CASP9

Gene Summary

Gene:CASP9; caspase 9, apoptosis-related cysteine peptidase
Aliases: MCH6, APAF3, APAF-3, PPP1R56, ICE-LAP6
Location:1p36.21
Summary:This gene encodes a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes which undergo proteolytic processing at conserved aspartic residues to produce two subunits, large and small, that dimerize to form the active enzyme. This protein can undergo autoproteolytic processing and activation by the apoptosome, a protein complex of cytochrome c and the apoptotic peptidase activating factor 1; this step is thought to be one of the earliest in the caspase activation cascade. This protein is thought to play a central role in apoptosis and to be a tumor suppressor. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2013]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:caspase-9
HPRD
Source:NCBIAccessed: 17 August, 2015

Ontology:

What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CASP9 (cancer-related)

Kim DW, Lee KT, Kwon J, et al.
Neuroprotection against 6-OHDA-induced oxidative stress and apoptosis in SH-SY5Y cells by 5,7-Dihydroxychromone: Activation of the Nrf2/ARE pathway.
Life Sci. 2015; 130:25-30 [PubMed] Related Publications
AIMS: The aim of this study was to prove the neuroprotective effect of 5,7-Dihydroxychromone (DHC) through the Nrf2/ARE signaling pathway. To elucidate the mechanism, we investigated whether 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells could be attenuated by DHC via activating the Nrf2/ARE signal and whether DHC could down-regulate 6-OHDA-induced excessive ROS generation
MAIN METHODS: To evaluate the neuroprotective effect of DHC against 6-OHDA-induced apoptosis, FACS analysis was performed using PI staining. The inhibitory effect of DHC against 6-OHDA-induced ROS generation was evaluated by DCFH-DA staining assay. Additionally, translocation of Nrf2 to the nucleus and increased Nrf2/ARE binding activity, which subsequently resulted in the up-regulation of the Nrf2-dependent antioxidant gene expressions including HO-1, NQO1, and GCLc, were evaluated by Western blotting and EMSA.
KEY FINDINGS: Pre-treatment of DHC, one of the constituents of Cudrania tricuspidata, significantly protects 6-OHDA-induced neuronal cell death and ROS generation. Also, DHC inhibited the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells. DHC induced the translocation of Nrf2 to the nucleus and increased Nrf2/ARE binding activity which results in the up-regulation of the expression of Nrf2-dependent antioxidant genes, including HO-1, NQO1, and GCLc. The addition of Nrf2 siRNA abolished the neuroprotective effect of DHC against 6-OHDA-induced neurotoxicity and the expression of Nrf2-mediated antioxidant genes.
SIGNIFICANCE: Activation of Nrf2/ARE signal by DHC exerted neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. This finding will give an insight that activating Nrf2/ARE signal could be a new potential therapeutic strategy for neurodegenerative disease.

Albers J, Danzer C, Rechsteiner M, et al.
A versatile modular vector system for rapid combinatorial mammalian genetics.
J Clin Invest. 2015; 125(4):1603-19 [PubMed] Free Access to Full Article Related Publications
Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.

Safa M, Tavasoli B, Manafi R, et al.
Indole-3-carbinol suppresses NF-κB activity and stimulates the p53 pathway in pre-B acute lymphoblastic leukemia cells.
Tumour Biol. 2015; 36(5):3919-30 [PubMed] Related Publications
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common type of cancer in children. Dramatic improvements in primary therapy for childhood ALL have led to an overall cure rate of 80 %, providing opportunities for innovative combined-modality strategies that would increase cure rates while reducing the toxic side effects of current intensive regimens. In this study, we report that indole-3-carbinol (I3C), a natural phytochemical found in cruciferous vegetables, had anti-leukemic properties in BCP-ALL NALM-6 cells. I3C induced cell growth inhibition by G1 cell cycle arrest and triggered apoptosis in a dose- and time-dependent manner. p53, p21, and Bax proteins showed increased expression after I3C treatment. Real-time PCR analysis of pro-apoptotic p53 target genes revealed up-regulation of PUMA, NOXA, and Apaf-1. I3C also suppressed constitutive nuclear factor-κB (NF-κB) activation and inhibited the protein expression of NF-kappa B-regulated antiapoptotic (IAP1, Bcl-xL, Bcl-2, XIAP) and proliferative (c-Myc) gene products. Coadministration of I3C with the topoisomerase II inhibitor, doxorubicin, potentiates cytotoxic effects compared with either agent alone. Apoptosis induction by the drug combination was associated with enhanced caspase-9 activation and PARP cleavage. Furthermore, I3C abolished doxorubicin-induced NF-κB activity as evidenced by decreased nuclear accumulation of p65, inhibition of IκBα phosphorylation and its degradation, and decreased NF-κB DNA-binding activity. Western blot analysis revealed that doxorubicin-induced Bcl-2 protein expression was inhibited by I3C. Overall, our results indicated that using nontoxic agents, such as I3C, in combination with anthracyclines might provide a new insight into the development of novel combination therapies in childhood BCP-ALL.

Huang HL, Chiang WL, Hsiao PC, et al.
Timosaponin AIII mediates caspase activation and induces apoptosis through JNK1/2 pathway in human promyelocytic leukemia cells.
Tumour Biol. 2015; 36(5):3489-97 [PubMed] Related Publications
Timosaponin AIII (TAIII) is a steroidal saponin isolated from Anemarrhena asphodeloides that has been shown to inhibit cell growth and induce apoptosis in cancer. However, the effect of TAIII on acute myeloid leukemia (AML) remains unclear. Here, the molecular mechanism by which TAIII-induced apoptosis affects human AML cells was investigated. The results showed that TAIII significantly inhibited cell proliferation of four AML cell lines (MV4-11, U937, THP-1, and HL-60). Furthermore, TAIII induced apoptosis of HL-60 cells through caspase-3, caspase-8, and caspase-9 activations and PARP cleavage in a dose- and time-dependent manner. Moreover, Western blot analysis also showed that TAIII increased phosphorylation of JNK1/2 and p38 MAPK in a dose-dependent manner. Inhibition of JNK1/2 by specific inhibitors significantly abolished the TAIII-induced activation of the caspase-8. Taken together, our results suggest that TAIII induces HL-60 cell apoptosis through JNK1/2 pathways and could serve as a potential additional chemotherapeutic agent for treating AML.

