HSPA8

Gene Summary

Gene:HSPA8; heat shock protein family A (Hsp70) member 8
Aliases: LAP1, HSC54, HSC70, HSC71, HSP71, HSP73, LAP-1, NIP71, HEL-33, HSPA10, HEL-S-72p
Location:11q24.1
Summary:This gene encodes a member of the heat shock protein 70 family, which contains both heat-inducible and constitutively expressed members. This protein belongs to the latter group, which are also referred to as heat-shock cognate proteins. It functions as a chaperone, and binds to nascent polypeptides to facilitate correct folding. It also functions as an ATPase in the disassembly of clathrin-coated vesicles during transport of membrane components through the cell. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2011]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:heat shock cognate 71 kDa protein
Source:NCBIAccessed: 09 March, 2017

Ontology:

What does this gene/protein do?
Show (38)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Squamous Cell Carcinoma
  • Neoplasm Proteins
  • Apoptosis
  • Cervical Cancer
  • Transfection
  • Cell Survival
  • Electrophoresis, Gel, Two-Dimensional
  • Gene Expression Profiling
  • Up-Regulation
  • Breast Cancer
  • p53 Protein
  • Biomarkers, Tumor
  • Proteomics
  • Cell Cycle
  • Molecular Sequence Data
  • Heat-Shock Proteins
  • Cancer RNA
  • HSP90 Heat-Shock Proteins
  • Messenger RNA
  • HSC70 Heat-Shock Proteins
  • RNA Interference
  • Xenograft Models
  • Base Sequence
  • siRNA
  • Cell Line
  • Case-Control Studies
  • Neoplasm Invasiveness
  • Cell Proliferation
  • HSPA8
  • Vitamin D3 24-Hydroxylase
  • Down-Regulation
  • Immunohistochemistry
  • Carrier Proteins
  • Oligonucleotide Array Sequence Analysis
  • Gene Expression
  • RTPCR
  • Chromosome 11
  • Skin Cancer
  • HSP70 Heat-Shock Proteins
  • Cancer Gene Expression Regulation
  • Melanoma
  • RT-PCR
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HSPA8 (cancer-related)

Rodina A, Wang T, Yan P, et al.
The epichaperome is an integrated chaperome network that facilitates tumour survival.
Nature. 2016; 538(7625):397-401 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Transient, multi-protein complexes are important facilitators of cellular functions. This includes the chaperome, an abundant protein family comprising chaperones, co-chaperones, adaptors, and folding enzymes-dynamic complexes of which regulate cellular homeostasis together with the protein degradation machinery. Numerous studies have addressed the role of chaperome members in isolation, yet little is known about their relationships regarding how they interact and function together in malignancy. As function is probably highly dependent on endogenous conditions found in native tumours, chaperomes have resisted investigation, mainly due to the limitations of methods needed to disrupt or engineer the cellular environment to facilitate analysis. Such limitations have led to a bottleneck in our understanding of chaperome-related disease biology and in the development of chaperome-targeted cancer treatment. Here we examined the chaperome complexes in a large set of tumour specimens. The methods used maintained the endogenous native state of tumours and we exploited this to investigate the molecular characteristics and composition of the chaperome in cancer, the molecular factors that drive chaperome networks to crosstalk in tumours, the distinguishing factors of the chaperome in tumours sensitive to pharmacologic inhibition, and the characteristics of tumours that may benefit from chaperome therapy. We find that under conditions of stress, such as malignant transformation fuelled by MYC, the chaperome becomes biochemically 'rewired' to form a network of stable, survival-facilitating, high-molecular-weight complexes. The chaperones heat shock protein 90 (HSP90) and heat shock cognate protein 70 (HSC70) are nucleating sites for these physically and functionally integrated complexes. The results indicate that these tightly integrated chaperome units, here termed the epichaperome, can function as a network to enhance cellular survival, irrespective of tissue of origin or genetic background. The epichaperome, present in over half of all cancers tested, has implications for diagnostics and also provides potential vulnerability as a target for drug intervention.

