) or HE4 (79 pmol/L). The ROC-AUC curves were 0.892 and 0.894 for diagnostic usefulness of ovarian cancer and 0.865 for differentiation of endometrial cancer from endometrial polyps. Conclusions. Patients with BRCA1 gene mutations have relatively low serum HE4 levels. Even the slightest elevation in HE4 or CA 125 levels in female BRCA1 carriers undergoing prophylactic surgery should significantly increase oncological alertness. The HE4 marker is valuable in ovarian and uterine cancer diagnosis.

Liu W, Liu SY, He YB, et al.
MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor.
Biomed Pharmacother. 2017; 87:621-627 [PubMed] Related Publications
Previous studies have shown that MiR-451 plays an important role in human osteosarcoma carcinogenesis, but the underlying mechanism by which MiR-451 affects the osteosarcoma has not been fully understood. This study intends to uncover the mechanism by which MiR-451 functions as a tumor suppressor. The expression of MiR-451 in osteosarcoma tissues and osteosarcoma cell lines was monitored by real-time PCR. The proliferation ability was examined by MTT and cell cycle assay. The migration and apoptosis of cells were monitored by migration assay and flow cytometry, respectively. Moreover, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was examined by tube formation assay. The effect of MiR-451 on MIF was determined by luciferase assays and Western blot assay. The results showed that MiR-451 expression level was significantly reduced in the osteosarcoma compared with normal bone tissues. Overexpression of MiR-451 significantly attenuated the proliferation and migration, and induced the apoptosis of osteosarcoma cells. Furthermore, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was assayed and the decreased angiogenic ability was detected compared to the controls. Finally, we demonstrated that MiR-451 overexpression inhibited the malignant behavior of osteosarcoma by downregulating MIF. These findings suggest that MiR-451 may act as a tumor suppressor in osteosarcoma. MiR-451 inhibited cell proliferation, migration and angiogenesis and promoted apoptosis of human osteosarcoma cells, at least partially, by inhibiting the expression of MIF. MiR-451/MIF may be a novel therapeutic target in treatment of osteosarcoma.

Sagara A, Karasawa T, Igarashi K, et al.
Controlled Secretion of the Anticancer Protein MDA-7 from Engineered Mesenchymal Stem Cells.
Biol Pharm Bull. 2017; 40(1):113-117 [PubMed] Related Publications
Mesenchymal stem cells (MSCs) have been explored as a "live" carrier of cytokines for targeted cancer therapy, but, in earlier reports in the literature, the secretion process of therapeutic cytokines was not regulated. The purpose of this study was to generate MSCs to conditionally secrete the melanoma differentiation-associated gene-7 (MDA-7) tumor-suppressor protein. To control the secretion of MDA-7 from MSCs, a well-established tetracycline-controlled transcriptional activation system was incorporated into MDA-7 plasmid. MDA-7 gene expression was induced in the engineered MSCs only in the presence of doxycycline, as characterized by quantitative reverse transcription (qRT)-PCR. Enzyme-linked immunosorbent assay (ELISA) also revealed that the MDA-7 protein was secreted from the engineered MSCs only after the cells had been exposed to doxycycline. Both recombinant human MDA-7 protein and the conditioned medium from the engineered MSCs in the presence of doxycycline significantly inhibited tube formation of human umbilical vascular endothelial cells (HUVECs), indicating that our system could be used for targeted, antiangiogenic therapy. Overall, this study provides useful information on the potential use of engineered MSCs for the controlled secretion of therapeutic proteins, in this case MDA-7, for targeted cancer therapy.

Li G, Zheng J, Xu B, et al.
Simvastatin inhibits tumor angiogenesis in HER2-overexpressing human colorectal cancer.
Biomed Pharmacother. 2017; 85:418-424 [PubMed] Related Publications
Overexpression of the HER2 oncogene contributes to tumor angiogenesis, which is an essential hallmark of cancer. Simvastatin has been reported to exhibit antitumor activities in several cancers; however, its roles and molecular mechanismsin the regulation of colorectal angiogenesis remain to be clarified. Here, we show that colon cancer cells express high levels of VEGF, total HER2 and phosphorylated HER2, and simvastatin apparently decreased their expression in HER2-overexpressing colon cancer cells. Simvastatin pretreatment reduced endothelial tube formation in vitro and microvessel density in vivo. Furthermore, simvastatin markedly inhibited tumor angiogenesis even in the presence of heregulin (HRG)-β1 (a HER2 co-activator) pretreatment in HER2+ tumor cells. Mechanistic investigation showed that simvastatin significantly abrogated HER2-induced tumor angiogenesis by inhibiting VEGF secretion. Together, these results provide a novel mechanism underlying the simvastatin-induced inhibition of tumor angiogenesis through regulating HER2/VEGF axis.

Zhou Y, Jin G, Mi R, et al.
Inhibition of fatty acid synthase suppresses neovascularization via regulating the expression of VEGF-A in glioma.
J Cancer Res Clin Oncol. 2016; 142(12):2447-2459 [PubMed] Related Publications
PURPOSE: Fatty acids (FAs) are essential for membrane lipids biosynthesis and energy consumption in cancer cells. De novo FAs synthesis is catalyzed by fatty acid synthase (FASN), which is overexpressed and correlates with histological grade in glioma. Herein, we focused on the role of FASN in glioma neovascularization.
METHODS: The expression levels of FASN, Ki67 and CD34 were determined using immunohistochemistry (IHC). FASN specific-targeted shRNA and C75 were applied to evaluate the influence of FASN on glioma stem cell proliferation, migration and tube formation ability in vitro. An intracranial glioma model was established to study the effects of FASN on tumor growth and neovascularization in vivo.
RESULTS: IHC staining showed that the expression level of FASN correlated with tumor grade, Ki67 levels and microvessels density (MVD) in human gliomas. Inhibition of FASN using shRNAs or C75 decreased tumor growth, prolonged the overall survival of xenograft mice and decreased MVD in brain tumor sections. Moreover, inhibition of FASN blocked hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGF-A) signaling and upregulated the anti-angiogenic isoform-VEGF165b.
CONCLUSION: Our results suggest that FASN plays a pivotal role in glioma neovascularization, and inhibition of FASN may be a potential target for anti-angiogenic therapy for glioma.