Zhang F, Song X, Li L, et al.
Polygala tenuifolia polysaccharide PTP induced apoptosis in ovarian cancer cells via a mitochondrial pathway.
Tumour Biol. 2015; 36(4):2913-9 [PubMed] Related Publications
One purified polysaccharide protein tyrosine phosphatase (PTP) was isolated from the roots of Polygala tenuifolia. The aim of the present study is to investigate the antitumor effect of PTP on human ovarian cancer OVCAR-3 cells and explore the molecular mechanism of the action involved. The results of MTT assay and apoptosis detection assay showed that PTP inhibited cellular proliferation of OVCAR-3 cells and induced apoptotic cellular death via arresting cell circle at the G0/G1 phase. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis identified that bcl-2 gradually decreased at both transcription and protein levels after PTP treatment for 48 h in OVCAR-3 cells, while those of bax, cytochrome c, caspase-3, and caspase-9 increased. In addition, the low expression of NF-κB in PTP-treated OVCAR-3 cells would trigger the extrinsic pathway of programmed cell death signaling in tumor cells. These results together suggest that PTP may induce apoptosis of OVCAR-3 cells through a mitochondrial pathway.

Miao ZF, Li WY, Wang ZN, et al.
Lung cancer cells induce senescence and apoptosis of pleural mesothelial cells via transforming growth factor-beta1.
Tumour Biol. 2015; 36(4):2657-65 [PubMed] Related Publications
Pleural dissemination is commonly associated with metastatic advanced lung cancer. The injury of pleural mesothelial cells (PMCs) by soluble factors, such as transforming growth factor-beta1 (TGF-β1), is a major driver of lung cancer pleural dissemination (LCPD). In this study, we examine the effects of TGF-β1 on PMC injury and the ability of TGF-β1 inhibition to alleviate this effect both in vitro and in vivo. PMCs were co-cultured with the high TGF-β1-expressing lung cancer cell line A549 and with various TGF-β1 signaling inhibitors. Expression of cleaved-caspase 3, cleaved-caspase 9, p21, and p16 were evaluated by Western blot and immunofluorescent confocal imaging. Apoptosis was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltrazoliumbromide assay and AnnexinV-propidium iodide (PI) staining. PMC senescence was assessed by staining for senescence-associated β-galactosidase (SA-β-Gal). The ability of lung cancer cells (LCCs) to adhere to injured PMCs was investigated using an LCC-PMC adhesion assay. In our mouse model, PMC injury status was monitored by hematoxylin-eosin (H&E) and Masson's trichrome staining. LCCs expressing high levels of TGF-β1 induce apoptosis and senescence of PMCs in a co-culture system. Injured PMCs adhere to LCCs, which may further promote LCPD. Importantly, PMC monolayer injury could be reversed with TGF-β1 inhibitors. This was consistent with our in vivo data showing that the TGF-β1 inhibitor SB-431542 attenuated PMC barrier injury induced by A549 culture medium in our mouse model. Our study highlights the importance of TGF-β1 signaling in LCPD and establishes this signaling pathway as a potential therapeutic target in the disease.

Jiang L, Wu X, Wang P, et al.
Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma.
J Cancer Res Clin Oncol. 2015; 141(6):971-81 [PubMed] Related Publications
PURPOSE: We have previously reported that forkhead box M1 (FoxM1) transcription factor was overexpressed in laryngeal squamous cell carcinoma (LSCC) and was associated with development of LSCC. However, there are limited studies regarding the functional significance of FoxM1 and FoxM1 inhibitor thiostrepton in LSCC. Therefore, the aim of this study was to examine both in vitro and in vivo activity of FoxM1 inhibitor thiostrepton against LSCC cell line and nude mice.
METHODS: Cell viability was studied by CCK-8 assay. Cell growth was evaluated by CFSE staining and cell cycle analysis. Apoptosis was measured by flow cytometry. The mRNA and protein expression were detected by quantitative real-time RT-PCR, Western blot and immunohistochemical staining. Xenograft model of tumor formation was used to investigate how thiostrepton influences tumorigenesis in vivo.
RESULTS: Overexpression of FoxM1 in LSCC cells was down-regulated by thiostrepton in a dose-dependent manner. Thiostrepton caused dose- and time-dependent suppression of cell viability of LSCC. Moreover, thiostrepton induced cell cycle arrest at S phase at early time and inhibited DNA synthesis in LSCC cells in a dose- and time-dependent manner by down-regulation of cyclin D1 and cyclin E1. Thiostrepton also induced dose- and time-dependent apoptosis of LSCC cells by down-regulation of Bcl-2, up-regulation of Bax and p53, and inducing release of cytochrome c accompanied by activation of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. In addition, z-VAD-fmk, a universal inhibitor of caspases, prevented activation of cleavage caspase-3 and abrogates cell death induced by thiostrepton treatment. Furthermore, FADD and cleaved caspase-8 were activated, and expression of cIAP1, XIAP and survivin were inhibited by thiostrepton. Finally, treatment of LSCC cell line xenografts with thiostrepton resulted in tumorigenesis inhibition of tumors in nude mice by reducing proliferation and inducing apoptosis of LSCC cells.
CONCLUSIONS: Collectively, our finding suggest that targeting FoxM1 by thiostrepton inhibit growth and induce apoptosis of LSCC through mitochondrial- and caspase-dependent intrinsic pathway and Fas-dependent extrinsic pathway as well as IAP family. Thiostrepton may represent a novel lead compound for targeted therapy of LSCC.

Zhou J, Zhang F, Hou X, Zhang N
Downregulation of LRPPRC induces apoptosis in prostate cancer cells through the mitochondria-mediated pathway.
Cancer Biother Radiopharm. 2014; 29(9):345-50 [PubMed] Related Publications
Leucine-rich pentatricopeptide repeat motif-containing protein (LRPPRC) is a multifunctional protein involved in the mitochondrial gene expression and function, cell cycle progression, and tumorigenesis. However, the functional role of LRPPRC in prostate cancer (PCa) has not yet been elucidated. In this study, two PCa cell lines were examined to determine the effects of LRPPRC on cell proliferation, invasion, and apoptosis in vitro. Our results showed that the expression levels of LRPPRC were significantly decreased in the two PCa cell lines after transfection with small interfering RNA (siRNA)-LRPPRC. Knockdown of LRPPRC by siRNA significantly inhibited the invasion and promoted the apoptosis of PCa cells. In addition, downregulation of LRPPRC expression resulted in the reduced expression of Bcl-2, upregulation of Bax, and cleaved caspase-9 and caspase-3. Taken together, these results show that the downregulation of LRPRPC expression induces apoptosis through the mitochondria-mediated pathway in PCa cells. These experimental data seem to suggest that LRPPRC plays a critical role in the development of PCa, and its inhibition could present a potential molecular approach for the treatment of PCa.