Hou L, Chen M, Wang M, et al.
Systematic analyses of key genes and pathways in the development of invasive breast cancer.
Gene. 2016; 593(1):1-12 [PubMed] Related Publications
BACKGROUND: Ductal carcinoma in situ (DCIS) is a common type of non-invasive breast cancer and can sometimes progress into invasive breast cancer (IBC). Identification of the critical genes and biological processes specifically and/or commonly changed in DCIS or IBC can help us understand more about breast cancer development and provide more critical targets and signal transduction pathways for the diagnosis and treatments for breast cancer patients.
AIM AND METHODS: We aimed to gain more understanding about the whole process of IBC development, especially in the early stage. Here we systematically analyzed an online breast cancer patient database to identify those significantly changed genes and biological processes in epithelium from normal stage to DCIS stage or from DCIS stage to IBC stage.
RESULTS: 344 specific genes, such as FN1, AURKA and HSPA8, were found to be significantly changed (both upregulated and downregulated) in DCIS group in comparison with normal tissue group, which represents the gene profile changes in early stage of breast cancer development. Meanwhile, 304 specific genes were significantly changed (both upregulated and downregulated) in IBC group in comparison with normal tissue group, which represents the gene profile changes in late stage of breast cancer development. Importantly, seven genes were identified to have consistent changes in both early stage and late stage, indicating they might play "driving" roles in the breast cancer development. Of these 7 genes, 5 have been shown to be involved in breast cancer progression by previous studies, which demonstrates the validity of our analyses. Notably, DNAPTP3 was identified for the first time to play an oncogenic role in breast cancer development. In the GO term analyses, cell cycle genes was found to play more important roles in the early stage while biological adhesion was indicated to be more specifically involved in late stage of breast cancer development.
SIGNIFICANCE: Our systematic analyses provide better understanding of the unique gene profiles and biological processes during the breast cancer development and identify more potentially important targets for future studies, such as DNAPTP3.

Edwards SK, Han Y, Liu Y, et al.
Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells.
Leuk Res. 2016; 41:85-95 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Bortezomib, a clinical drug for multiple myeloma (MM) and mantle cell lymphoma, exhibits complex mechanisms of action, which vary depending on the cancer type and the critical genetic alterations of each cancer. Here we investigated the signaling mechanisms of bortezomib in mouse B lymphoma and human MM cells deficient in a new tumor suppressor gene, TRAF3. We found that bortezomib consistently induced up-regulation of the cell cycle inhibitor p21(WAF1) and the pro-apoptotic protein Noxa as well as cleavage of the anti-apoptotic protein Mcl-1. Interestingly, bortezomib induced the activation of NF-κB1 and the accumulation of the oncoprotein c-Myc, but inhibited the activation of NF-κB2. Furthermore, we demonstrated that oridonin (an inhibitor of NF-κB1 and NF-κB2) or AD 198 (a drug targeting c-Myc) drastically potentiated the anti-cancer effects of bortezomib in TRAF3-deficient malignant B cells. Taken together, our findings increase the understanding of the mechanisms of action of bortezomib, which would aid the design of novel bortezomib-based combination therapies. Our results also provide a rationale for clinical evaluation of the combinations of bortezomib and oridonin (or other inhibitors of NF-κB1/2) or AD 198 (or other drugs targeting c-Myc) in the treatment of lymphoma and MM, especially in patients containing TRAF3 deletions or relevant mutations.

Baquero-Pérez B, Whitehouse A
Hsp70 Isoforms Are Essential for the Formation of Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Compartments.
PLoS Pathog. 2015; 11(11):e1005274 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents.

Ketefian A, Jones MR, Krauss RM, et al.
Association study of androgen signaling pathway genes in polycystic ovary syndrome.
Fertil Steril. 2016; 105(2):467-73.e4 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
OBJECTIVE: To evaluate genes involved in androgen receptor (AR) signaling as candidate genes for polycystic ovary syndrome (PCOS).
DESIGN: Two groups of women with PCOS and control women (discovery and replication cohorts), were genotyped for single-nucleotide polymorphisms (SNPs) in eight genes for AR chaperones and co-chaperones: HSPA1A, HSPA8, ST13, STIP1, PTGES3, FKBP4, BAG1, and STUB1. Single-nucleotide polymorphisms were tested for association with PCOS status and with androgenic and metabolic parameters.
SETTING: Tertiary referral center.
PATIENT(S): Discovery cohort: 354 women with PCOS and 161 control women. Replication cohort: 397 women with PCOS and 306 control women.
INTERVENTION(S): Phenotypic and genotypic assessment.
MAIN OUTCOME MEASURE(S): Single-nucleotide polymorphism genotypes, association with PCOS status, and androgenic and metabolic parameters.
RESULT(S): In the discovery cohort, FKBP4 SNPs rs2968909 and rs4409904 were associated with lower odds of PCOS. This finding was not confirmed in the replication cohort analysis; however, when combining the two cohorts, rs4409904 was associated with lower odds of PCOS. In subjects with PCOS in the replication cohort as well as in the combined cohort, rs2968909 was associated with lower body mass index.
CONCLUSION(S): Single-nucleotide polymorphisms in FKBP4, which codes for the AR co-chaperone FKBP52, may be associated with PCOS and body mass index in patients with PCOS. The remaining genes studied do not seem to be major contributors to the development of PCOS. These findings warrant confirmation in future studies, and genes encoding other androgen pathway components remain to be studied.

