EIF4A2

Gene Summary

Gene:EIF4A2; eukaryotic translation initiation factor 4A2
Aliases: DDX2B, EIF4A, EIF4F, BM-010, eIF4A-II, eIF-4A-II
Location:3q28
Summary:-
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:eukaryotic initiation factor 4A-II
HPRD
Source:NCBIAccessed: 11 August, 2015

Ontology:

What does this gene/protein do?
Show (19)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 12 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Oligodeoxyribonucleotides, Antisense
  • Neoplastic Cell Transformation
  • Muscle Proteins
  • Cloning, Molecular
  • Pleura
  • Follicular Lymphoma
  • Cluster Analysis
  • Cell Movement
  • Microdissection
  • RTPCR
  • DNA-Binding Proteins
  • Disease Progression
  • miRNA-21
  • Peptide Nucleic Acids
  • Oligonucleotide Array Sequence Analysis
  • HEK293 Cells
  • Epithelium
  • Chromosome 3
  • Proto-Oncogene Proteins c-bcl-6
  • Translocation
  • Base Sequence
  • Gene Rearrangement
  • Cell Proliferation
  • Sequence Alignment
  • Lasers
  • Polymerase Chain Reaction
  • MicroRNAs
  • DEAD-box RNA Helicases
  • Cancer Gene Expression Regulation
  • Pleural Neoplasms
  • BCL2 protein
  • Xenograft Models
  • ANKRD46
  • Genetic Markers
  • Non-Hodgkin Lymphoma
  • Transcription Factors
  • Messenger RNA
  • Mice, Inbred BALB C
  • Breast Cancer
  • Gene Expression Profiling
Tag cloud generated 11 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: EIF4A2 (cancer-related)

Bhat M, Robichaud N, Hulea L, et al.
Targeting the translation machinery in cancer.
Nat Rev Drug Discov. 2015; 14(4):261-78 [PubMed] Related Publications
Dysregulation of mRNA translation is a frequent feature of neoplasia. Many oncogenes and tumour suppressors affect the translation machinery, making aberrant translation a widespread characteristic of tumour cells, independent of the genetic make-up of the cancer. Therefore, therapeutic agents that target components of the protein synthesis apparatus hold promise as novel anticancer drugs that can overcome intra-tumour heterogeneity. In this Review, we discuss the role of translation in cancer, with a particular focus on the eIF4F (eukaryotic translation initiation factor 4F) complex, and provide an overview of recent efforts aiming to 'translate' these results to the clinic.

Zhan Y, Dahabieh MS, Rajakumar A, et al.
The role of eIF4E in response and acquired resistance to vemurafenib in melanoma.
J Invest Dermatol. 2015; 135(5):1368-76 [PubMed] Related Publications
In eukaryotic cells, the rate-limiting component for cap-dependent mRNA translation is the translation initiation factor eIF4E. eIF4E is overexpressed in a variety of human malignancies, but whether it has a role in melanoma remains obscure. We hypothesized that eIF4E promotes melanoma cell proliferation and facilitates the development of acquired resistance to the BRAF inhibitor vemurafenib. We show that eIF4E is overexpressed in a panel of melanoma cell lines, compared with immortalized melanocytes. Knockdown of eIF4E significantly repressed the proliferation of a subset of melanoma cell lines. Moreover, in BRAF(V600E) melanoma cell lines, vemurafenib inhibits 4E-BP1 phosphorylation, thus promoting its binding to eIF4E. Cap-binding and polysome profiling analysis confirmed that vemurafenib stabilizes the eIF4E-4E-BP1 association and blocks mRNA translation, respectively. Conversely, in cells with acquired resistance to vemurafenib, there is an increased dependence on eIF4E for survival; 4E-BP1 is highly phosphorylated and thus eIF4E-4E-BP1 associations are impeded. Moreover, increasing eIF4E activity by silencing 4E-BP1/2 renders vemurafenib-responsive cells more resistant to BRAF inhibition. In conclusion, these data suggest that therapeutically targeting eIF4E may be a viable means of inhibiting melanoma cell proliferation and overcoming vemurafenib resistance.

Mishra R, Watanabe T, Kimura MT, et al.
Identification of a novel E-box binding pyrrole-imidazole polyamide inhibiting MYC-driven cell proliferation.
Cancer Sci. 2015; 106(4):421-9 [PubMed] Article available free on PMC after 01/04/2016 Related Publications
The MYC transcription factor plays a crucial role in the regulation of cell cycle progression, apoptosis, angiogenesis, and cellular transformation. Due to its oncogenic activities and overexpression in a majority of human cancers, it is an interesting target for novel drug therapies. MYC binding to the E-box (5'-CACGTGT-3') sequence at gene promoters contributes to more than 4000 MYC-dependent transcripts. Owing to its importance in MYC regulation, we designed a novel sequence-specific DNA-binding pyrrole-imidazole (PI) polyamide, Myc-5, that recognizes the E-box consensus sequence. Bioinformatics analysis revealed that the Myc-5 binding sequence appeared in 5'- MYC binding E-box sequences at the eIF4G1, CCND1, and CDK4 gene promoters. Furthermore, ChIP coupled with detection by quantitative PCR indicated that Myc-5 has the ability to inhibit MYC binding at the target gene promoters and thus cause downregulation at the mRNA level and protein expression of its target genes in human Burkitt's lymphoma model cell line, P493.6, carrying an inducible MYC repression system and the K562 (human chronic myelogenous leukemia) cell line. Single i.v. injection of Myc-5 at 7.5 mg/kg dose caused significant tumor growth inhibition in a MYC-dependent tumor xenograft model without evidence of toxicity. We report here a compelling rationale for the identification of a PI polyamide that inhibits a part of E-box-mediated MYC downstream gene expression and is a model for showing that phenotype-associated MYC downstream gene targets consequently inhibit MYC-dependent tumor growth.