Huang J, Liou YL, Kang YN, et al.
Real-time colorimetric detection of DNA methylation of the PAX1 gene in cervical scrapings for cervical cancer screening with thiol-labeled PCR primers and gold nanoparticles.
Int J Nanomedicine. 2016; 11:5335-5347 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: DNA methylation can induce carcinogenesis by silencing key tumor suppressor genes. Analysis of aberrant methylation of tumor suppressor genes can be used as a prognostic and predictive biomarker for cancer. In this study, we propose a colorimetric method for the detection of DNA methylation of the paired box gene 1 (PAX1) gene in cervical scrapings obtained from 42 patients who underwent cervical colposcopic biopsy.
METHODS: A thiolated methylation-specific polymerase chain reaction (MSP) primer was used to generate MSP products labeled with the thiol group at one end. After bisulfite conversion and MSP amplification, the unmodified gold nanoparticles (AuNPs) were placed in a reaction tube and NaCl was added to induce aggregation of bare AuNPs without generating polymerase chain reaction products. After salt addition, the color of AuNPs remained red in the methylated PAX1 gene samples because of binding to the MSP-amplified products. By contrast, the color of the AuNP colloid solution changed from red to blue in the non-methylated PAX1 gene samples because of aggregation of AuNPs in the absence of the MSP-amplified products. Furthermore, PAX1 methylation was quantitatively detected in cervical scrapings of patients with varied pathological degrees of cervical cancer. Conventional quantitative MSP (qMSP) was also performed for comparison.
RESULTS: The two methods showed a significant correlation of the methylation frequency of the PAX1 gene in cervical scrapings with severity of cervical cancer (n=42, P<0.05). The results of the proposed method showed that the areas under the receiver operating characteristic curve (AUCs) of PAX1 were 0.833, 0.742, and 0.739 for the detection of cervical intraepithelial neoplasms grade 2 and worse lesions (CIN2+), cervical intraepithelial neoplasms grade 3 and worse lesions (CIN3+), and squamous cell carcinoma, respectively. The sensitivity and specificity for detecting CIN2+ lesions were 0.941 and 0.600, respectively, with a cutoff value of 31.27%. The proposed method also showed superior sensitivity over qMSP methods for the detection of CIN2+ and CIN3+ (0.941 vs 0.824 and 1.000 vs 0.800, respectively). Furthermore, the novel method exhibited higher AUC (0.833) for the detection of CIN2+ than qMSP (0.807).
CONCLUSION: The results of thiol-labeled AuNP method were clearly observed by the naked eyes without requiring any expensive equipment. Therefore, the thiol-labeled AuNP method could be a simple but efficient strategy for cervical cancer screening.

Kim BR, Kang MH, Kim JL, et al.
RUNX3 inhibits the metastasis and angiogenesis of colorectal cancer.
Oncol Rep. 2016; 36(5):2601-2608 [PubMed] Related Publications
Recent studies have determined that inactivation of runt‑related transcription factor 3 (RUNX3) expression is highly associated with lymph node metastasis and poor prognosis in various types of cancer. However, the mechanism of RUNX3-mediated suppression of tumor metastasis remains unclear. Herein, we aimed to clarify the effect of RUNX3 on metastasis and angiogenesis in colorectal cancer (CRC). Firstly, we found that the reduction in expression of RUNX3 in CRC tissues when compared with tumor adjacent normal colon tissues, as indicated by reduced RUNX3 staining, was significantly correlated with tumor-node-metastasis (TNM) stage. Secondly, we demonstrated that RUNX3 overexpression inhibited CRC cell migration and invasion resulting from the upregulation of matrix metalloproteinase-2 (MMP-2) and MMP-9 expression. In contrast, the knockdown of RUNX3 reduced the inhibition of migration and invasion of CRC cells. Finally, we found that restoration of RUNX3 decreased vascular endothelial growth factor (VEGF) secretion and suppressed endothelial cell growth and tube formation in CRC cells. All in all, our findings may provide insight into the development of RUNX3 for CRC metastasis diagnostics and therapeutics.

Zhang T, Liu W, Zeng XC, et al.
Down-regulation of microRNA-338-3p promoted angiogenesis in hepatocellular carcinoma.
Biomed Pharmacother. 2016; 84:583-591 [PubMed] Related Publications
miRNAs are involved in substantial biological passways, including tumorigenesis, cancer development and progression. Angiogenesis plays a vital role in the progression of hepatocellular carcinoma (HCC), and VEGF is closely associated with the angiogenesis. However, the molecular mechanism of miRNAs in regulation tumorigenesis of HCC remains to be investigated. In the present research, we confirmed that miR-338-3p was suppressed both in HCC tissues and HCC cell lines. Then the tube formation, transwell and Chorioallantoic membrane (CAM) assay were carried out, such indicated that down-regulation of miR-338-3p can sharply increased, while up-regulation drastically suppressed angiogenesis of HCC cells in vitro. Moreover, MACC1 is predicted to be a target of miR-338-3p and we checked the prediction through luciferase assay. And then, our research showed that negative correlation existed between miR-338-3p and MACC1, β-catenin and VEGF that has been reported participated in cancer behavior in HCC cell lines. Subsequently, our assays illustrated that suppression miR-338-3p can up-regulate MACC1, β-catenin and VEGF expression of HCC cells. In conclusion, our research discovered that miR-338-3p can contribute to HCC angiogenesis by targeting MACC1, β-catenin and VEGF.