Sharifi S, Barar J, Hejazi MS, Samadi N
Roles of the Bcl-2/Bax ratio, caspase-8 and 9 in resistance of breast cancer cells to paclitaxel.
Asian Pac J Cancer Prev. 2014; 15(20):8617-22 [PubMed] Related Publications
The goal of this study was to establish paclitaxel resistant MCF-7 cells, as in vitro model, to identify the molecular mechanisms leading to acquired chemoresistance in breast cancer cells. Resistant cells were developed by stepwise increasing exposure to paclitaxel. Gene expression levels of Bax and Bcl-2 along with protein levels of caspase-8 and caspase-9 were evaluated in two resistant cell lines (MCF -7/Pac64 and MCF -7/Pac5 nM). Morphological modifications in paclitaxel resistance cells were examined by light microscopy and fluorescence activated cell sorting (FACS). As an important indicator of resistance to chemotheraputic agents, the Bcl-2/Bax ratio showed a significant increase in both MCF-7/Pac5nM and MCF-7/Pac 64nM cells (p<0.001), while caspase-9 levels were decreased (p<0.001) and caspase-8 was increased (p<0.001). FACS analysis demonstrated that MCF -7/Pac64 cells were smaller than MCF-7 cells with no difference in their granularity. Our results support the idea that paclitaxel induces apoptosis in a mitochondrial-dependent manner. Identifying breast cancer patients with a higher Bcl-2/Bax ratio and caspase 9 level and then inhibiting the activity of these proteins may improve the efficacy of chemotheraputic agents.

Kliková K, Štefaniková A, Pilchová I, et al.
Differential impact of bortezomib on HL-60 and K562 cells.
Gen Physiol Biophys. 2015; 34(1):33-42 [PubMed] Related Publications
Bortezomib (PS-341, or Velcade), reversible inhibitor of 20S proteasome approved for the treatment of multiple myeloma and mantle cell lymphoma, exhibited a cytotoxic effect toward other malignancies including leukaemia. In this study, we have documented that incubation of both HL-60 and K562 leukaemia cells with nanomolar concentrations of bortezomib is associated with the death of HL-60 cells observed within 24 hours of incubation with bortezomib and the death of K562 cells that were observed after 72 hours of incubation with bortezomib. The relative resistance of K562 cells to bortezomib correlated well with significantly higher expression of HSP27, HSP70, HSP90α, HSP90β and GRP75 in these cells. Incubation of both HL-60 and K562 cells with bortezomib induced a cleavage of HSP90β as well as expression of HSP70 and HSP90β but bortezomib did not affect levels of HSP27, HSP90α, GRP75 and GRP78. The death of both types of cells was accompanied with proteolytic activation of caspase 3 that was observed in HL-60 cells and proteolytic degradation of procaspase 3 in K562 cells. Our study has also pointed to essential role of caspase 8 in bortezomib-induced cleavage of HSP90β in both HL-60 and K562 cells. Finally, we have shown that bortezomib induced activation of caspase 9/caspase 3 axis in HL-60 cells, while the mechanism of death of K562 cells remains unknown.

Kim BG, Kwon HY, Sohn EJ, et al.
Activation of caspases and inhibition of ribosome biogenesis mediate antitumor activity of Chijongdan in A549 non-small lung cancer cells.
BMC Complement Altern Med. 2014; 14:420 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Though herbal medicines have been used for cancer prevention and treatment, their scientific evidences still remain unclear so far. Thus, complementary and alternative medicine (CAM) project has been actively executed to reveal the scientific evidences in the USA and other countries. In the present study, we elucidated antitumor mechanism of Chijongdan, an oriental prescription of Rhus verniciflua, processed Panax ginseng, Persicaria tinctoria and Realgar, that has been traditionally applied for cancer treatment in Korea.
METHODS: Chijongdan was prepared with extracts of Rhus verniciflua, processed Panax ginseng, Persicaria tinctoria and processed Realgar. The cytotoxicity of Chijongdan was measured by MTT colorimetric assay. Cell cycle analysis was performed by FACS. Western blot was performed to see the apoptosis related proteins.
RESULTS: Chijongdan significantly exerted cytotoxicity in A549, H460 and H1299 non-small cell lung carcinoma (NSCLC) cells by MTT assay and also increased the number of ethidium homodimer positively stained cells in A549 NSCLC cells. Also, cell cycle analysis showed that Chijongdan increased sub-G1 population in a concentration dependent manner in A549 cells. In addition, Western blotting revealed that Chijongdan activated cleaved PARP, and caspase 9/3, while attenuated the expression of survival genes such as Bcl-2, Bcl-XL and survivin in A549 cells. Furthermore, Chijongdan suppressed the expression of ribosomal biogenesis related proteins such as upstream binding factor (UBF), Fibrillarin, NPM (B23) and Importin-7 (IPO7) and conversely pan-caspase inhibitor Z--VAD-FMK reversed the apoptotic ability of Chijongdan to cleave PARP and caspase 3 and attenuate the expression of UBF and Fibrillarin in A549 cells.
CONCLUSIONS: These findings suggest that Chijongdan induces apoptosis and inhibits ribosomal biogenesis proteins via caspase activation.