de la Parra C, Borrero-Garcia LD, Cruz-Collazo A, et al.
Equol, an isoflavone metabolite, regulates cancer cell viability and protein synthesis initiation via c-Myc and eIF4G.
J Biol Chem. 2015; 290(10):6047-57 [PubMed] Article available free on PMC after 06/03/2016 Related Publications
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER-) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.

Hsu HS, Lin MH, Jang YH, et al.
The 4E-BP1/eIF4E ratio is a determinant for rapamycin response in esophageal cancer cells.
J Thorac Cardiovasc Surg. 2015; 149(1):378-85 [PubMed] Related Publications
OBJECTIVES: Rapamycin inhibits products of molecular pathways in esophageal squamous cell carcinoma and limits tumor cell growth by targeting 4E-BP1- and eIF4E-dependent gene translation. In this study, we investigate the influence of 4E-BP1-to-eIF4E ratio on rapamycin response in esophageal squamous cell carcinoma cells, and the underlying mechanism is discussed.
METHODS: The response to rapamycin treatment was examined in 6 esophageal cancer cell lines. Adjustment of the 4E-BP1/eIF4E ratio was carried out by knockdown or overexpression of 4E-BP1 and eIF4E. The relationship between Egr-1 and 4E-BP1 expression in esophageal cancer cells was also studied.
RESULTS: The 4E-BP1/eIF4E ratio was adjusted to evaluate the response to rapamycin treatment in TE1 and TE2 esophageal cancer cells. TE2 cells are sensitized to rapamycin treatment after overexpression of 4E-BP1 or knockdown of eIF4E; TE1 cells become resistant to rapamycin after knockdown of 4E-BP1 or overexpression of eIF4E. These data suggest that the 4E-BP1/eIF4E ratio is a determinant for the response of TE1 and TE2 cells to rapamycin treatment. Egr-1 expression was higher in TE2 cells compared with other esophageal cancer cell lines, and its knockdown increased 4E-BP1 expression in TE2 cells, which became sensitive to rapamycin treatment.
CONCLUSIONS: The 4E-BP1/eIF4E ratio is a determinant of the response of rapamycin treatment in esophageal cancer cells. Egr-1 can reduce 4E-BP1 gene expression and render esophageal squamous cell carcinoma cells resistant to rapamycin with a relatively low 4E-BP1/eIF4E ratio. Thus, the 4E-BP1/eIF4E ratio may represent a therapeutic index for the prediction of clinical outcome of rapamycin treatment in patients with esophageal squamous cell carcinoma.

Pang W, Tian X, Bai F, et al.
Pim-1 kinase is a target of miR-486-5p and eukaryotic translation initiation factor 4E, and plays a critical role in lung cancer.
Mol Cancer. 2014; 13:240 [PubMed] Article available free on PMC after 06/03/2016 Related Publications
BACKGROUND: Pim-1 kinase is a proto-oncogene and its dysregulation contributes to tumorigenesis and progression of a variety of malignancies. Pim-1 was suggested as a therapeutic target of cancers. The functional relevance of Pim-1 and the mechanism underlying its dysregulation in lung tumorigenesis remained unclear. This study aimed to investigate if Pim-1 has important functions in non-small-cell lung cancer (NSCLC) by: 1) evaluating the clinicopathologic significance of Pim-1 through analysing its expression in 101 human NSCLCs tissues using quantitative PCR, Western Blot and immunohistochemical studies, 2) determining its role in NSCLC and drug resistance using in vitro assays, and 3) investigating the regulatory mechanism of Pim-1 dysregulation in lung tumorigenesis.
RESULTS: Pim-1 was upregulated in 66.2% of the lung tumor tissues and its expression was significantly related to advanced stage (P = 0.019) and lymph node metastasis (P = 0.026). Reduced Pim-1 expression suppressed NSCLC cell growth, cell cycle progression and migration in vitro. Pim-1 was a novel target of miR-486-5p determined by luciferase report assay, and ectopic miR-486-5p expression in cancer cells reduced Pim-1 expression. Furthermore, eukaryotic translation initiation factor 4E (eIF4E) controlled the synthesis of Pim-1 in NSCLC cells, and its expression was positively associated with that of Pim-1 in NSCLC tissue specimens (r = 0.504, p < 0.001). The downregulated miR-486-5p and upregulated eIF4E in NSCLC cells led to the overexpression of Pim-1 by relieving the inhibitory effect of the 3'-UTR or 5'-UTR of Pim-1 mRNA, respectively. Moreover, Pim-1 knockdown sensitized NSCLC cells to cisplatin and EGFR tyrosine kinase inhibitor, gefitinib.
CONCLUSIONS: Pim-1 kinase could be a critical survival signaling factor in NSCLC, and regulated by miR-486-5p and eIF4E. Pim-1 kinase may provide a potential target for diagnosis and treatment for lung cancer.