Elvers I, Turner-Maier J, Swofford R, et al.
Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background.
Genome Res. 2015; 25(11):1634-45 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Lymphoma is the most common hematological malignancy in developed countries. Outcome is strongly determined by molecular subtype, reflecting a need for new and improved treatment options. Dogs spontaneously develop lymphoma, and the predisposition of certain breeds indicates genetic risk factors. Using the dog breed structure, we selected three lymphoma predisposed breeds developing primarily T-cell (boxer), primarily B-cell (cocker spaniel), and with equal distribution of B- and T-cell lymphoma (golden retriever), respectively. We investigated the somatic mutations in B- and T-cell lymphomas from these breeds by exome sequencing of tumor and normal pairs. Strong similarities were evident between B-cell lymphomas from golden retrievers and cocker spaniels, with recurrent mutations in TRAF3-MAP3K14 (28% of all cases), FBXW7 (25%), and POT1 (17%). The FBXW7 mutations recurrently occur in a specific codon; the corresponding codon is recurrently mutated in human cancer. In contrast, T-cell lymphomas from the predisposed breeds, boxers and golden retrievers, show little overlap in their mutation pattern, sharing only one of their 15 most recurrently mutated genes. Boxers, which develop aggressive T-cell lymphomas, are typically mutated in the PTEN-mTOR pathway. T-cell lymphomas in golden retrievers are often less aggressive, and their tumors typically showed mutations in genes involved in cellular metabolism. We identify genes with known involvement in human lymphoma and leukemia, genes implicated in other human cancers, as well as novel genes that could allow new therapeutic options.

Du X, Zhang Y, Jo SR, et al.
Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann-Pick C1.
Biochem J. 2015; 471(2):243-53 [PubMed] Related Publications
Null mutations of the Niemann-Pick type C1 (NPC1) gene cause NPC disease, a lysosomal storage disorder characterized by cholesterol accumulation in late endosomes (LE) and lysosomes (Ly). Nascent or mutated NPC1 is degraded through the ubiquitin-proteasome pathway, but how NPC1 degradation is regulated remains currently unknown. In the present study, we demonstrated a link between NPC1 degradation and the Akt (protein kinase B)/mTOR [mammalian (or mechanistic) target of rapamycin] signalling pathway in cervical cancer cell lines. We provided evidence that activated Akt/mTOR pathway increased NPC1 degradation by ∼50% in C33A cells when compared with SiHa or HeLa cells. NPC1 degradation in C33A cells was reversed when Akt/mTOR activation was blocked by specific inhibitors or when mTORC1 (mTOR complex 1) was disrupted by regulatory associated protein of mTOR (Raptor) knockdown. Importantly, inhibition of the Akt/mTOR pathway led to decreased NPC1 ubiquitination in C33A cells, pointing to a role of Akt/mTOR in the proteasomal degradation of NPC1. Moreover, we found that NPC1 depletion in several cancer cell lines inhibited cell proliferation and migration. Our results uncover Akt as a key regulator of NPC1 degradation and link NPC1 to cancer cell proliferation and migration.

Fristedt Duvefelt C, Lub S, Agarwal P, et al.
Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2--implications for a combinatorial treatment.
Oncotarget. 2015; 6(24):20621-35 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Despite the introduction of new treatment options for multiple myeloma (MM), a majority of patients relapse due to the development of resistance. Unraveling new mechanisms underlying resistance could lead to identification of possible targets for combinatorial treatment. Using TRAF3 deleted/mutated MM cell lines, we evaluated the role of the cellular inhibitor of apoptosis 2 (cIAP2) in drug resistance and uncovered the plausible mechanisms underlying this resistance and possible strategies to overcome this by combinatorial treatment. In MM, cIAP2 is part of the gene signature of aberrant NF-κB signaling and is heterogeneously expressed amongst MM patients. In cIAP2 overexpressing cells a decreased sensitivity to the proteasome inhibitors bortezomib, MG132 and carfilzomib was observed. Gene expression analysis revealed that 440 genes were differentially expressed due to cIAP2 overexpression. Importantly, the data imply that cIAPs are rational targets for combinatorial treatment in the population of MM with deleted/mutated TRAF3. Indeed, we found that treatment with the IAP inhibitor AT-406 enhanced the anti-MM effect of bortezomib in the investigated cell lines. Taken together, our results show that cIAP2 is an important factor mediating bortezomib resistance in MM cells harboring TRAF3 deletion/mutation and therefore should be considered as a target for combinatorial treatment.

Fang T, Cui M, Sun J, et al.
Orosomucoid 2 inhibits tumor metastasis and is upregulated by CCAAT/enhancer binding protein β in hepatocellular carcinomas.
Oncotarget. 2015; 6(18):16106-19 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Cancer metastasis is a complex process, and the incidence of metastasis is influenced by many biological factors. Orosomucoid 2 (ORM2) is an important glycoprotein that is mainly biosynthesized and secreted by hepatocytes. As an acute-phase protein, ORM2 likely plays important roles in anti-inflammation, immunomodulation and drug delivery. However, little is known regarding the function of ORM2 in hepatocellular carcinoma (HCC). In this study, we determined that ORM2 expression in HCC tissues was negatively associated with intrahepatic metastasis and histological grade. Moreover, the ectopic overexpression of ORM2 decreased HCC cell migration and invasion in vitro and intrahepatic metastasis in vivo, whereas silencing ORM2 expression resulted in increased tumor cell migration and invasion in vitro. The CCAAT/enhancer binding protein β (C/EBPβ) upregulated ORM2 expression, while only the LAP1/2 (C/EBPβ isoforms) possessed transcription-promoting activity on the ORM2 promoter. Subsequently, we found that LAP1 repressed HCC cell migration and invasion via the induction of ORM2 expression. Consistently, the protein expression of C/EBPβ was negatively associated with histological grade and positively correlated with ORM2 protein expression in HCC tissues. Collectively, our findings indicate that ORM2 is a functional downstream target of C/EBPβ and functions as a tumor suppressor in HCC.