Song YH, Zhong MZ, Gan PP, et al.
ALDH1A1 mediates resistance of diffuse large B cell lymphoma to the CHOP regimen.
Tumour Biol. 2014; 35(12):11809-17 [PubMed] Related Publications
Although there have been substantial advances in our knowledge of the resistance of diffuse large B cell lymphoma (DLBCL) to chemotherapy, there are few efficient treatment strategies for recurrent/refractory DLBCL. The aim of this study was to investigate the role of aldehyde dehydrogenase (ALDH) 1A1 in the resistance of diffuse large B cell lymphoma to the chemotherapeutic mixture consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). The involvement of ALDH1A1 in DLBCL was elucidated by knockdown and pharmacologic inhibition; Cell Counting Kit-8 (CCK-8) and clone formation assays were used to determine its role in CHOP sensitivity and clone formation ability. Caspase colorimetric assay was used to measure the extent of apoptosis. Western blot analysis was used to measure signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa B (NF-κB) signaling proteins, and quantitative real-time PCR (RT-PCR) was used to measure the differential expression of ALDH1A1 of DLBCL patients and healthy donors. ALDH1A1 showed a 5.64-fold higher expression in malignant B cells than in normal B cells. Diethylaminobenzaldehyde (DEAB) decreased the half maximal inhibitory concentration (IC50) of the CHOP regimen in Farage cells from 344.78 ± 65.75 to 183.88 ± 49.75 ng/ml (P = 0.004). Both knockdown and inhibition of ALDH1A1 reduced clonogenicity, increased caspase-3/caspase-9 activity, and attenuated the phosphorylation status of STAT3/NF-κB. The prognosis of patients with a high level of ALDH1A1 expression was poor compared with that of patients with low levels of expression (P = 0.044). ALDH1A1 is a new mediator for resistance of DLBCL to CHOP; it is a predictor of clinical prognosis and may serve as a potential target to improve chemotherapy responsiveness of human DLBCL.

Liu BX, Zhou JY, Li Y, et al.
Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway.
BMC Complement Altern Med. 2014; 14:412 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer has become one of the leading cause of cancer morbidity and mortality throughout world. Hederagenin, a derivative of oleanolic acid isolated from the leaves of ivy (Hedera helix L.), has been shown to have potential anti-tumor activity. The study was conducted to evaluate whether hederagenin could induce apoptosis of human colon cancer LoVo cells and explore the possible mechanism.
METHODS: MTT assay was used for evaluating cell viability while Annexin V-FITC/PI assay and Hoechst 33342 nuclear stainining were used for the determination of apoptosis and mitochondrial membrane potential. DCFH-DA fluorescence staining and flow cytometry were used to measure ROS generation. Real-time PCR and western blot analysis were performed for apoptosis-related protein expressions.
RESULTS: MTT assay showed that hederagenin could significantly inhibit the viability of LoVo cells in a concentration-dependent and time-dependent manner by IC50 of 1.39 μM at 24 h and 1.17 μM at 48 h. The apoptosis ratio was significantly increased to 32.46% and 81.78% by the induction of hederagenin (1 and 2 μM) in Annexin V-FITC/PI assay. Hederagenin could also induce the nuclear changes characteristic of apoptosis by Hoechst 33342 nuclear stainining under fluorescence microscopy. DCFH-DA fluorescence staining and flow cytometry showed that hederagenin could increase significantly ROS generation in LoVo cells. Real-time PCR showed that hederagenin induced the up-regulation of Bax and down-regulation of Bcl-2, Bcl-xL and Survivin. Western blotting analysis showed that hederagenin decreased the expressions of apoptosis-associated proteins Bcl-2, procaspase-9, procaspase-3, and polyADP- ribosepolymerase (PARP) were increased, while the expressions of Bax, caspase-3, caspase-9 were increased. However, there was no significant change on caspase-8.
CONCLUSIONS: These results indicated that the disruption of mitochondrial membrane potential might contribute to the apoptosis of hederagenin in LoVo cells. Our findings suggested that hederagenin might be a promising therapeutic candidate for human colon cancer.

Lu T, Yang W, Wang Z, et al.
Knockdown of glucose-regulated protein 78/binding immunoglobulin heavy chain protein expression by asymmetric small interfering RNA induces apoptosis in prostate cancer cells and attenuates migratory capability.
Mol Med Rep. 2015; 11(1):249-56 [PubMed] Related Publications
Glucose-regulated protein 78 [GRP78, also termed binding immunoglobulin heavy chain protein (Bip)] may be involved in cancer progression and metastasis. However, to date there has been minimal investigation into its potential role in human prostate cancer cells. Recent studies have demonstrated that asymmetric small interfering RNA (asiRNA)-mediated gene silencing is more effective and longer-lasting than conventional symmetric siRNA. Thus, the current study aimed to investigate the effects of GRP78-specific asiRNA on human prostate cancer cells. A series of asiRNAs was synthesized and their efficiency in silencing GRP78 expression in PC-3 human prostate cancer cells was evaluated. The effects of knockdown using asiRNAs were compared to those of knockdown using symmetric siRNAs. The effect of GRP78 silencing on PC-3 cell apoptosis and migration, and the possible mechanisms governing these biological processes were examined. Compared with the symmetric siRNA, transfection with the 15 base pair asiRNA (asiGRP78-3) resulted in greater downregulation of GRP78 expression. GRP78 depletion in PC-3 cells resulted in increased apoptosis and decreased migration of these cells. Experiments investigating the underlying mechanisms of these effects revealed that knockdown of GRP78 attenuated protein kinase B activation and decreased the expression of pro-caspase 9, pro-caspase 3 and vimentin. In conclusion, knockdown of GRP78/Bip expression with asymmetric siRNA led to increased prostate cancer cell apoptosis and reduced cellular migration.

Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R, et al.
Rapid modelling of cooperating genetic events in cancer through somatic genome editing.
Nature. 2014; 516(7531):428-31 [PubMed] Free Access to Full Article Related Publications
Cancer is a multistep process that involves mutations and other alterations in oncogenes and tumour suppressor genes. Genome sequencing studies have identified a large collection of genetic alterations that occur in human cancers. However, the determination of which mutations are causally related to tumorigenesis remains a major challenge. Here we describe a novel CRISPR/Cas9-based approach for rapid functional investigation of candidate genes in well-established autochthonous mouse models of cancer. Using a Kras(G12D)-driven lung cancer model, we performed functional characterization of a panel of tumour suppressor genes with known loss-of-function alterations in human lung cancer. Cre-dependent somatic activation of oncogenic Kras(G12D) combined with CRISPR/Cas9-mediated genome editing of tumour suppressor genes resulted in lung adenocarcinomas with distinct histopathological and molecular features. This rapid somatic genome engineering approach enables functional characterization of putative cancer genes in the lung and other tissues using autochthonous mouse models. We anticipate that this approach can be used to systematically dissect the complex catalogue of mutations identified in cancer genome sequencing studies.