Steinhardt JJ, Peroutka RJ, Mazan-Mamczarz K, et al.
Inhibiting CARD11 translation during BCR activation by targeting the eIF4A RNA helicase.
Blood. 2014; 124(25):3758-67 [PubMed] Article available free on PMC after 06/03/2016 Related Publications
Human diffuse large B-cell lymphomas (DLBCLs) often aberrantly express oncogenes that generally contain complex secondary structures in their 5' untranslated region (UTR). Oncogenes with complex 5'UTRs require enhanced eIF4A RNA helicase activity for translation. PDCD4 inhibits eIF4A, and PDCD4 knockout mice have a high penetrance for B-cell lymphomas. Here, we show that on B-cell receptor (BCR)-mediated p70s6K activation, PDCD4 is degraded, and eIF4A activity is greatly enhanced. We identified a subset of genes involved in BCR signaling, including CARD11, BCL10, and MALT1, that have complex 5'UTRs and encode proteins with short half-lives. Expression of these known oncogenic proteins is enhanced on BCR activation and is attenuated by the eIF4A inhibitor Silvestrol. Antigen-experienced immunoglobulin (Ig)G(+) splenic B cells, from which most DLBCLs are derived, have higher levels of eIF4A cap-binding activity and protein translation than IgM(+) B cells. Our results suggest that eIF4A-mediated enhancement of oncogene translation may be a critical component for lymphoma progression, and specific targeting of eIF4A may be an attractive therapeutic approach in the management of human B-cell lymphomas.

Sobol A, Galluzzo P, Liang S, et al.
Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.
J Cell Physiol. 2015; 230(5):1064-74 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis.

Robert F, Roman W, Bramoullé A, et al.
Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma.
Proc Natl Acad Sci U S A. 2014; 111(37):13421-6 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Enhanced protein synthesis capacity is associated with increased tumor cell survival, proliferation, and resistance to chemotherapy. Cancers like multiple myeloma (MM), which display elevated activity in key translation regulatory nodes, such as the PI3K/mammalian target of rapamycin and MYC-eukaryotic initiation factor (eIF) 4E pathways, are predicted to be particularly sensitive to therapeutic strategies that target this process. To identify novel vulnerabilities in MM, we undertook a focused RNAi screen in which components of the translation apparatus were targeted. Our screen was designed to identify synthetic lethal relationships between translation factors or regulators and dexamethasone (DEX), a corticosteroid used as frontline therapy in this disease. We find that suppression of all three subunits of the eIF4F cap-binding complex synergizes with DEX in MM to induce cell death. Using a suite of small molecules that target various activities of eIF4F, we observed that cell survival and DEX resistance are attenuated upon eIF4F inhibition in MM cell lines and primary human samples. Levels of MYC and myeloid cell leukemia 1, two known eIF4F-responsive transcripts and key survival factors in MM, were reduced upon eIF4F inhibition, and their independent suppression also synergized with DEX. Inhibition of eIF4F in MM exerts pleotropic effects unraveling a unique therapeutic opportunity.

Wolfe AL, Singh K, Zhong Y, et al.
RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer.
Nature. 2014; 513(7516):65-70 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
The translational control of oncoprotein expression is implicated in many cancers. Here we report an eIF4A RNA helicase-dependent mechanism of translational control that contributes to oncogenesis and underlies the anticancer effects of silvestrol and related compounds. For example, eIF4A promotes T-cell acute lymphoblastic leukaemia development in vivo and is required for leukaemia maintenance. Accordingly, inhibition of eIF4A with silvestrol has powerful therapeutic effects against murine and human leukaemic cells in vitro and in vivo. We use transcriptome-scale ribosome footprinting to identify the hallmarks of eIF4A-dependent transcripts. These include 5' untranslated region (UTR) sequences such as the 12-nucleotide guanine quartet (CGG)4 motif that can form RNA G-quadruplex structures. Notably, among the most eIF4A-dependent and silvestrol-sensitive transcripts are a number of oncogenes, superenhancer-associated transcription factors, and epigenetic regulators. Hence, the 5' UTRs of select cancer genes harbour a targetable requirement for the eIF4A RNA helicase.