Xia P, Zhang R, Ge G
C/EBPβ Mediates TNF-α-Induced Cancer Cell Migration by Inducing MMP Expression Dependent on p38 MAPK.
J Cell Biochem. 2015; 116(12):2766-77 [PubMed] Related Publications
Tumor necrosis factor (TNF)-α is a pleiotropic cytokine that triggers cell proliferation, cell death, or inflammation. Besides its cytotoxic effect on cancer cells, TNF-α exerts tumor promoting activity. Aberrant TNF-α signaling promotes cancer cell motility, invasiveness, and enhances cancer metastasis. Exaggerated tumor cell migration, invasion, and metastasis by TNF-α has been attributed to the activation of NF-κB signaling. It is yet to be elucidated if other signaling pathways and effector molecules are involved in TNF-α-induced cancer cell migration and metastasis. Expression of C/EBPβ, a transcription factor involved in metabolism, inflammation, and cancer, is increased upon TNF-α treatment. TNF-α induces C/EBPβ expression by enhancing its transcription and protein stability. Activation of p38 MAPK, but not NF-κB or JNK, is responsible for TNF-α-induced stabilization of C/EBPβ protein. C/EBPβ is involved in TNF-α-induced cancer cell migration. Knockdown of C/EBPβ inhibits TNF-α-induced cell migration, while overexpression of C/EBPβ increases migration of cancer cells. C/EBPβ is translated into transcriptional activator LAP1 and LAP2 and transcriptional repressor LIP utilizing alternative in-frame translation start sites. Despite TNF-α induces expression of all three isoforms, LAP1/2, but not LIP, promote cancer cell migration. TNF-α induced MMP1/3 expression, which was abrogated by C/EBPβ knockdown or p38 MAPK inhibition. MMP inhibitor or knockdown of MMP1/3 diminished TNF-α- and C/EBPβ-induced cell migration. Thus, C/EBPβ mediates TNF-α-induced cancer cell migration by inducing MMP1/3 expression, and may participate in the regulation of inflammation-associated cancer metastasis.

Liu W, Vielhauer GA, Holzbeierlein JM, et al.
KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells.
Mol Pharmacol. 2015; 88(1):121-30 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer.

Zhang B, Calado DP, Wang Z, et al.
An oncogenic role for alternative NF-κB signaling in DLBCL revealed upon deregulated BCL6 expression.
Cell Rep. 2015; 11(5):715-26 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Diffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

Yang Z, Zhuang L, Szatmary P, et al.
Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma.
Int J Med Sci. 2015; 12(3):256-63 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
BACKGROUND: Heat shock proteins (HSPs) are overexpressed in human hepatocellular carcinoma (HCC) tissue and correlate with aggressiveness and prognosis of HCC.
METHODS: Using the GSE14520 microarray expression profile from Gene Expression Omnibus, we compared HSP gene expression between tumour and non-tumour tissues and correlated this with outcomes in HCC patients.
RESULTS: We analysed 220 hepatitis B virus (HBV)-related HCC patients and 25 HSPs in this study. With the exception of HSPA4L, HSPA12A and HSPB8, members of the HSP family, including HSPH1, HSPBP1, HSPA1A, HSPA1B, HSPA1L, HSPA2, HSPA4, HSPA5, HSPA8, HSPA9, HSPAA1, HSPAB1, HSPA14, HSPB11, HSPA13, HSP90B1 and HSPBAP1, were all overexpressed in tumour tissues (all P < 0.001). In contrast, HSPB6, HSPB7, HSPA6, HSPB2 and HSPB3 were upregulated in non-tumour tissues (all P < 0.001). Multivariate analysis showed that cirrhosis (HR = 5.282, 95% CI = 1.294-21.555, P = 0.02), Barcelona Clinic liver cancer (BCLC) staging (HR = 2.151, 95% CI = 1.682-2.750, P < 0.001), HSPA12A (HR = 1.042, 95% CI = 1.003-1.082, P = 0.033) and HSP90B1 (HR = 1.001, 95% CI = 1.000-1.001, P = 0.011) were negatively associated with survival of HBV-related HCC patients. Furthermore, advanced BCLC staging (HR = 1.797, 95% CI = 1.439-2.244, P < 0.001) was also associated with earlier recurrence of HCC. The high expression of HSPA4 (HR = 1.002, 95% CI = 1.000-1.004, P = 0.019), HSPA5 (HR = 1.0, 95% CI = 1.0-1.0, P = 0.046) and HSPA6 (HR = 1.008, 95% CI = 1.001-1.015, P = 0.021) was similarly associated with HCC recurrence.
CONCLUSIONS: The expression of most HSPs was higher in tumour tissues than in non-tumour tissues. High BCLC staging scores, advanced cirrhosis and the overexpression of HSPA12A and HSP90B1 might be associated with poor survival from HCC, whereas high levels of HSPA4, HSPA5 and HSPA6 might be associated with earlier recurrence of HCC.