Chen Y, Teng F, Wang G, Nie Z
Overexpression of CXCR7 induces angiogenic capacity of human hepatocellular carcinoma cells via the AKT signaling pathway.
Oncol Rep. 2016; 36(4):2275-81 [PubMed] Related Publications
Angiogenesis is essential for tumor growth, especially in hepatocellular carcinoma (HCC). The hypervascularity is associated with poor prognosis and highly invasive HCC. The C‑X‑C chemokine receptor type 7 (CXCR7) has been implied overexpressed in many tumor types. Our study aimed to investigate the CXCR7 function in HCC. The tube formation, Transwell migration assay of human umbilical vein endothelial cells (HUVECs) and chicken chorioallantoic membrane (CAM) assay were used. We confirmed that CXCR7 induces angiogenic capacity. Moreover, overexpressing CXCR7 increased the phosphorylated (but not total) AKT expression in HCC cells. Furthermore, overexpressing CXCR7 increased the expression of tumor necrosis factor (TNF)‑α, interleukin (IL)‑6 and IL‑8 in HCC cells. Additionally, inhibition of AKT by LY294002 abrogated CXCR7‑induced angiogenic capacity in HCC cells. Our study suggested that CXCR7 plays an important pro‑angiogenic role in HCC via activation of the AKT pathway. So CXCR7 may be a potential target for anti‑angiogenic therapy in HCC.

Wang W, Liu J, Qi J, et al.
RLIP76 increases apoptosis through Akt/mTOR signaling pathway in gastric cancer.
Oncol Rep. 2016; 36(4):2216-24 [PubMed] Related Publications
RLIP76 is a stress-responsive multifunctional protein and is usually overexpressed in malignant carcinomas. It plays a significant role in multiple cellular biological behaviors, including cell growth, motility, division and apoptosis, in many types of malignant cells. However, functions of RLIP76 in gastric cancer (GC) remain unknown. In the present study, RLIP76 was overexpressed in GC tissues by immunohistochemistry. RLIP76-targeted shRNA-containing lentivirus (KD) and the scrambled shRNA (NC) were used to explore the knockout of RLIP76 on cellular functions of human GC SGC-7901 and MGC-803 cells. Quantitative RT-PCR and western blotting were used to confirm that the RLIP76 was suppressed both on mRNA and protein levels after transfection. The mRNA level in SGC-7901 and MGC-803 after transfection of RLIP76-targeted shRNA was 0.245722±0.021077 (p<0.05) and 0.225389±0.00974 (p<0.05), respectively. Our results showed that the konckdown of RLIP76 downregulated cell growth after 24 h in Cell Counting Kit-8 (CCK-8) assay, reduced migration from 486.7±128.8 to 219.7±43.6 in SGC-7901 (p<0.05) and from 630±95 to 333.7±46.5 in MGC-803 (p<0.05), decreased invasion from 306±33.5 to 97.7±24.3 in SGC-7901 (p<0.05) and from 350±50.9 to 163.3±87.5 in MGC-803 (p<0.05). Length of vascular endothelial growth factor (VEGF)-induced tube formation also decreased from 202.8±83.3 to 44.5±3.69 in SGC-7901 and from 193±3.5 to 71.8±8.83 in MGC-803 (p<0.05). Phosphorylation level of Akt declined from 138.45±13.8 to 69.9±29.7% in SGC-7901, and from 115.5±26.6 to 49.07±27% in MGC-803 (p<0.05) and phosphorylation level of mTOR also significantly decreased (p<0.05). While apoptosis of GC cells increased which we verified with apoptosis proteins and staining analysis. Our data showed that RLIP76 plays a significant oncogenic role in GC and it maybe a potential target in GC treatment.

Wang HY, Ahn S, Park S, et al.
Clinical Usefulness of a One-Tube Nested Reverse Transcription Quantitative Polymerase Chain Reaction Assay for Evaluating Human Epidermal Growth Factor Receptor 2 mRNA Overexpression in Formalin-Fixed and Paraffin-Embedded Breast Cancer Tissue Samples.
Pathobiology. 2017; 84(2):57-70 [PubMed] Related Publications
BACKGROUND: Currently, the two main methods used to analyze human epidermal growth factor receptor 2 (HER2) amplification or overexpression have a limited accuracy and high costs. These limitations can be overcome by the development of complementary quantitative methods.
METHODS: In this study, we analyzed HER2 mRNA expression in clinical formalin-fixed and paraffin-embedded (FFPE) samples using a one-tube nested reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. We measured expression relative to 3 reference genes and compared the results to those obtained by conventional immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays with 226 FFPE breast cancer tissue samples.
RESULTS: The one-tube nested RT-qPCR assay proved to be highly sensitive and specific based on comparisons with IHC (96.9 and 97.7%, respectively) and FISH (92.4 and 92.9%, respectively) obtained with the validation set. Comparisons with clinicopathological data revealed significant associations between HER2 overexpression and TNM stage (p < 0.01), histological type (p < 0.01), ER status (p < 0.001), PR status (p < 0.05), HER2 status (p < 0.001), and molecular subtypes (p < 0.001).
CONCLUSION: Based on these findings, our one-tube nested RT-qPCR assay is a potentially useful and complementary screening tool for the detection of HER2 mRNA overexpression.