Jiang L, Wang P, Chen L, Chen H
Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells.
Int J Clin Exp Pathol. 2014; 7(9):5450-60 [PubMed] Free Access to Full Article Related Publications
Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor rare throughout most of the world but common in Southern China. Forkhead box M1 (FoxM1) transcription factor has been shown to play important role in the development and progression of human cancers. We have previously found that FoxM1 was overexpressed in NPC patients and was associated with development of NPC. However, the exact functional significance of FoxM1 and its inhibitor thiostrepton in NPC is little known. The purpose of this study was to investigate in vitro activity of down-regulation of FoxM1 by thiostrepton or siRNA against NPC cell line. FoxM1 inhibition by thiostrepton or siRNA inhibited proliferation of NPC cells by down-regulation of cyclin D1 and cyclin E1. Transformation ability of NPC cells was suppressed by thiostrepton. FoxM1 inhibition by thiostrepton induced apoptosis of NPC cells by down-regulation of bcl-2, up-regulation of bax and p53, and inducing release of cytochrome c accompanied by activation of caspase-9, cleaved caspase-3 and cleaved PARP. In addition, FoxM1 inhibition by siRNA transfection also down-regulated expression of bcl-2 and up-regulated expression of bax, p53, cleaved caspase-3 and cleaved PARP. Furthermore, FADD and cleaved caspase-8 expression were up-regulated by thiostrepton or FoxM1 siRNA, and expression of cIAP1 and XIAP was inhibited by thiostrepton. At last, FoxM1 inhibition by thiostrepton reduced the expression of HIF-1α and VEGF, and transfection of FoxM1 siRNA decreased VEGF expression but not HIF-1α. Collectively, our finding suggest that FoxM1 inhibition by thiostrepton or siRNA suppresses proliferation, transformation ability, angiogenesis, and induces apoptosis of NPC.

Li H, Chen X, Yu Y, et al.
Metformin inhibits the growth of nasopharyngeal carcinoma cells and sensitizes the cells to radiation via inhibition of the DNA damage repair pathway.
Oncol Rep. 2014; 32(6):2596-604 [PubMed] Related Publications
Nasopharyngeal carcinoma (NPC) is a leading cause of cancer-related mortality. Radiotherapy is one of the primary modalities for NPC treatment. However, in patients in the late stages of the disease, the local control rate and overall survival rate remain low. Therefore, it is urgent to identify new targets that can improve the outcome of radiotherapy in this neoplasm. In the present study, we investigated the effects of metformin on the radiosensitivity of NPC cells and explored the potential mechanisms. The radiosensitizing effects of metformin on NPC cells were measured by colony formation assay. Cell apoptosis was assessed by Hoechst 33342 staining analysis. DNA damage was detected by monitoring γ-H2AX foci with immunofluorescence. The changes in apotosis-related and DNA damage repair-related proteins were detected by western blotting. Our study demonstrated that metformin significantly reduced the cell viability, enhanced radiosensitivity and potentiated radiation-induced caspase-9/-3 cleavage in the NPC cells. In addition, metformin plus radiation significantly upregulated the expression of p-ATM, p-ATR, γ-H2AX and downregulated the expression of ATM, ATR, p95/NBS1, Rad50, DNA-PK, Ku70 and Ku80. Therefore, our results suggest that metformin possesses a strong radiosensitizing potential in NPC cells. This radiosensitizing effect was associated with inhibition of DNA double-strand break repair processes through HR repair and the NHEJ repair signaling pathway, thereby enhancing radiation-induced cell apoptosis. These findings imply that metformin is a potent radiation-sensitizing agent and may be a promising candidate for clinical evaluation as part of a combined regimen for the treatment of nasopharyngeal carcinoma.

Ando M, Hoyos V, Yagyu S, et al.
Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity.
Cancer Gene Ther. 2014; 21(11):472-82 [PubMed] Free Access to Full Article Related Publications
Delivery of suicide genes to solid tumors represents a promising tumor therapy strategy. However, slow or limited killing by suicide genes and ineffective targeting of the tumor has reduced effectiveness. We have adapted a suicide system based on an inducible caspase-9 (iC9) protein that is activated using a specific chemical inducer of dimerization (CID) for adenoviral-based delivery to lung tumors via mesenchymal stromal cells (MSCs). Four independent human non-small cell lung cancer (NSCLC) cell lines were transduced with adenovirus encoding iC9, and all underwent apoptosis when iC9 was activated by adding CID. However, there was a large variation in the percentage of cell killing induced by CID across the different lines. The least responsive cell lines were sensitized to apoptosis by combined inhibition of the proteasome using bortezomib. These results were extended to an in vivo model using human NSCLC xenografts. E1A-expressing MSCs replicated Ad.iC9 and delivered the virus to lung tumors in SCID mice. Treatment with CID resulted in some reduction of tumor growth, but addition of bortezomib led to greater reduction of tumor size. The enhanced apoptosis and anti-tumor effect of combining MSC-delivered Ad.iC9, CID and bortezomib appears to be due to increased stabilization of active caspase-3, as proteasomal inhibition increased the levels of cleaved caspase-9 and caspase-3. Knockdown of X-linked inhibitor of apoptosis protein (XIAP), a caspase inhibitor that targets active caspase-3 to the proteasome, also sensitized iC9-transduced cells to CID, suggesting that blocking the proteasome counteracts XIAP to permit apoptosis. Thus, MSC-based delivery of the iC9 suicide gene to human NSCLC effectively targets lung cancer cells for elimination. Combining this therapy with bortezomib, a drug that is otherwise inactive in this disease, further enhances the anti-tumor activity of this strategy.