Fan NJ, Gao JL, Liu Y, et al.
Label-free quantitative mass spectrometry reveals a panel of differentially expressed proteins in colorectal cancer.
Biomed Res Int. 2015; 2015:365068 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
To identify potential biomarkers involved in CRC, a shotgun proteomic method was applied to identify soluble proteins in three CRCs and matched normal mucosal tissues using high-performance liquid chromatography and mass spectrometry. Label-free protein profiling of three CRCs and matched normal mucosal tissues were then conducted to quantify and compare proteins. Results showed that 67 of the 784 identified proteins were linked to CRC (28 upregulated and 39 downregulated). Gene Ontology and DAVID databases were searched to identify the location and function of differential proteins that were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, and so on. Among the differentially expressed proteins, tropomyosin-3 (TPM3), endoplasmic reticulum resident protein 29 (ERp29), 18 kDa cationic antimicrobial protein (CAMP), and heat shock 70 kDa protein 8 (HSPA8) were verified to be upregulated in CRC tissue and seven cell lines through western blot analysis. Furthermore, the upregulation of TPM3, ERp29, CAMP, and HSPA8 was validated in 69 CRCs byimmunohistochemistry (IHC) analysis. Combination of TPM3, ERp29, CAMP, and HSPA8 can identify CRC from matched normal mucosal achieving an accuracy of 73.2% using IHC score. These results suggest that TPM3, ERp29, CAMP, and HSPA8 are great potential IHC diagnostic biomarkers for CRC.

Yao Y, Wei W, Sun J, et al.
Proteomic analysis of exosomes derived from human lymphoma cells.
Eur J Med Res. 2015; 20:8 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
BACKGROUND: Exosomes secreted by tumor cells contain specific antigens that may have immunotherapeutic purposes. The aim of this study was to characterize the proteomic content of lymphoma cell-derived exosomes (LCEXs).
METHODS: In this study, exosomes derived from Raji cells (EXO(Raji)) were purified and proteins of EXO(Raji) were separated by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein bands were identified by mass spectrometry. The protein components of EXO(Raji) were analyzed using shotgun technology, and the function proteins of EXO(Raji) were defined and described using the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.
RESULTS: A total of 197 proteins were identified in EXO(Raji); 139 proteins were also identified in Raji cells, showing an overlap of 70.56% of the total proteins in EXO(Raji). Interestingly, the remaining 58 proteins were unique to EXO(Raji). The GO database and KEGG were used to define and describe the function of proteins. The data showed that some important proteins involved in antigen procession and presentation as well as cell migration and adhesion were also identified in EXO(Raji), such as MHC-I and II, HSC70, HSP90, and ICMA-1.
CONCLUSIONS: LCEXs express a discrete set of proteins involved in antigen presentation and cell migration and adhesion, suggesting that LCEXs play an important role in the regulation of immunity and interaction between lymphoma cells and their microenvironment. LCEXs harbor most of the proteins of lymphoma cells and could be one of the sources of lymphoma-associated antigens for immunotherapeutic purposes.

Matsuda Y, Ishiwata T, Yoshimura H, et al.
Inhibition of nestin suppresses stem cell phenotype of glioblastomas through the alteration of post-translational modification of heat shock protein HSPA8/HSC71.
Cancer Lett. 2015; 357(2):602-11 [PubMed] Related Publications
Nestin, a class VI intermediate filament, was first described as a neuronal stem/progenitor cell marker. We previously reported that knockdown of nestin expression in human glioblastoma cells suppresses cell proliferation, migration, and invasion. In the present study, we examined the effect of nestin on stemness, and identified molecules involved in modulating nestin function in glioblastoma cells. Nestin expression was shown to be higher in high-grade gliomas than in low-grade gliomas. Furthermore, compared with control cells, nestin short hairpin RNA (shRNA)-transfected glioblastoma cells exhibited reduced sphere formation, decreased expression of NANOG, N-cadherin, CD133, and Oct-4, and decreased tumor size in vivo. To examine the proteins regulated by nestin in glioblastomas, we carried out two-dimensional electrophoresis using nestin shRNA-transfected glioblastoma cells. As a result, nestin shRNA-transfected glioblastoma cells exhibited a decrease in the level of phosphorylation of heat shock cognate 71 kDa protein (HSC71; gene HSPA8). From immunoprecipitation experiments, we demonstrated the direct binding of nestin, HSC71, and cyclin D1 in vitro. Overexpression of nestin in glioblastoma cells increased cell growth, sphere formation, and cell invasion. Transfection with HSC71 siRNA restored nestin expression and cell behavior; therefore, HSC71 knockdown will interfere with enhanced tumorigenic properties of glioblastoma cells that ectopically overexpress nestin. We have demonstrated that HSC71 and nestin regulate each other's expression levels or patterns, and that cyclin D1 is located downstream of nestin and HSC71. In conclusion, nestin regulates stemness, cell growth, and invasion in glioblastoma cells through the alteration of HSC71. Inhibition of nestin and HSC71 may thus be a useful molecular target in the treatment of glioblastomas.