Hellner K, Miranda F, Fotso Chedom D, et al.
Premalignant SOX2 overexpression in the fallopian tubes of ovarian cancer patients: Discovery and validation studies.
EBioMedicine. 2016; 10:137-49 [PubMed] Free Access to Full Article Related Publications
Current screening methods for ovarian cancer can only detect advanced disease. Earlier detection has proved difficult because the molecular precursors involved in the natural history of the disease are unknown. To identify early driver mutations in ovarian cancer cells, we used dense whole genome sequencing of micrometastases and microscopic residual disease collected at three time points over three years from a single patient during treatment for high-grade serous ovarian cancer (HGSOC). The functional and clinical significance of the identified mutations was examined using a combination of population-based whole genome sequencing, targeted deep sequencing, multi-center analysis of protein expression, loss of function experiments in an in-vivo reporter assay and mammalian models, and gain of function experiments in primary cultured fallopian tube epithelial (FTE) cells. We identified frequent mutations involving a 40kb distal repressor region for the key stem cell differentiation gene SOX2. In the apparently normal FTE, the region was also mutated. This was associated with a profound increase in SOX2 expression (p<2(-16)), which was not found in patients without cancer (n=108). Importantly, we show that SOX2 overexpression in FTE is nearly ubiquitous in patients with HGSOCs (n=100), and common in BRCA1-BRCA2 mutation carriers (n=71) who underwent prophylactic salpingo-oophorectomy. We propose that the finding of SOX2 overexpression in FTE could be exploited to develop biomarkers for detecting disease at a premalignant stage, which would reduce mortality from this devastating disease.

Zhang HP, Zou J, Yin Y, et al.
High-resolution Melting PCR Analysis for Genotyping Lys109Arg and Gln223Arg in Patients with Renal Cell Carcinoma.
Ann Clin Lab Sci. 2016; 46(4):367-73 [PubMed] Related Publications
Although several studies have documented the role of leptin receptor gene polymorphisms in cancers, the association between leptin receptor gene polymorphisms and renal cell carcinoma (RCC) remains unknown. The aim of this study was to develop a high-resolution melting (HRM) approach for genotyping single nucleotide polymorphisms of leptin receptor gene on the LightCycler 480, and to explore the relation between polymorphisms of the leptin receptor gene and RCC. The study population consisted of 83 patients with renal cell carcinoma and 161 healthy control subjects. The Lys109Arg (A/G) and Gln223Arg (A/G) polymorphisms of leptin receptor gene were examined with HRM assay. Direct DNA sequencing and PCR-restriction fragment length polymorphisms were used as a reference method for genotyping Lys109Arg and Gln223Arg, respectively. Three genotypes of Lys109Arg or Gln223Arg were clearly distinguishable from the melting curve shapes with HRM assay. The data also showed the results of the direct DNA sequencing or PCR-restriction fragment length polymorphisms analysis were in complete concordance to genotyping results obtained by HRM (kappa=1.0). In addition, the data showed the G-G haplotype frequency was higher (p<0.05), and that the A-G (p<0.001) and G-A (p<0.01) haplotypes frequencies were lower in the RCC than controls. We developed a rapid, low cost, high-throughput and reliable single-tube technology for genotyping Lys109Arg and Gln223Arg polymorphisms. In addition, our data suggest that Lys109Arg and Gln223Arg gene polymorphisms are associated with RCC in Chinese Han studied population.

Gottschau M, Mellemkjaer L, Hannibal CG, Kjaer SK
Ovarian and tubal cancer in Denmark: an update on incidence and survival.
Acta Obstet Gynecol Scand. 2016; 95(10):1181-9 [PubMed] Related Publications
INTRODUCTION: The Nordic countries are areas with a high-incidence of ovarian cancer; however, differences between the countries exist.
MATERIAL AND METHODS: We used the Danish Cancer Registry to identify 11 264 cases of ovarian cancer and 363 cases of tubal cancer during 1993-2013. We calculated age-standardized (world standard population) incidence rates for overall and subtype-specific ovarian cancer, and for tubal cancer. We compared age-standardized incidence rates, and 1- and 5-year age-standardized relative survival rates, respectively, for ovarian and tubal cancer combined in four Nordic countries using the NORDCAN database.
RESULTS: The incidence rate of ovarian cancer overall in Denmark decreased statistically significantly by approximately 2.3% per year among women aged <70 years, whereas no change was seen among women aged 70+ years. In the <70-year age-group, the incidence of serous tumors was fairly steady, whereas that of other and unspecified epithelial tumors decreased significantly by 6.4% per year. The incidence of tubal cancer was quite stable. In Norway and Finland, the incidence rates of ovarian and tubal cancer combined decreased from 1993 to 2013 in women aged <70 years, whereas in Sweden the incidence rates decreased independently of age. The 1- and 5-year relative survival rates of ovarian and tubal cancer combined increased during the study period in all the Nordic countries. Denmark had the lowest survival; however, the survival rates approached those of the other countries in recent years.
CONCLUSIONS: In Denmark, the positive development in ovarian cancer has continued during recent years with a lower incidence and an increased survival.

Yoshida H, Shintani D, Imai Y, Fujiwara K
Serous tubal intraepithelial carcinoma arising from the intrauterine portion of the fallopian tube after bilateral salpingo-oophorectomy.
Eur J Gynaecol Oncol. 2016; 37(3):404-6 [PubMed] Related Publications
Serous tubal intraepithelial carcinoma (STIC) is considered the precursor of pelvic serous carcinomas and the earliest malignant alteration in BRCA mutation-positive women. Recently, risk-reducing salpingo-oophorectomy (RRSO) is being performed in BRCA mutation-positive women and STIC is often discovered incidentally in the fallopian tubes. A 62-year-old woman underwent bilateral salpingo-oophorectomy (BSO) for ovarian cysts. Ten months later, cytological screening for the endometrium revealed adenocarcinoma. No atypical tissue was detected by the endometrial curettage. Imaging tests and hysteroscopy found no abnormal findings. She underwent hysterectomy and was diagnosed with STIC originating from the intrauterine portion of the residual fallopian tube. Here, the authors report the first case of STIC being detected during an endometrial cytological examination after BSO. Although STIC associated with the BRCA mutation usually involves the distal fallopian tube, the present case suggests that the intrauterine portion of the fallopian tube should be removed or cauterized during RRSO.