Pettersson F, Del Rincon SV, Miller WH
Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond.
Expert Opin Ther Targets. 2014; 18(9):1035-48 [PubMed] Related Publications
INTRODUCTION: The eukaryotic translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis, and an oncogene. Its expression and activity are frequently elevated in cancer, and have been shown to correlate with poor prognosis. Efforts to target eIF4E have thus yielded much interest, with some clinical success.
AREAS COVERED: We provide an overview of eIF4E function and regulation, and its role in hematological malignancies and solid tumors. Activation of eIF4E via upstream signaling pathways that are frequently deregulated in cancer and the role of eIF4E phosphorylation are discussed. We present an updated review of different approaches to target eIF4E function in the lab and in the clinic.
EXPERT OPINION: The prospect of effectively targeting eIF4E in cancer is very attractive, because eIF4E is a common downstream node on which multiple oncogenic signaling pathways converge. However, efforts to do so have yielded limited clinical success so far. While active-site inhibitors of mammalian target of rapamycin show some promise, and inhibitors of eIF4E phosphorylation may emerge as clinical candidates, the only drug to date that has demonstrated antitumor activity associated with eIF4E inhibition in patients is ribavirin. Further studies will certainly aid the design of better compounds and rational combination therapies.

Cunningham JT, Moreno MV, Lodi A, et al.
Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer.
Cell. 2014; 157(5):1088-103 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Cancer cells must integrate multiple biosynthetic demands to drive indefinite proliferation. How these key cellular processes, such as metabolism and protein synthesis, crosstalk to fuel cancer cell growth is unknown. Here, we uncover the mechanism by which the Myc oncogene coordinates the production of the two most abundant classes of cellular macromolecules, proteins, and nucleic acids in cancer cells. We find that a single rate-limiting enzyme, phosphoribosyl-pyrophosphate synthetase 2 (PRPS2), promotes increased nucleotide biosynthesis in Myc-transformed cells. Remarkably, Prps2 couples protein and nucleotide biosynthesis through a specialized cis-regulatory element within the Prps2 5' UTR, which is controlled by the oncogene and translation initiation factor eIF4E downstream Myc activation. We demonstrate with a Prps2 knockout mouse that the nexus between protein and nucleotide biosynthesis controlled by PRPS2 is crucial for Myc-driven tumorigenesis. Together, these studies identify a translationally anchored anabolic circuit critical for cancer cell survival and an unexpected vulnerability for "undruggable" oncogenes, such as Myc. PAPERFLICK:

Li W, Jin X, Deng X, et al.
The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E.
Biochem Biophys Res Commun. 2014; 449(2):235-40 [PubMed] Related Publications
Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associated with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3'-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients.

Zhao Y, Pang TY, Wang Y, et al.
LMP1 stimulates the transcription of eIF4E to promote the proliferation, migration and invasion of human nasopharyngeal carcinoma.
FEBS J. 2014; 281(13):3004-18 [PubMed] Related Publications
Eukaryotic translation initiation factor 4E (eIF4E) is the rate-limiting translation initiation factor for many oncogenes. Previous studies have shown eIF4E overexpression in nasopharyngeal carcinoma (NPC). We aimed to study whether viral oncogene latent membrane protein 1 (LMP1) stimulates the transcription of eIF4E to promote NPC malignancy. In NPC cell lines (CNE1 and CNE2), ectopic LMP1 significantly increased the mRNA and protein levels of eIF4E and the transcriptional activity of the eIF4E promoter in a LMP1-plasmid-transfected dose-dependent manner. As a backward experiment, knocking down of LMP1 significantly reduced eIF4E mRNA in B95-8 cells. In the high LMP1 expression condition, knocking down of c-Myc significantly reduced eIF4E mRNA in both NPC and B95-8 cells, and knocking down of eIF4E significantly inhibited the tumor proliferation, migration and invasion promoted by LMP1. The results indicated that LMP1 stimulates the transcription of eIF4E via c-Myc to promote NPC. To the best of our knowledge, this is the first evidence that LMP1 stimulates the transcription of eIF4E. This might be an important cause of the overexpression of eIF4E in NPC and be the novel mechanism by which LMP1 initiates cancer. LMP1-stimulated eIF4E initiates the translation of those oncogenes transcriptionally activated by LMP1 to amplify and pass down the carcinogenesis signals launched by LMP1.

Fay MM, Clegg JM, Uchida KA, et al.
Enhanced arginine methylation of programmed cell death 4 protein during nutrient deprivation promotes tumor cell viability.
J Biol Chem. 2014; 289(25):17541-52 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
The role of programmed cell death 4 (PDCD4) in tumor biology is context-dependent. PDCD4 is described as a tumor suppressor, but its coexpression with protein arginine methyltransferase 5 (PRMT5) promotes accelerated tumor growth. Here, we report that PDCD4 is methylated during nutrient deprivation. Methylation occurs because of increased stability of PDCD4 protein as well as increased activity of PRMT5 toward PDCD4. During nutrient deprivation, levels of methylated PDCD4 promote cell viability, which is dependent on an enhanced interaction with eIF4A. Upon recovery from nutrient deprivation, levels of methylated PDCD4 are regulated by phosphorylation, which controls both the localization and stability of methylated PDCD4. This study reveals that, in response to particular environmental cues, the role of PDCD4 is up-regulated and is advantageous for cell viability. These findings suggest that the methylated form of PDCD4 promotes tumor viability during nutrient deprivation, ultimately allowing the tumor to grow more aggressively.