Bushell KR, Kim Y, Chan FC, et al.
Genetic inactivation of TRAF3 in canine and human B-cell lymphoma.
Blood. 2015; 125(6):999-1005 [PubMed] Related Publications
Non-Hodgkin lymphomas (NHLs) are the most common cancer to affect pet dogs. In contrast to the many genes whose mutation contributes to lymphomagenesis in humans, relatively little is known about the acquired genetic alterations that lead to canine B-cell lymphomas (cBCLs). We performed a survey of 84 canine NHL tumors to identify genes affected by somatic point mutations. We found mutations affecting TRAF3, which encodes a negative regulator of nuclear factor (NF)-κB, to be a common feature of cBCLs, with mutations observed in 44% of tumors including a combination of somatic and rare germ-line variants. Overall, 30% of the tumors contained ≥1 somatic TRAF3 mutation. The majority of mutations are predicted to cause loss of TRAF3 protein including those impacting reading frame and splicing. To determine whether TRAF3 loss might be relevant to human NHL, we also analyzed 148 human diffuse large B-cell lymphoma (DLBCL) tumors and identified loss of TRAF3 as a common event, affecting ∼9% of DLBCLs, and reduced expression of TRAF3 among deleted cases. This study implicates mutations affecting NF-κB activity as a novel genetic commonality between human and canine NHLs and supports the potential utility of cBCLs with mutated TRAF3 as a model of the more aggressive activated B-cell subgroup of DLBCL.

Tsuchiya M, Nakajima Y, Waku T, et al.
CHIP buffers heterogeneous Bcl-2 expression levels to prevent augmentation of anticancer drug-resistant cell population.
Oncogene. 2015; 34(35):4656-63 [PubMed] Related Publications
Many types of cancer display heterogeneity in various features, including gene expression and malignant potential. This heterogeneity is associated with drug resistance and cancer progression. Recent studies have shown that the expression of a major protein quality control ubiquitin ligase, carboxyl terminus of Hsc70-interacting protein (CHIP), is negatively correlated with breast cancer clinicopathological stages and poor overall survival. Here we show that CHIP acts as a capacitor of heterogeneous Bcl-2 expression levels and prevents an increase in the anticancer drug-resistant population in breast cancer cells. CHIP knockdown in breast cancer cells increased variation in Bcl-2 expression levels, an antiapoptotic protein, among the cells. Our results also showed that CHIP knockdown increased the proportion of anticancer drug-resistant cells. These findings suggest that CHIP buffers variation in gene expression levels, affecting resistance to anticancer drugs. In single-cell clones derived from breast cancer cell lines, CHIP knockdown did not alter the variation in Bcl-2 expression levels and the proportion of anticancer drug-resistant cells. In contrast, when clonal cells were treated with a mutagen, the variation in Bcl-2 expression levels and proportion of anticancer drug-resistant cells were altered by CHIP knockdown. These results suggest that CHIP masks genetic variations to suppress heterogeneous Bcl-2 expression levels and prevents augmentation of the anticancer drug-resistant population of breast cancer cells. Because genetic variation is a major driver of heterogeneity, our results suggest that the degree of heterogeneity in expression levels is decided by a balance between genetic variation and the buffering capacity of CHIP.