Fransson Å, Glaessgen D, Alfredsson J, et al.
Strong synergy with APR-246 and DNA-damaging drugs in primary cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer.
J Ovarian Res. 2016; 9(1):27 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mutation in the tumor suppressor gene TP53 is an early event in the development of high-grade serous (HGS) ovarian cancer and is identified in more than 96 % of HGS cancer patients. APR-246 (PRIMA-1(MET)) is the first clinical-stage compound that reactivates mutant p53 protein by refolding it to wild type conformation, thus inducing apoptosis. APR-246 has been tested as monotherapy in a Phase I/IIa clinical study in hematological malignancies and prostate cancer with promising results, and a Phase Ib/II study in combination with platinum-based therapy in ovarian cancer is ongoing. In the present study, we investigated the anticancer effects of APR-246 in combination with conventional chemotherapy in primary cancer cells isolated from ascitic fluid from 10 ovarian, fallopian tube, or peritoneal cancer patients, 8 of which had HGS cancer.
METHODS: Cell viability was assessed with fluorometric microculture cytotoxicity assay (FMCA) and Combination Index was calculated using the Additive model. p53 status was determined by Sanger sequencing and single strand conformation analysis, and p53 protein expression by western blotting.
RESULTS: We observed strong synergy with APR-246 and cisplatin in all tumor samples carrying a TP53 missense mutation, while synergistic or additive effects were found in cells with wild type or TP53 nonsense mutations. Strong synergy was also observed with carboplatin or doxorubicin. Moreover, APR-246 sensitized TP53 mutant primary ovarian cancer cells, isolated from a clinically platinum-resistant patient, to cisplatin; the IC50 value of cisplatin decreased 3.6 fold from 6.5 to 1.8 μM in the presence of clinically relevant concentration of APR-246.
CONCLUSION: These results suggest that combination treatment with APR-246 and DNA-damaging drugs could significantly improve the treatment of patients with TP53 mutant HGS cancer, and thus provide strong support for the ongoing clinical study with APR-246 in combination with carboplatin and pegylated liposomal doxorubicin in patients with recurrent HGS cancer.

He XJ, Zhang Q, Ma LP, et al.
Aberrant Alternative Polyadenylation is Responsible for Survivin Up-regulation in Ovarian Cancer.
Chin Med J (Engl). 2016; 129(10):1140-6 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Survivin is an oncoprotein silenced in normal mature tissues but reactivated in serous ovarian cancer (SOC). Although transcriptional activation is assumed for its overexpression, the long 3'-untranslated region (3'-UTR) in survivin gene, which contains many alternate polyadenylation (APA) sites, implies a propensity for posttranscriptional control and therefore was the aim of our study.
METHODS: The abundance of the coding region, the proximal and the distal region of survivin mRNA 3'-UTR, was evaluated by real-time polymerase chain reaction (PCR) in SOC samples, cell lines, and normal fallopian tube (NFT) tissues. The APA sites were confirmed by rapid amplification of cDNA 3' ends and DNA sequencing. Real-time PCR were used to screen survivin-targeting microRNAs (miRNAs) that were inversely correlated with survivin. The expression of an inversely correlated miRNA was restored by pre-miRNA transfection or induction with a genotoxic agent to test its inhibitory effect on survivin overexpression.
RESULTS: Varying degrees of APA were observed in SOC by comparing the abundance of the proximal and the distal region of survivin 3'-UTR, and changes of 3'-UTR correlated significantly with survivin expression (r = 0.708, P< 0.01). The main APA sites are proved at 1197 and 1673 of survivin 3'-UTR by DNA sequencing. Higher level of 3'-UTR proximal region than coding region was observed in NFT, as well as in SOC and cell lines. Among the survivin-targeting miRNAs, only a few highly expressed miRNAs were inversely correlated with survivin levels, and they mainly targeted the distal part of the 3'-UTR. However, in ovarian cancer cells, restoration of an inversely correlated miRNA (miR-34c) showed little effect on survivin expression.
CONCLUSIONS: In NFT tissues, survivin is not transcriptionally silenced but regulate posttranscriptionally. In SOC, aberrant APA leads to the shortening of survivin 3'-UTR which enables it to escape the negative regulation of miRNAs and is responsible for survivin up-regulation.

Houghton J, Hadd AG, Zeigler R, et al.
Integration of Wet and Dry Bench Processes Optimizes Targeted Next-generation Sequencing of Low-quality and Low-quantity Tumor Biopsies.
J Vis Exp. 2016; (110):e53836 [PubMed] Free Access to Full Article Related Publications
All next-generation sequencing (NGS) procedures include assays performed at the laboratory bench ("wet bench") and data analyses conducted using bioinformatics pipelines ("dry bench"). Both elements are essential to produce accurate and reliable results, which are particularly critical for clinical laboratories. Targeted NGS technologies have increasingly found favor in oncology applications to help advance precision medicine objectives, yet the methods often involve disconnected and variable wet and dry bench workflows and uncoordinated reagent sets. In this report, we describe a method for sequencing challenging cancer specimens with a 21-gene panel as an example of a comprehensive targeted NGS system. The system integrates functional DNA quantification and qualification, single-tube multiplexed PCR enrichment, and library purification and normalization using analytically-verified, single-source reagents with a standalone bioinformatics suite. As a result, accurate variant calls from low-quality and low-quantity formalin-fixed, paraffin-embedded (FFPE) and fine-needle aspiration (FNA) tumor biopsies can be achieved. The method can routinely assess cancer-associated variants from an input of 400 amplifiable DNA copies, and is modular in design to accommodate new gene content. Two different types of analytically-defined controls provide quality assurance and help safeguard call accuracy with clinically-relevant samples. A flexible "tag" PCR step embeds platform-specific adaptors and index codes to allow sample barcoding and compatibility with common benchtop NGS instruments. Importantly, the protocol is streamlined and can produce 24 sequence-ready libraries in a single day. Finally, the approach links wet and dry bench processes by incorporating pre-analytical sample quality control results directly into the variant calling algorithms to improve mutation detection accuracy and differentiate false-negative and indeterminate calls. This targeted NGS method uses advances in both wetware and software to achieve high-depth, multiplexed sequencing and sensitive analysis of heterogeneous cancer samples for diagnostic applications.