Shi Y, Frost P, Hoang B, et al.
MNK1-induced eIF-4E phosphorylation in myeloma cells: a pathway mediating IL-6-induced expansion and expression of genes involved in metabolic and proteotoxic responses.
PLoS One. 2014; 9(4):e94011 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Because multiple myeloma (MM) cells are at risk for endoplasmic reticulum (ER) stress, they require a carefully regulated mechanism to promote protein translation of selected transcripts when proliferation is stimulated. MAPK-interacting kinases (MNKs) may provide this mechanism by enhancing cap-dependent translation of a small number of critical transcripts. We, thus, tested whether MNKs played a role in MM responses to the myeloma growth factor interleukin-6 (IL-6). IL-6 activated MNK1 phosphorylation and induced phosphorylation of its substrate, eIF-4E, in MM lines and primary specimens. MNK paralysis, achieved pharmacologically or by shRNA, prevented MM expansion stimulated by IL-6. A phosphodefective eIF-4E mutant also prevented the IL-6 response, supporting the notion that MNK's role was via phosphorylation of eIF-4E. Both pharmacological MNK inhibition and expression of the phosphodefective eIF-4E mutant inhibited MM growth in mice. Although critical for IL-6-induced expansion, eIF-4E phosphorylation had no significant effect on global translation or Ig expression. Deep sequencing of ribosome-protected mRNAs revealed a repertoire of genes involved in metabolic processes and ER stress modulation whose translation was regulated by eIF-4E phosphorylation. These data indicate MM cells exploit the MNK/eIF-4E pathway for selective mRNA translation without enhancing global translation and risking ER stress.

Mazan-Mamczarz K, Zhao XF, Dai B, et al.
Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development.
PLoS Genet. 2014; 10(1):e1004105 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.

Grzmil M, Huber RM, Hess D, et al.
MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas.
J Clin Invest. 2014; 124(2):742-54 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
High levels of mammalian target of rapamycin complex 1 (mTORC1) activity in malignant gliomas promote tumor progression, suggesting that targeting mTORC1 has potential as a therapeutic strategy. Remarkably, clinical trials in patients with glioma revealed that rapamycin analogs (rapalogs) have limited efficacy, indicating activation of resistance mechanisms. Targeted depletion of MAPK-interacting Ser/Thr kinase 1 (MNK1) sensitizes glioma cells to the mTORC1 inhibitor rapamycin through an indistinct mechanism. Here, we analyzed how MNK1 and mTORC1 signaling pathways regulate the assembly of translation initiation complexes, using the cap analog m7GTP to enrich for initiation complexes in glioma cells followed by mass spectrometry-based quantitative proteomics. Association of eukaryotic translation initiation factor 4E (eIF4E) with eIF4E-binding protein 1 (4EBP1) was regulated by the mTORC1 pathway, whereas pharmacological blocking of MNK activity by CGP57380 or MNK1 knockdown, along with mTORC1 inhibition by RAD001, increased 4EBP1 binding to eIF4E. Furthermore, combined MNK1 and mTORC1 inhibition profoundly inhibited 4EBP1 phosphorylation at Ser65, protein synthesis and proliferation in glioma cells, and reduced tumor growth in an orthotopic glioblastoma (GBM) mouse model. Immunohistochemical analysis of GBM samples revealed increased 4EBP1 phosphorylation. Taken together, our data indicate that rapalog-activated MNK1 signaling promotes glioma growth through regulation of 4EBP1 and indicate a molecular cross-talk between the mTORC1 and MNK1 pathways that has potential to be exploited therapeutically.

Xu M, Wang Y, Chen L, et al.
Down-regulation of ribosomal protein S15A mRNA with a short hairpin RNA inhibits human hepatic cancer cell growth in vitro.
Gene. 2014; 536(1):84-9 [PubMed] Related Publications
Ribosomal protein s15a (RPS15A) is a highly conserved protein that promotes mRNA/ribosome interactions early in translation. Recent evidence showed that RPS15A could stimulate growth in yeast, plant and human lung carcinoma. Here we report that RPS15A knockdown could inhibit hepatic cancer cell growth in vitro. When transduced with shRPS15A-containing lentivirus, we observed inhibited cell proliferation and impaired colony formation in both HepG2 and Bel7404 cells. Furthermore, cell cycle analysis showed that HepG2 cells were arrested at the G0/G1 phase when transduced with Lv-shRPS15A. In conclusion, our findings provide for the first time the biological effects of RPS15A in hepatic cancer cell growth. RPS15A may play a prominent role in heptocarcinogenesis and serve as a potential therapeutic target in hepatocellular carcinoma.