Li M, Tan SY, Wang XF
Paeonol exerts an anticancer effect on human colorectal cancer cells through inhibition of PGE₂ synthesis and COX-2 expression.
Oncol Rep. 2014; 32(6):2845-53 [PubMed] Related Publications
Cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) can potentially affect most of the events in cancer development, including promotion of proliferation, resistance to apoptosis, angiogenesis, immune suppression and invasion. However, worldwide attention has predominantly centered on the cardiovascular toxicity of selective COX-2 inhibitors. Paeonol is a major active extract from the root bark of Paeonia suffruticosa Andrews with anti‑inflammatory, anti-oxidant, anti-allergic, anti-oxidation and antitumor effects. In the present study, we investigated the underlying mechanisms of paeonol in inducing apoptosis and aimed to ascertain whether its antitumor effect is associated with a reduction in COX-2 expression and a decrease in the levels of PGE2 in colorectal cancer cells. We observed that paeonol inhibited cell proliferation and induced apoptosis in a dose- and time-dependent manner in colorectal cancer cells, which was associated with a reduction in COX-2 expression and PGE2 synthesis. Treatment with the selective COX-2 inhibitor, celecoxib, or transient transfection of colorectal cancer cells with COX-2 siRNA, also inhibited cell proliferation and induced apoptosis. Western blot analysis showed that paeonol inhibited the activation of NF-κB, an upstream regulator of COX-2, and its translocation to the nucleus. Treatment with increasing doses of paeonol led to increased expression of pro-apoptotic factor Bax and decreased expression of anti-apoptotic factor Bcl-2. Caspase-3 and caspase-9 were activated, and paeonol induced loss of mitochondrial membrane potential, suggesting that the apoptosis induced by paeonol was mediated by mitochondrial pathways. In addition, paeonol significantly suppressed tumor growth in a xenograft tumor mouse model in a dose-dependent manner. Our findings indicate that paeonol exerts an antitumor effect on human colorectal cancer cells by inhibiting PGE2 production and COX-2 expression. We expect that paeonol may replace selective COX-2 inhibitors due to their toxic effects, and may offer a new strategy for the therapy of colorectal cancer.

Kim HS, Lim GY, Hwang J, et al.
Induction of apoptosis by obovatol as a novel therapeutic strategy for acute myeloid leukemia.
Int J Mol Med. 2014; 34(6):1675-80 [PubMed] Related Publications
Obovatol, a compound isolated from the bark cortex of Magnolia officinalis (cortex Magnoliae officinalis; M. officinalis), has been studied for use in the treatment of solid cancers. However, the mechanisms of action and the effects of obovatol against acute myeloid leukemia (AML) remain unclear and require further investigation. Therefore, this study was conducted using a human AML cell line (MM6). Obovatol increased pro-apoptotic (Bax) and decreased anti-apoptotic (Bcl-2) protein expression, resulting in caspase-3 and caspase-9 activation measured by caspase-Glo 3/7 assay. Furthermore, obovatol activated the mitogen-activated protein kinase (MAPK) signaling pathway [c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38] and inhibited the activation of the nuclear factor-κB (NF-κB) signaling pathway analyzed by western blot analysis. Taken together, these findings provide evidence that obovatol inhibits cell proliferation in AML and induces apoptosis through the activation of the MAPK pathway in addition to the intrinsic apoptotic pathway. In addition, obovatol suppressed the expression of mixed-lineage leukemia (MLL) target genes by inhibiting the activation of the NF-κB pathway. Therefore, these results suggest that obovatol may have potential for use in the treatment of leukemia.

Su B, Shi B, Tang Y, et al.
HMGN5 knockdown sensitizes prostate cancer cells to ionizing radiation.
Prostate. 2015; 75(1):33-44 [PubMed] Related Publications
BACKGROUND: High Mobility Group N (HMGN) proteins are a family of chromatin structural proteins that specifically bind to nucleosome core particles. HMGN5 is a novel and characteristic member of the HMGN protein family. We have previously found that HMGN5 is upregulated in prostate cancer and its downregulation had been demonstrated to induce apoptosis and G2-M cell cycle arrest.
METHODS: The radiosensitization effect of HMGN5 knockdown on PC3 and DU145 cells was assessed using clonogenic assay, flow cytometry, and comet assay. The DNA double-strand break (DSB) repair kinetics of HMGN5 knockdown and control cells after radiation exposure was evaluated using immunocytofluorescence. The mitochondrial reactive oxygen species (ROS) levels were estimated using Dihydrorhodamine 123 (DHR 123) probes. Expression of mitochondrial antioxidant MnSOD was measured by real-time PCR and Western blot. The expression of antiapoptotic proteins Bcl-2 and Bcl-xL as well as cleavage of caspase-3, caspase-9, and PARP were also measured using Western blot.
RESULTS: HMGN5 knockdown cells exhibit decreased clonogenic survival and increased apoptosis rate in response to 2-8 Gy ionizing radiation (IR). Loss of HMGN5 does not affect the DSB repair kinetics after radiation exposure. HMGN5 knockdown cells demonstrated increased mitochondrial ROS level and suppressed induction of MnSOD upon radiation compared with control cells upon radiation. Further, MnSOD knockdown resulted in inhibited cell viability as well as increased mitochondrial ROS level and apoptosis upon radiation in PC3 and DU145 cells. Finally, HMGN5 knockdown cells showed significantly decreased levels of antiapoptotic proteins Bcl-2 and Bcl-xL as well as increased cleavage of caspase-3, caspase-9, and PARP compared with control cells after radiation.
CONCLUSIONS: HMGN5 knockdown sensitizes prostate cancer cells to ionizing radiation, and the radiosensitization effect may be partially mediated through suppressed induction of MnSOD and enhanced activation of apoptosis pathway in response to IR.

Chen H, Ma HR, Gao YH, et al.
Isoflavones extracted from chickpea Cicer arietinum L. sprouts induce mitochondria-dependent apoptosis in human breast cancer cells.
Phytother Res. 2015; 29(2):210-9 [PubMed] Related Publications
Isoflavones are important chemical components of the seeds and sprouts of chickpeas. We systematically investigated the effects of isoflavones extracted from chickpea sprouts (ICS) on the human breast cancer cell lines SKBr3 and Michigan Cancer Foundation-7 (MCF-7). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed that ICS (10-60 µg/mL) significantly inhibited the proliferation of both cell lines in a time-dependent and dose-dependent fashion. Wright-Giemsa staining as well as annexin V-fluorescein isothiocyanate and propidium iodide (Annexin V/PI) staining showed that ICS significantly increased cytoclasis and apoptotic body formation. Quantitative Annexin V/PI assays further showed that the number of apoptotic cells increased in a dose-dependent manner following ICS treatment. Semiquantitative reverse transcription PCR showed that ICS increased the expression of the apoptosis-promoting gene Bcl-2-associated X protein and decreased the expression of the antiapoptotic gene Bcl-2. Western blot analysis showed that treatment of SKBr3 and MCF-7 cells with ICS increased the expression of caspase 7, caspase 9, P53, and P21 in a dose-dependent manner. Flow cytometry assays using the fluorescent probe 3,3'-dihexyloxacarbocyanine iodide showed a dose-dependent decrease in mitochondrial membrane potential following ICS treatment. Treatment using ICS also induced a dose-dependent increase in reactive oxygen species production. This is the first study to demonstrate that ICS may be a chemopreventive or therapeutic agent against breast cancer.