Edwards SK, Baron J, Moore CR, et al.
Mutated in colorectal cancer (MCC) is a novel oncogene in B lymphocytes.
J Hematol Oncol. 2014; 7:56 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
BACKGROUND: Identification of novel genetic risk factors is imperative for a better understanding of B lymphomagenesis and for the development of novel therapeutic strategies. TRAF3, a critical regulator of B cell survival, was recently recognized as a tumor suppressor gene in B lymphocytes. The present study aimed to identify novel oncogenes involved in malignant transformation of TRAF3-deficient B cells.
METHODS: We used microarray analysis to identify genes differentially expressed in TRAF3-/- mouse splenic B lymphomas. We employed lentiviral vector-mediated knockdown or overexpression to manipulate gene expression in human multiple myeloma (MM) cell lines. We analyzed cell apoptosis and proliferation using flow cytometry, and performed biochemical studies to investigate signaling mechanisms. To delineate protein-protein interactions, we applied affinity purification followed by mass spectrometry-based sequencing.
RESULTS: We identified mutated in colorectal cancer (MCC) as a gene strikingly up-regulated in TRAF3-deficient mouse B lymphomas and human MM cell lines. Aberrant up-regulation of MCC also occurs in a variety of primary human B cell malignancies, including non-Hodgkin lymphoma (NHL) and MM. In contrast, MCC expression was not detected in normal or premalignant TRAF3-/- B cells even after treatment with B cell stimuli, suggesting that aberrant up-regulation of MCC is specifically associated with malignant transformation of B cells. In elucidating the functional roles of MCC in malignant B cells, we found that lentiviral shRNA vector-mediated knockdown of MCC induced apoptosis and inhibited proliferation in human MM cells. Experiments of knockdown and overexpression of MCC allowed us to identify several downstream targets of MCC in human MM cells, including phospho-ERK, c-Myc, p27, cyclin B1, Mcl-1, caspases 8 and 3. Furthermore, we identified 365 proteins (including 326 novel MCC-interactors) in the MCC interactome, among which PARP1 and PHB2 were two hubs of MCC signaling pathways in human MM cells.
CONCLUSIONS: Our results indicate that in sharp contrast to its tumor suppressive role in colorectal cancer, MCC functions as an oncogene in B cells. Our findings suggest that MCC may serve as a diagnostic marker and therapeutic target in B cell malignancies, including NHL and MM.

Zhang Q, Zhai S, Li L, et al.
P-glycoprotein-evading anti-tumor activity of a novel tubulin and HSP90 dual inhibitor in a non-small-cell lung cancer model.
J Pharmacol Sci. 2014; 126(1):66-76 [PubMed] Related Publications
P-glycoprotein (P-gp)-induced drug resistance is a major road block for successful cancer chemotherapy. Through phenotypic screening, the compound 2-(2-chlorophenylimino)-5-(4-dimethylaminobenzylidene) thiazolidin-4-one (CDBT) was discovered to have potent anti-tumor activity in P-gp over-expressing drug-resistant non-small-cell lung cancer (NSCLC) H460TaxR cells. Here, we report mechanistic investigations of the P-gp-evading anti-tumor activity of CDBT. CDBT is evidently not a P-gp substrate and escapes the P-gp efflux pump. As a novel microtubule and heat shock protein 90 (HSP90) dual targeting inhibitor, CDBT causes the destabilization of microtubules and degradation of HSP90 client proteins CRAF-1 and ERBB2, resulting in cell cycle arrest at the G2/M phase and apoptosis. Furthermore, CDBT effectively inhibits tumor growth by 60.4% relative to the vehicle control after intraperitoneal administration at 30 mg/kg for 11 days and shows no toxicity in normal tissues in the NSCLC H460TaxR xenograft mouse model. Our data suggest a novel drug discovery strategy to combat P-gp over-expressing drug-resistant NSCLC cancer cells with a single therapeutic agent.

Castro GN, Cayado-Gutiérrez N, Zoppino FC, et al.
Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells.
Cell Stress Chaperones. 2015; 20(2):253-65 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
We previously reported the association of HSPA1A and HSPB1 with high-grade astrocytomas, suggesting that these proteins might be involved in disease outcome and response to treatment. With the aim to better understand the resistance/susceptibility processes associated to temozolomide (TMZ) treatment, the current study was performed in three human malignant glioma cell lines by focusing on several levels: (a) apoptotic index and senescence, (b) DNA damage, and (c) interaction of HSPB1 with players of the DNA damage response. Three human glioma cell lines, Gli36, U87, and DBTRG, were treated with TMZ evaluating cell viability and survival, apoptosis, senescence, and comets (comet assay). The expression of HSPA (HSPA1A and HSPA8), HSPB1, O6-methylguanine-DNA methyltransferase (MGMT), MLH1, and MSH2 was determined by immunocytochemistry, immunofluorescence, and Western blot. Immunoprecipitation was used to analyze protein interaction. The cell lines exhibited differences in viability, apoptosis, and senescence after TMZ administration. We then focused on Gli36 cells (relatively unstudied) which showed very low recovery capacity following TMZ treatment, and this was related to high DNA damage levels; however, the cells maintained their viability. In these cells, MGMT, MSH2, HSPA, and HSPB1 levels increased significantly after TMZ administration. In addition, MSH2 and HSPB1 proteins appeared co-localized by confocal microscopy. This co-localization increased after TMZ treatment, and in immunoprecipitation analysis, MSH2 and HSPB1 appeared interacting. In contrast, HSPB1 did not interact with MGMT. We show in glioma cells the biological effects of TMZ and how this drug affects the expression levels of heat shock proteins (HSPs), MGMT, MSH2, and MLH1. In Gli36 cells, the results suggest that interactions between HSPB1 and MSH2, including co-nuclear localization, may be important in determining cell sensitivity to TMZ.