Stoyanova T, Cooper AR, Drake JM, et al.
Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells.
Proc Natl Acad Sci U S A. 2013; 110(50):20111-6 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
The relationship between the cells that initiate cancer and the cancer stem-like cells that propagate tumors has been poorly defined. In a human prostate tissue transformation model, basal cells expressing the oncogenes Myc and myristoylated AKT can initiate heterogeneous tumors. Tumors contain features of acinar-type adenocarcinoma with elevated eIF4E-driven protein translation and squamous cell carcinoma marked by activated beta-catenin. Lentiviral integration site analysis revealed that alternative histological phenotypes can be clonally derived from a common cell of origin. In advanced disease, adenocarcinoma can be propagated by self-renewing tumor cells with an androgen receptor-low immature luminal phenotype in the absence of basal-like cells. These data indicate that advanced prostate adenocarcinoma initiated in basal cells can be maintained by luminal-like tumor-propagating cells. Determining the cells that maintain human prostate adenocarcinoma and the signaling pathways characterizing these tumor-propagating cells is critical for developing effective therapeutic strategies against this population.

Jacobson BA, Thumma SC, Jay-Dixon J, et al.
Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.
PLoS One. 2013; 8(11):e81669 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
BACKGROUND: Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma.
METHODS: Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment.
RESULTS: eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number.
CONCLUSION: 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

Hayman TJ, Wahba A, Rath BH, et al.
The ATP-competitive mTOR inhibitor INK128 enhances in vitro and in vivo radiosensitivity of pancreatic carcinoma cells.
Clin Cancer Res. 2014; 20(1):110-9 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
PURPOSE: Radiotherapy remains a primary treatment modality for pancreatic carcinoma, a tumor characterized by aberrant mTOR activity. Given the regulatory role of mTOR in gene translation, in this study, we defined the effects of the clinically relevant, ATP-competitive mTOR inhibitor, INK128 on the radiosensitivity of pancreatic carcinoma cell lines.
EXPERIMENTAL DESIGN: Clonogenic survival was used to determine the effects of INK128 on in vitro radiosensitivity of three pancreatic carcinoma cell lines and a normal fibroblast cell line with mTOR activity defined using immunoblots. DNA double-strand breaks were evaluated according to γH2AX foci. The influence of INK128 on radiation-induced gene translation was determined by microarray analysis of polysome-bound mRNA. Leg tumor xenografts grown from pancreatic carcinoma cells were evaluated for mTOR activity, eIF4F cap complex formation, and tumor growth delay.
RESULTS: INK128, while inhibiting mTOR activity in each of the cell lines, enhanced the in vitro radiosensitivity of the pancreatic carcinoma cells but had no effect on normal fibroblasts. The dispersal of radiation-induced γH2AX foci was inhibited in pancreatic carcinoma cells by INK128 as were radiation-induced changes in gene translation. Treatment of mice with INK128 resulted in an inhibition of mTOR activity as well as cap complex formation in tumor xenografts. Whereas INK128 alone had no effect of tumor growth rate, it enhanced the tumor growth delay induced by single and fractionated doses of radiation.
CONCLUSION: These results indicate that mTOR inhibition induced by INK128 enhances the radiosensitivity of pancreatic carcinoma cells and suggest that this effect involves the inhibition of DNA repair.

Horvilleur E, Sbarrato T, Hill K, et al.
A role for eukaryotic initiation factor 4B overexpression in the pathogenesis of diffuse large B-cell lymphoma.
Leukemia. 2014; 28(5):1092-102 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Dysregulated expression of factors that control protein synthesis is associated with poor prognosis of many cancers, but the underlying mechanisms are not well defined. Analysis of the diffuse large B-cell lymphoma (DLBCL) translatome revealed selective upregulation of mRNAs encoding anti-apoptotic and DNA repair proteins. We show that enhanced synthesis of these proteins in DLBCL is mediated by the relief of repression that is normally imposed by structure in the 5'-untranslated regions of their corresponding mRNAs. This process is driven by signaling through mammalian target of rapamycin, resulting in increased synthesis of eukaryotic initiation factor (eIF) 4B complex (eIF4B), a known activator of the RNA helicase eIF4A. Reducing eIF4B expression alone is sufficient to decrease synthesis of proteins associated with enhanced tumor cell survival, namely DAXX, BCL2 and ERCC5. Importantly, eIF4B-driven expression of these key survival proteins is directly correlated with patient outcome, and eIF4B, DAXX and ERCC5 are identified as novel prognostic markers for poor survival in DLBCL. Our work provides new insights into the mechanisms by which the cancer-promoting translational machinery drives lymphomagenesis.