Switzeny OJ, Christmann M, Renovanz M, et al.
MGMT promoter methylation determined by HRM in comparison to MSP and pyrosequencing for predicting high-grade glioma response.
Clin Epigenetics. 2016; 8:49 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) causes resistance of cancer cells to alkylating agents and, therefore, is a well-established predictive marker for high-grade gliomas that are routinely treated with alkylating drugs. Since MGMT is highly epigenetically regulated, the MGMT promoter methylation status is taken as an indicator of MGMT silencing, predicting the outcome of glioma therapy. MGMT promoter methylation is usually determined by methylation specific PCR (MSP), which is a labor intensive and error-prone method often used semi-quantitatively. Searching for alternatives, we used closed-tube high resolution melt (HRM) analysis, which is a quantitative method, and compared it with MSP and pyrosequencing regarding its predictive value.
RESULTS: We analyzed glioblastoma cell lines with known MGMT activity and formalin-fixed samples from IDH1 wild-type high-grade glioma patients (WHO grade III/IV) treated with radiation and temozolomide by HRM, MSP, and pyrosequencing. The data were compared as to progression-free survival (PFS) and overall survival (OS) of patients exhibiting the methylated and unmethylated MGMT status. A promoter methylation cut-off level relevant for PFS and OS was determined. In a multivariate Cox regression model, methylation of MGMT promoter of high-grade gliomas analyzed by HRM, but not MSP, was found to be an independent predictive marker for OS. Univariate Kaplan-Meier analyses revealed for PFS and OS a significant and better discrimination between methylated and unmethylated tumors when quantitative HRM was used instead of MSP.
CONCLUSIONS: Compared to MSP and pyrosequencing, the HRM method is simple, cost effective, highly accurate and fast. HRM is at least equivalent to pyrosequencing in quantifying the methylation level. It is superior in predicting PFS and OS of high-grade glioma patients compared to MSP and, therefore, can be recommended being used routinely for determination of the MGMT status of gliomas.

Xia H, Zhao YN, Yu CH, et al.
Inhibition of metabotropic glutamate receptor 1 suppresses tumor growth and angiogenesis in experimental non-small cell lung cancer.
Eur J Pharmacol. 2016; 783:103-11 [PubMed] Related Publications
Metabotropic glutamate receptor 1 (mGlu1 receptor) is expressed in many cancer cell types as compared to normal counterparts underscoring its potential role in tumor behavior. The aim of present study was to test the role of mGlu1 receptor in experimental non-small cell lung cancer (NSCLC). First, protein expression of mGlu1 receptor was higher in human NSCLC cell lines, including both adenocarcinoma and squamous carcinoma subtypes, when compared to normal bronchial epithelial cells. Inhibition of mGlu1 receptor by BAY36-7620 (an mGlu1 receptor-specific inhibitor) inhibited tumor growth and prolonged survival of mice with tumors of A549 or H1299. Treatment with BAY36-7620 suppressed AKT phosphorylation in A549 tumors and pre-treatment with BAY36-7620 blocked the L-quisqualate (a potent mGlu1 receptor agonist)-induced AKT phosphorylation in A549 cells. Treatment with BAY36-7620 reduced cellular proliferation of A549 cells. Treatment with BAY36-7620 enhanced cleaved PARP levels and reduced protein expression of bcl-2, HIF-1α, and VEGF. In contrast, treatment with L-quisqualate reduced cleaved PARP levels and enhanced protein expression of bcl-2, HIF-1α, VEGF, and IL-8, which was reversed by co-incubation with MK2206 (an AKT inhibitor). Pre-treatment with BAY36-7620 blocked the VEGF-induced AKT phosphorylation in HUVECs. Treatment of HUVECs with L-quisqualate resulted in enhancement of capillary tube formation, which was reversed by co-incubation with MK2206. Furthermore, mGlu1 receptor knockdown suppressed tumor growth and prolonged survival of mice with tumors of A549 or H1299. Collectively, inhibition of mGlu1 receptor suppressed tumor growth and angiogenesis in experimental NSCLC.

Kayamori K, Katsube K, Sakamoto K, et al.
NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma.
PLoS One. 2016; 11(4):e0154112 [PubMed] Free Access to Full Article Related Publications
Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs.

Li L, Lin J, Sun G, et al.
Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways.
Mol Med Rep. 2016; 13(6):5276-82 [PubMed] Related Publications
Angiogenesis is an essential process of cancer progression and is regulated by multiple intracellular signaling pathways, including signal transducer and activator of transcription 3 (STAT3) and sonic hedgehog (SHH). Thus, these pathways have become a promising target for anti‑cancer therapeutic strategies. Oleanolic acid (OA) is an active compound present in various herbal medicines, which have been used historically for the clinical treatment of various types of human malignancies, including colorectal cancer (CRC). The present study used a CRC mouse xenograft model and human umbilical vein endothelial cells (HUVECs) to evaluate the effect of OA on tumor angiogenesis and on the activation of the STAT3 and SHH signaling pathways. It was determined that OA treatment significantly inhibited tumor growth and reduced intratumoral microvessel density (MVD) in CRC mice. In addition, OA treatment inhibited the proliferation, migration and tube formation in HUVECs, in a dose and time-dependent manner. Furthermore, OA markedly suppressed the activation of the STAT3 and SHH signaling pathways and inhibited the expression of the pro‑angiogenic vascular endothelial growth factor A and basic fibroblast growth factor, two important target genes of the aforementioned signaling pathways. Therefore it is suggested that inhibition of tumor angiogenesis via the suppression of multiple signaling pathways may be one of the underlying mechanisms by which OA exerts its anti-cancer effect.