Abu N, Akhtar MN, Yeap SK, et al.
Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro.
PLoS One. 2014; 9(10):e105244 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.
METHODS: MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.
RESULTS: We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.
CONCLUSIONS: FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.

Jelínková I, Šafaříková B, Vondálová Blanářová O, et al.
Platinum(IV) complex LA-12 exerts higher ability than cisplatin to enhance TRAIL-induced cancer cell apoptosis via stimulation of mitochondrial pathway.
Biochem Pharmacol. 2014; 92(3):415-24 [PubMed] Related Publications
In search for novel strategies in colon cancer treatment, we investigated the unique ability of platinum(IV) complex LA-12 to efficiently enhance the killing effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), and compared it with the sensitizing action of cisplatin. We provide the first evidence that LA-12 primes human colon cancer cells for TRAIL-induced cytotoxicity by p53-independent activation of the mitochondrial apoptotic pathway. The cooperative action of LA-12 and TRAIL was associated with stimulation of Bax/Bak activation, drop of mitochondrial membrane potential, caspase-9 activation, and a shift of the balance among Bcl-2 family proteins in favor of the pro-apoptotic members. In contrast to cisplatin, LA-12 was a potent inducer of ERK-mediated Noxa and BimL protein upregulation, and more effectively enhanced TRAIL-induced apoptosis in the absence of Bax. The cooperative action of LA-12 and TRAIL was augmented following the siRNA-mediated silencing of Mcl-1 in both Bax proficient/deficient cells. We newly demonstrated that LA-12 induced ERK-mediated c-Myc upregulation, and proved that c-Myc silencing inhibited the mitochondrial activation and apoptosis in colon cancer cells treated with LA-12 and TRAIL. The LA-12-mediated sensitization to TRAIL-induced apoptosis was demonstrated in several colon cancer cell lines, further underscoring the general relevance of our findings. The selective action of LA-12 was documented by preferential priming of cancer but not normal colon cancer cells to TRAIL killing effects. Our work highlights the promising potential of LA-12 over cisplatin to enhance the colon cancer cell sensitivity to TRAIL-induced apoptosis, and provides new mechanistic insights into their cooperative action.

Hu R, Li J, Liu Z, et al.
GDC-0152 induces apoptosis through down-regulation of IAPs in human leukemia cells and inhibition of PI3K/Akt signaling pathway.
Tumour Biol. 2015; 36(2):577-84 [PubMed] Related Publications
The inhibitor of apoptosis proteins (IAPs) is closely related to leukemia apoptosis. The present study was undertaken to determine the molecular mechanisms by which GDC-0152, an IAP inhibitor, induces apoptosis in human leukemia cells (K562 and HL60 cells). GDC-0152 inhibited the proliferation of K562 and HL60 cells in a dose- and time-dependent manner, which was largely attributed to intrinsic apoptosis. GDC-0152 down-regulated the IAPs including X-linked inhibitor of apoptosis protein (XIAP), cellular inhibitor of apoptosis protein-1 (cIAP1), and cellular inhibitor of apoptosis protein-2 (cIAP2) expression and induced the activation of caspase-9 and caspase-3. GDC-0152-induced cell proliferation inhibition in K562 cells was prevented by pan-caspase inhibitor. GDC-0152 also inhibited PI3K and Akt expression in K562 and HL60 cells. Taken together, these findings suggest that GDC-0152 results in human leukemia apoptosis through caspase-dependent mechanisms involving down-regulation of IAPs and inhibition of PI3K/Akt signaling.

Ou X, Chen Y, Cheng X, et al.
Potentiation of resveratrol-induced apoptosis by matrine in human hepatoma HepG2 cells.
Oncol Rep. 2014; 32(6):2803-9 [PubMed] Related Publications
Resveratrol, a natural polyphenolic phytochemical, has received considerable attention due to its potential chemopreventive and chemotherapeutic properties. In the present study, we first evaluated the growth-inhibitory effect of resveratrol on HepG2 cells and explored the underlying molecular mechanisms. Resveratrol inhibited proliferation and induced apoptosis in HepG2 cells via activation of caspase-9 and caspase-3, upregulation of the Bax/Bcl-2 ratio and induction of p53 expression. Cell cycle analysis demonstrated that resveratrol arrested cell cycle progression in the G1 and S phase. We further focused on the combination of matrine, a natural component extracted from the traditional Chinese medical herb Sophora flavescens Ait., as a mechanism to potentiate the growth-inhibitory effect of resveratrol on HepG2 cells. Both MTT and colony formation assay results indicated that the combined treatment of resveratrol and matrine exhibited a synergistic antiproliferative effect. In addition, resveratrol-induced apoptosis was significantly enhanced by matrine, which could be attributed to activation of caspase-3 and caspase-9, downregulation of survivin, induction of reactive oxygen species (ROS) generation and disruption of mitochondria membrane potential (Δψm). Our findings suggest that the combination treatment of resveratrol and matrine is a promising novel anticancer strategy for liver cancer; it also provides new insights into the mechanisms of combined therapy.

Momose I, Abe H, Watanabe T, et al.
Antitumor effects of tyropeptin-boronic acid derivatives: New proteasome inhibitors.
Cancer Sci. 2014; 105(12):1609-15 [PubMed] Related Publications
The proteasome degrades numerous regulatory proteins that are critical for tumor growth. Thus, proteasome inhibitors are promising antitumor agents. New proteasome inhibitors, such as tyropeptins and tyropeptin-boronic acid derivatives, have a potent inhibitory activity. Here we report the antitumor effects of two new tyropeptin-boronic acid derivatives, AS-06 and AS-29. AS-06 and AS-29 significantly suppress the degradation of the proteasome-sensitive fluorescent proteins in HEK293PS cells, and induce the accumulation of ubiquitinated proteins in human multiple myeloma cells. We show that these derivatives also suppress the degradation of the NF-κB inhibitor IκB-α and the nuclear translocation of NF-κB p65 in multiple myeloma cells, resulting in the inhibition of NF-κB activation. Furthermore, we demonstrate that AS-06 and AS-29 induce apoptosis through the caspase-8 and caspase-9 cascades. In a xenograft mouse model, i.v. administration of tyropeptin-boronic acid derivatives inhibits proteasome in tumors and clearly suppresses tumor growth in mice bearing human multiple myeloma. Our results indicate that tyropeptin-boronic acid derivatives could be lead therapeutic agents against human multiple myeloma.