Matassa DS, Amoroso MR, Agliarulo I, et al.
Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1.
Cell Death Dis. 2013; 4:e851 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
TNF receptor-associated protein 1 (TRAP1), the main mitochondrial member of the heat shock protein (HSP) 90 family, is induced in most tumor types and is involved in the regulation of proteostasis in the mitochondria of tumor cells through the control of folding and stability of selective proteins, such as Cyclophilin D and Sorcin. Notably, we have recently demonstrated that TRAP1 also interacts with the regulatory protein particle TBP7 in the endoplasmic reticulum (ER), where it is involved in a further extra-mitochondrial quality control of nuclear-encoded mitochondrial proteins through the regulation of their ubiquitination/degradation. Here we show that TRAP1 is involved in the translational control of cancer cells through an attenuation of global protein synthesis, as evidenced by an inverse correlation between TRAP1 expression and ubiquitination/degradation of nascent stress-protective client proteins. This study demonstrates for the first time that TRAP1 is associated with ribosomes and with several translation factors in colon carcinoma cells and, remarkably, is found co-upregulated with some components of the translational apparatus (eIF4A, eIF4E, eEF1A and eEF1G) in human colorectal cancers, with potential new opportunities for therapeutic intervention in humans. Moreover, TRAP1 regulates the rate of protein synthesis through the eIF2α pathway either under basal conditions or under stress, favoring the activation of GCN2 and PERK kinases, with consequent phosphorylation of eIF2α and attenuation of cap-dependent translation. This enhances the synthesis of selective stress-responsive proteins, such as the transcription factor ATF4 and its downstream effectors BiP/Grp78, and the cystine antiporter system xCT, thereby providing protection against ER stress, oxidative damage and nutrient deprivation. Accordingly, TRAP1 silencing sensitizes cells to apoptosis induced by novel antitumoral drugs that inhibit cap-dependent translation, such as ribavirin or 4EGI-1, and reduces the ability of cells to migrate through the pores of transwell filters. These new findings target the TRAP1 network in the development of novel anti-cancer strategies.

Sreevalsan S, Safe S
The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells.
Mol Cancer Ther. 2013; 12(11):2483-93 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2, (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29, and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, EGF receptor (EGFR), VEGF, and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by cannabinoid receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3, and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10, which has previously been characterized as an "Sp repressor." The results show that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes, including eIF4E.

Heikkinen T, Korpela T, Fagerholm R, et al.
Eukaryotic translation initiation factor 4E (eIF4E) expression is associated with breast cancer tumor phenotype and predicts survival after anthracycline chemotherapy treatment.
Breast Cancer Res Treat. 2013; 141(1):79-88 [PubMed] Related Publications
Abnormal translation of mRNAs frequently occurring during carcinogenesis is among the mechanisms that can affect the expression of proteins involved in tumor development and progression. Eukaryotic initiation factor eIF4E is a key regulator of translation of many cancer-related transcripts and its expression is altered in various cancers and has been associated with worse survival. We determined the eIF4E protein levels using immunohistochemistry (IHC) in 1,233 breast tumors on tissue microarrays. We analyzed the effects of the IHC expression level on tumor characteristics and patient survival, also with stratification by adjuvant chemotherapy treatment. In 1,085 successfully stained tumors, high level of eIF4E protein expression was associated with features of aggressive tumor phenotype, namely grade, estrogen and progesterone receptor negativity, HER2 receptor positivity, and high expression of p53 and Ki67, and with triple negative subtype (p < 0.001). High eIF4E expression was associated with worse breast cancer-specific survival with a hazard ratio (HR) of 1.99 (95 % CI 1.32-3.00, p = 0.0008) and was in a multivariate analysis an independent prognostic factor. High eIF4E expression was associated with worse outcome also after detection of distant metastasis (HR = 1.88, 95 % CI 1.20-2.94, p = 0.0060). In the subgroup analysis the survival effect was strongest among patients treated with anthracycline chemotherapy (HR = 3.34, 95 % CI 1.72-6.48, p = 0.0002), whereas no such effect was seen among patients who had not received anthracycline with significant difference in heterogeneity between the two groups (p = 0.0358). High expression of eIF4E is associated with adverse tumor characteristics and predicts poor breast cancer-specific survival. This effect is emphasized in patients treated with anthracycline chemotherapy. eIF4E as a treatment predictive factor warrants further studies.

Shaoyan X, Juanjuan Y, Yalan T, et al.
Downregulation of EIF4A2 in non-small-cell lung cancer associates with poor prognosis.
Clin Lung Cancer. 2013; 14(6):658-65 [PubMed] Related Publications
BACKGROUND: EIF4A2, which belongs to the eukaryotic initiation factor 4A family, is a highly conserved gene for one of the protein-synthesis initiation factors involved in the binding of messenger RNA to the ribosome. The role of EIF4A2 in some cancers, eg, breast cancer and melanoma, has been studied. However, the clinical significance and biologic role of EIF4A2 in lung cancer remains unknown.
PATIENTS AND METHODS: A total of 170 patients with non-small-cell lung cancer who were undergoing surgical resection were studied. We applied the tissue microarray by using immunohistochemistry to study the expression of EIF4A2 in patients with non-small-cell lung cancer (NSCLC).
RESULTS: We found that the expression rate of EIF4A2 in NSCLC was 87.6%. The expression of EIF4A2 was significantly correlated with the histopathologic classification (P = .049) and tumor grade (P < .019). Moreover, NSCLC patients with low EIF4A2 expression survived shorter than those with high EIF4A2 expression, as indicated by overall survival (P = .023) and disease-free survival (P = .011) assessed by the Kaplan-Meier method. In addition, multivariate analysis suggested EIF4A2 as an independent predictor of disease-free survival (hazard ratio 0.543 [95% CI, 0.329-0.897]; P = .017).
CONCLUSION: Collectively, our study demonstrated that EIF4A2 was remarkably involvement in the development of NSCLC and could be served as a potential prognostic marker for patients with this deadly disease.