Jing Z, Xu H, Chen X, et al.
The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer.
PLoS One. 2016; 11(4):e0152789 [PubMed] Free Access to Full Article Related Publications
Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor). Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4) derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM) model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group) and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4) was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN.

Ardighieri L, Mori L, Conzadori S, et al.
Identical TP53 mutations in pelvic carcinosarcomas and associated serous tubal intraepithelial carcinomas provide evidence of their clonal relationship.
Virchows Arch. 2016; 469(1):61-9 [PubMed] Related Publications
Pelvic carcinosarcomas (PCSs) are rare aggressive biphasic tumors that localize in the ovary, fallopian tube, or peritoneum and present frequently as bilateral disease. We undertook a morphological, p53 immunohistochemical and TP53 gene mutational analysis study in a single institution cohort of 16 PCSs in order to investigate the nature of bilateral tumors and to shed light on their origin and pathogenesis. Of the 16 patients, 10 presented with bilateral disease, 6 with a carcinosarcoma in both adnexa, and the remaining cases with a carcinosarcoma in one adnexum and a carcinoma in the opposite. The carcinoma component showed high-grade serous features in 13/16 of cases (81 %). In 10 patients (63 %), a serous tubal intraepithelial carcinoma (STIC) was found, in one case bilateral, making a total of 11 STICs. STIC was found only in cases with a carcinoma component with high-grade serous features. All 10 bilateral tumors and all 11 PCS-associated STICs showed a similar p53 immunostaining pattern. At mutation analysis of the TP53 gene, all five bilateral PCS contained an identical mutation in both localizations. Furthermore, a TP53 mutation was found in 8 of 10 STICs, with an identical mutation in the associated PCS. The finding of similar p53 immunostaining in all bilateral cases and identical TP53 mutations in most PCS-associated STIC provides evidence for a clonal relation between these neoplastic lesions, supporting a metastatic nature of bilateral PCS and suggesting that they have an extraovarian origin in a STIC.

Kim N, Cho SB, Park YL, et al.
Effect of Recepteur d'Origine Nantais expression on chemosensitivity and tumor cell behavior in colorectal cancer.
Oncol Rep. 2016; 35(6):3331-40 [PubMed] Related Publications
Recepteur d'Origine Nantais (RON) expression is known to induce oncogenic properties including tumor cell growth, survival, motility, angiogenesis and chemoresistance. In the present study, we evaluated whether RON affects chemosensitivity and oncogenic behavior of colorectal cancer cells and investigated its prognostic value in colorectal cancer. To evaluate the impact of RON on chemosensitivity and tumor cell behavior, we treated colorectal cancer cells with small interfering RNAs specific to RON. This was followed by flow cytometric analyses and migration, Matrigel invasion and endothelial tube formation assays. The expression of RON was investigated by immunohistochemistry in colorectal cancer tissues. TUNEL assay and immunohistochemical staining for CD34 and D2-40 were deployed to determine apoptosis, angiogenesis and lymphangiogenesis. RON knockdown enhanced 5-fluorouracil (FU)-induced apoptosis by upregulating the activities of caspases and expression of proapoptotic genes. Moreover, it enhanced 5-FU-induced cell cycle arrest by decreasing the expression of cyclins and cyclin‑dependent kinases and inducing that of p21. Furthermore, RON knockdown augmented the 5-FU-induced inhibition of invasion and migration of colorectal cancer cells. The β-catenin signaling cascade was blocked by RON knockdown upon 5-FU treatment. RON knockdown also decreased endothelial tube formation and expression of VEGF-A and HIF-1α and increased angiostatin expression. Furthermore, it inhibited lymphatic endothelial cell tube formation and the expression of VEGF-C and COX-2. RON expression was observed to be associated with age, tumor size, lymphovascular and perineural invasion, tumor stage, lymph node and distant metastasis, and poor survival rate. The mean microvessel density value of RON-positive tumors was significantly higher than that of RON-negative ones. These results indicate that RON is associated with tumor progression by inhibiting chemosensitivity and enhancing angiogenesis in colorectal cancer.

Tang S, Xiang T, Huang S, et al.
Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.
Cancer Lett. 2016; 376(1):137-47 [PubMed] Related Publications
Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer.

Zhang H, Bai M, Deng T, et al.
Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma.
Cancer Lett. 2016; 375(2):331-9 [PubMed] Related Publications
Microvesicles (MVs) secreted from cells have been found to mediate signal transduction between cells. In the tumor microenvironment, VEGF released from cancer cells plays a key role in promoting tumor angiogenesis. In this study, we characterized the inhibitory effect of MV-delivered miR-29a/c on angiogenesis and tumor growth in gastric cancer (GC). We found that the downregulation of miR-29a/c increases VEGF expression and release in GC cells, promoting the growth of vascular cells. By simulating the tumor microenvironment, the MV-delivered miR-29a/c significantly suppresses VEGF expression in GC cells, inhibiting vascular cell growth, metastasis, and tube formation. We also used a tumor implantation mouse model to show that secreted MVs containing overexpressed miR-29a/c significantly reduced the growth rate of the vasculature and tumors in vivo. To conclude, our results contribute to a novel anti-cancer strategy using miRNA-containing MVs to control tumor cell growth by blocking angiogenesis.