Liu DL, Bu HQ, Jin HM, et al.
Enhancement of the effects of gemcitabine against pancreatic cancer by oridonin via the mitochondrial caspase-dependent signaling pathway.
Mol Med Rep. 2014; 10(6):3027-34 [PubMed] Related Publications
Gemcitabine is a first‑line chemotherapeutic agent used in the treatment of pancreatic cancer; however resistance of the disease to the drug often develops over time. Agents that can either enhance the effects of gemcitabine, or help to overcome the chemoresistance to the drug are needed for the successful treatment of pancreatic cancer. Oridonin is one such agent which is safe and multi‑targeted and has previously been shown to induce apoptosis in other tumor cells, through mitochondrial signaling pathways. The aims of the present study were to evaluate whether oridonin may enhance the effects of gemcitabine on pancreatic cancer in vitro and to investigate the possible mechanisms of this enhancement. In vitro studies have previously shown that oridonin can inhibit the proliferation of the Panc‑1 pancreatic cancer cell line, and potentiate gemcitabine‑induced apoptosis, which was shown to be associated with cell cycle arrest in the G1 phase. Western blot and quantitative polymerase chain reaction analyses demonstrated that the expression levels of the anti‑apoptotic gene Bcl‑2 and the Bcl‑2/Bax ratio in the oridonin and the oridonin plus gemcitabine groups were significantly downregulated as compared with the gemcitabine treatment and control groups. The expression levels of pro‑apoptotic genes Bax, cytochrome c (cyt c), and caspase‑3 and ‑9 in the oridonin and the combination groups were significantly upregulated as compared with the other two groups. The results suggested that oridonin improved the anti‑tumor effects of gemcitabine through the enhancement of gemcitabine‑induced apoptosis.This mechanism may be through the downregulation of Bcl‑2 expression and the upregulation of Bax expression, resulting in the reduction of the Bcl‑2/Bax ratio. These effects may promote the release of cyt c from the mitochondria into the cytoplasm thus triggering the mitochondrial apoptosis signaling pathway. Furthermore, caspase‑3 and ‑9 were shown to be activated as a result of the induction of apoptosis.

Jin Y, Lyu Y, Tang X, et al.
Lupeol enhances radiosensitivity of human hepatocellular carcinoma cell line SMMC-7721 in vitro and in vivo.
Int J Radiat Biol. 2015; 91(2):202-8 [PubMed] Related Publications
PURPOSE: To investigate the effect of lupeol, a pentacyclictriterpene, on the radiosensitivity of a human hepatocellular carcinoma (HCC) in vitro and in vivo xenografts.
METHODS: SMMC-7721 cells were exposed to γ-radiation with or without lupeol and assayed for proliferation, clonogenic survival, apoptosis and cell cycle distribution. The cells were also analyzed by Western blotting for the expression levels of the proteins involved in apoptosis. Finally radiosensitization by lupeol was assessed in HCC xenograft model.
RESULTS: Lupeol further suppressed the proliferation and colonogenic survival of the SMMC-7721 cells exposed to γ-radiation. It could also induce the accumulation of cells in G2/M phase together with γ-radiation. The data also indicated that lupeol sensitized SMMC-7721 cells exposed to γ-radiation to apoptosis and activated the apoptotic proteins including caspase-9 and PARP. Administration of lupeol with radiation in HCC xenograft model produced a significant tumor growth delay compared with radiation or lupeol alone and was well tolerated.
CONCLUSION: Lupeol significantly enhanced the radiosensitivity of SMMC-7721 cells in vitro and in vivo. The mechanisms involved could be cell cycle arrest and induction of apoptosis. Our studies suggest that lupeol has the potential to be developed as an adjuvant for radiotherapy in HCC.

Ma B, Wang Y, Zhou X, et al.
Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin.
J Cancer Res Clin Oncol. 2015; 141(3):419-29 [PubMed] Related Publications
PURPOSE: The potent anticancer efficacy of oncolytic viruses has been verified in Clinic in recent years. Cisplatin (DDP) is one of most common chemotherapeutic drugs, but is accompanied by side effects and drug resistance. Our previous studies have shown the strategy of cancer -targeting gene-viro-therapy (CTGVT) mediated by the oncolytic virus ZD55 containing the XAF1 cDNA (ZD55-XAF1), which exhibited potent antitumor effects in various tumor cells and no apparent toxicities on normal cells. In the study, the CTGVT strategy is broadened by combining DDP with ZD55-XAF1 for growth inhibition of hepatocellular carcinoma (HCC) cells.
METHODS: The transgenic expression was evaluated by both in vitro and in vivo experiments, and the enhanced inhibitory effect of ZD55-XAF1 combined with cisplatin was assessed in HCC cells. The cytotoxicity on normal liver cells was evaluated by MTT assay and apoptotic cell staining. Activation of caspase-9 and PARP for apoptosis was further detected by Western blot analysis. The in vivo antitumor efficacy of combination treatment with cisplatin and ZD55-XAF1 was estimated in an HCC xenograft mouse model.
RESULTS: We found that the combination of ZD55-XAF1 and cisplatin showed enhanced inhibitory effects on the proliferation of HCC cells in vitro and tumor growth in mice. Furthermore, the combined treatment of ZD55-XAF1 and DDP decreases the chemotherapy dose needed to achieve the same inhibitory effect without overlapping toxicities on normal liver cells and induces tumor cell apoptosis via the activation of caspase-9/PARP pathway.
CONCLUSION: Thus, these data suggest that the chemo-gene-viro-therapeutic strategy by combining ZD55-XAF1 and DDP reveals a novel therapeutic strategy for hepatocellular carcinoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CASP9, Cancer Genetics Web: http://www.cancer-genetics.org/CASP9.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999