Thoreen CC
Many roads from mTOR to eIF4F.
Biochem Soc Trans. 2013; 41(4):913-6 [PubMed] Related Publications
The process of cell growth depends on a complex co-ordinated programme of macromolecular synthesis that can be tuned to environmental constraints. In eukaryotes, the mTOR [mammalian (or mechanistic) target of rapamycin] signalling pathway is a master regulator of this process, in part by regulating mRNA translation through control of the eIF4F (eukaryotic initiation factor 4F) initiation complex. The present review discusses the role of this relationship in mTOR-regulated gene expression, and its contribution to phenotypes associated with deregulated mTOR signalling, such as cancer.

Ferrandiz-Pulido C, Masferrer E, Toll A, et al.
mTOR signaling pathway in penile squamous cell carcinoma: pmTOR and peIF4E over expression correlate with aggressive tumor behavior.
J Urol. 2013; 190(6):2288-95 [PubMed] Related Publications
PURPOSE: Penile squamous cell carcinoma is a rare neoplasm associated with a high risk of metastasis and morbidity. There are limited data on the role of the mTOR signaling pathway in penile squamous cell carcinoma carcinogenesis and tumor maintenance. We assessed a possible role for mTOR signaling pathway activation as a potential predictive biomarker of outcome and a therapeutic target for penile cancer.
MATERIAL AND METHODS: A cohort of 67 patients diagnosed with invasive penile squamous cell carcinoma from 1987 to 2010 who had known HPV status were selected for study. Tissue microarrays were constructed with 67 primary penile squamous cell carcinomas, matched normal tissues and 8 lymph node metastases. Immunohistochemical staining was performed for p53, pmTOR, pERK, p4E-BP1, eIF4E and peIF4E. Expression was evaluated using a semiquantitative H-score on a scale of 0 to 300.
RESULTS: Expression of pmTOR, p4E-BP1, eIF4E and peIF4E was increased in penile tumors compared with matched adjacent normal tissues, indicating activation of the mTOR signaling pathway in penile tumorigenesis. Over expression of pmTOR, peIF4E and p53 was significantly associated with lymph node disease. peIF4E and p53 also correlated with a poor outcome, including recurrence, metastasis or disease specific death. In contrast, pERK and p4E-BP1 were associated with lower pT stages. pmTOR and intense p53 expression was associated with HPV negative tumors.
CONCLUSIONS: Activation of mTOR signaling may contribute to penile squamous cell carcinoma progression and aggressive behavior. Targeting mTOR or its downstream signaling targets, such as peIF4E, may be a valid therapeutic strategy.

Yi T, Papadopoulos E, Hagner PR, Wagner G
Hypoxia-inducible factor-1α (HIF-1α) promotes cap-dependent translation of selective mRNAs through up-regulating initiation factor eIF4E1 in breast cancer cells under hypoxia conditions.
J Biol Chem. 2013; 288(26):18732-42 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Hypoxia promotes tumor evolution and metastasis, and hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxia-related cellular processes in cancer. The eIF4E translation initiation factors, eIF4E1, eIF4E2, and eIF4E3, are essential for translation initiation. However, whether and how HIF-1α affects cap-dependent translation through eIF4Es in hypoxic cancer cells has been unknown. Here, we report that HIF-1α promoted cap-dependent translation of selective mRNAs through up-regulation of eIF4E1 in hypoxic breast cancer cells. Hypoxia-promoted breast cancer tumorsphere growth was HIF-1α-dependent. We found that eIF4E1, not eIF4E2 or eIF4E3, is the dominant eIF4E family member in breast cancer cells under both normoxia and hypoxia conditions. eIF4E3 expression was largely sequestered in breast cancer cells at normoxia and hypoxia. Hypoxia up-regulated the expression of eIF4E1 and eIF4E2, but only eIF4E1 expression was HIF-1α-dependent. In hypoxic cancer cells, HIF-1α-up-regulated eIF4E1 enhanced cap-dependent translation of a subset of mRNAs encoding proteins important for breast cancer cell mammosphere growth. In searching for correlations, we discovered that human eIF4E1 promoter harbors multiple potential hypoxia response elements. Furthermore, using chromatin immunoprecipitation (ChIP) and luciferase and point mutation assays, we found that HIF-1α utilized hypoxia response elements in the human eIF4E1 proximal promoter region to activate eIF4E1 expression. Our study suggests that HIF-1α promotes cap-dependent translation of selective mRNAs through up-regulating eIF4E1, which contributes to tumorsphere growth of breast cancer cells at hypoxia. The data shown provide new insights into protein synthesis mechanisms in cancer cells at low oxygen levels.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. EIF4A2, Cancer Genetics Web: http://www.cancer-genetics.org/EIF4A2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 August, 2015     Cancer Genetics Web, Established 1999