Hong H, Jiang L, Lin Y, et al.
TNF-alpha promotes lymphangiogenesis and lymphatic metastasis of gallbladder cancer through the ERK1/2/AP-1/VEGF-D pathway.
BMC Cancer. 2016; 16:240 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumor necrosis factor-alpha (TNF-α), a key player in cancer-related inflammation, was recently demonstrated to be involved in the lymphatic metastasis of gallbladder cancer (GBC). Vascular endothelial growth factor D (VEGF-D) is a key lymphangiogenic factor that is associated with lymphangiogenesis and lymph node metastasis in GBC. However, whether VEGF-D is involved in TNF-α-induced lymphatic metastasis of GBC remains undetermined.
METHODS: The expression of VEGF-D in patient specimens was detected by immunohistochemistry and the relationship between VEGF-D in the tissue and TNF-α in the bile of the matching patients was analyzed. The VEGF-D mRNA and protein levels after treatment with exogenous TNF-α in NOZ, GBC-SD and SGC-996 cell lines were measured by real-time PCR and ELISA. The promoter activity and transcriptional regulation of VEGF-D were analyzed with the relative luciferase reporter assay, mutant constructs, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assay, RNA interference and Western blotting. Inhibitors of JNK, p38 MAPK and ERK1/2 were used to explore the upstream signaling effector of AP-1. We used lentiviral vector expressing a VEGF-D shRNA construct to knockdown VEGF-D gene in NOZ and GBC-SD cells. The role of the TNF-α-VEGF-D axis in the tube formation of human dermal lymphatic endothelial cells (HDLECs) was determined using a three-dimensional coculture system. The role of the TNF-α - VEGF-D axis in lymphangiogenesis and lymph node metastasis was studied via animal experiment.
RESULTS: TNF-α levels in the bile of GBC patients were positively correlated with VEGF-D expression in the clinical specimens. TNF-α can upregulate the protein expression and promoter activity of VEGF-D through the ERK1/2 - AP-1 pathway. Moreover, TNF-α can promote tube formation of HDLECs, lymphangiogenesis and lymph node metastasis of GBC by upregulation of VEGF-D in vitro and in vivo.
CONCLUSION: Taken together, our data suggest that TNF-α can promote lymphangiogenesis and lymphatic metastasis of GBC through the ERK1/2/AP-1/VEGF-D pathway.

Jia Y, Wang Z, Zang A, et al.
Tetramethylpyrazine inhibits tumor growth of lung cancer through disrupting angiogenesis via BMP/Smad/Id-1 signaling.
Int J Oncol. 2016; 48(5):2079-86 [PubMed] Related Publications
The underlying mechanisms of inhibitory effects induced by tetramethylpyrazine (TMP) on angiogenesis and tumor growth of lung cancer were investigated. In vitro cell proliferation, migration, and tube formation of human microvascular endothelial cells (HMEC-1) were evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT), wound healing, Transwell, and Matrigel assays. The expression of BMP/Smad/Id-1 signals was detected by RT-PCR and western blotting. In an A549 xenograft tumor model, TMP (40 and 80 mg/kg/day) was intraperitoneally injected into mice. The expressions of CD31, phosphorylated Smad1/5/8, and Id-1 were measured by immunohistochemistry. We demonstrated that TMP inhibited proliferation, migration, and capillary tube formation of HMEC-1 in a dose- and time-dependent manner. Furthermore, treatment of HMEC-1 cells with TMP (0.4 mg/ml) significantly upregulated BMP2 expression and downregulated BMPRIA, BMPRII, phosphorylated Smad1/5/8, and Id-1 expression. In addition, administrations of TMP remarkably inhibited tumor growth of A549 xenograft in nude mice. The CD31, phosphorylated Smad1/5/8, and Id-1 expression were significantly inhibited in TMP-treated xenograft tumors compared with the vehicle. In conclusion, our results indicated that TMP suppressed angiogenesis and tumor growth of lung cancer via blocking the BMP/Smad/Id-1 signaling.

Xie T, Ren HY, Lin HQ, et al.
Sinomenine prevents metastasis of human osteosarcoma cells via S phase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway.
Int J Oncol. 2016; 48(5):2098-112 [PubMed] Related Publications
Osteosarcoma is the most common primary malignant tumor of the bone. The long-term survivals continue to be unsatisfactory for patients with metastatic and recurrent disease. Metastasis is still a severe challenge in osteosarcoma treatment. Sinomenine, an alkaloid from traditional Chinese medicine, has been proved to possess potent antitumor and anti-invasion effect on various cancers. However, the effect of sinomenine on human osteosarcoma and the underlying mechanisms remains unknown. We report here that sinomenine inhibited proliferation by inducing S phase arrest and suppressing the clone formation. Significant inhibitory effects were found in invasion and metastasis in osteosarcoma, but little cytotoxicity was observed in tested concentrations. Exposure to sinomenine resulted in suppression of invasion and migration in osteosarcoma cells as well as tube formation ability in the human umbilical vein endothelial cells (HUVEC) and U2OS cells. Furthermore, it demonstrated that CXCR4 played a key role contributing to invasion in osteosarcoma which is considered to be a core target site in sinomenine treatment. Sinomenine inhibited invasion by suppressing CXCR4 and STAT3 phosphorylation then downregulating the expression of MMP-2, MMP-9, RANKL, VEGF downstream. In addition, then RANKL-mediated bone destruction stimulated by osteoclastogenesis and VEGF-related neovascularization were restrained. Importantly, in vivo, sinomenine suppressed proliferation, osteoclastogenesis and bone destruction. Through these various comprehensive means, sinomenine inhibits metastasis in osteosarcoma. Taken together, our results revealed that sinomenine caused S phase arrest, inhibited invasion and metastasis via suppressing the CXCR4-STAT3 pathway and then osteoclastogenesis-mediated bone destruction and neovascularization in osteosarcoma. Sinomenine is therefore a promising adjuvant agent for metastasis control in osteosarcoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TUBE1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999