Yu D, Shin HS, Choi G, Lee YC
Proteomic analysis of CD44(+) and CD44(-) gastric cancer cells.
Mol Cell Biochem. 2014; 396(1-2):213-20 [PubMed] Related Publications
CD44 is a cell surface protein and it is widely used as a cancer stem cell marker in various cancer types including gastric cancer. We conducted proteomic analysis in CD44(+) and CD44(-) gastric cancer cells to understand characteristics of CD44(+) and CD44(-) cells. In the present study, we sorted cells from the gastric cancer cell line MKN45 according to CD44 expression to separate out CD44(+) and CD44(-) cells. And we conducted RT-PCR to identify mRNA expression of cancer stem cell markers in CD44(+) and CD44(-) cells. Cancer stem cell markers showed upregulated expression in CD44(+) cells. Next, we performed two-dimensional electrophoresis analysis to determine the differential expression pattern of proteins in each group; control, CD44(+), and CD44(-) MKN45 cells. We found a total of 113 spots that varied in expression between CD44(+) and CD44(-) cells, and subjected 20 of those protein spots to MALDI-MS. We selected the three proteins (HSPA8; heat shock cognate 71 kDa protein isoform 1, ezrin, α-enolase) upregulated in CD44(+) cells than CD44(-) cells and one protein (prohibitin) showed increased expression in CD44(-) cells. We validated the protein expression levels of four selected proteins by Western blot. We suggest that our study could be a helpful background to study CD44(+) cancer stem-like cells and differences between CD44(+) and CD44(-) cells in gastric cancer.

Liu Q, Boudot A, Ni J, et al.
Cyclin D1 and C/EBPβ LAP1 operate in a common pathway to promote mammary epithelial cell differentiation.
Mol Cell Biol. 2014; 34(16):3168-79 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Both cyclin D1 and the transcription factor C/EBPβ are required for mammary epithelial cell differentiation; however, the pathway in which they operate is uncertain. Previous analyses of the patterns of gene expression in human tumors suggested a connection between cyclin D1 overexpression and C/EBPβ, but whether this represents a cancer-specific gain of function for cyclin D1 is unknown. C/EBPβ is an intronless gene encoding three protein isoforms--LAP1, LAP2, and LIP. Here, we provide evidence that cyclin D1 engages C/EBPβ in an isoform-specific manner. Cyclin D1 binds to LAP1, an event that activates the transcriptional function of LAP1 by relieving its autoinhibited state effected by intramolecular interactions. Reexpression of LAP1 but not LAP2 or LIP restores the ability of C/EBPβ-deficient mammary epithelial cells to differentiate and does so in a manner dependent on cyclin D1. And cyclin D1-mediated activation of LAP1 participates in mammary epithelial cell differentiation. Our findings indicate that cyclin D1 and C/EBPβ LAP1 operate in a common pathway to promote mammary epithelial cell differentiation.

Wang H, Song Y, Hao D, et al.
Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis.
Int J Oncol. 2014; 45(1):157-64 [PubMed] Related Publications
The specific and efficient delivery of small interfering RNA (siRNA) into cancer cells in vivo remains a major obstacle. In this study, we investigated whether ultrasound-targeted microbubble destruction (UTMD) combined with dual targeting of HSP72 and HSC70 in prostate cancer cell lines improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis. VCaP cells were transfected with siRNA oligonucleotides. Cell viability assays were used to evaluate the safety of UTMD. The expression of HSP70, HSP90, caspase-8, caspase-3, PARP-1 and cleaved caspase-3 were determined by quantitative PCR and western blotting. Apoptosis and transfection efficiency were detected by flow cytometry. We found that HSP72, HSC70 and HSP90 expression was absent or weak in normal prostate epithelial cells (RWPE-1), and became uniformly and strongly expressed in prostate cancer cells (VCaP). VCaP and RWPE-1 cells expressed very low levels of caspase-8, caspase-3, PARP-1 and cleaved caspase-3. UTMD combined with dual targeting of HSP72 and HSC70 siRNA impoved the efficiency of transfection, cell uptake of siRNA, downregulated HSP70 and HSP90 expression in VCaP cells on the mRNA and protein levels, and upregulated major apoptotic markers (PARP-1, caspase-8, caspase-3 and cleaved caspase-3), thus, inducing extensive tumor-specific apoptosis. The Cell Counting Kit-8 assay showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting of HSP72 and HSC70 may improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis, indicating a novel, potential means for targeting therapeutic strategy to prostate cancer cells.

Tan S, Ding K, Li R, et al.
Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2.
Breast Cancer Res. 2014; 16(2):R40 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
INTRODUCTION: Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation.
METHODS: The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry.
RESULTS: Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3' UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b.
CONCLUSIONS: We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2.

Adam C, Baeurle A, Brodsky JL, et al.
The HSP70 modulator MAL3-101 inhibits Merkel cell carcinoma.
PLoS One. 2014; 9(4):e92041 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
Merkel Cell Carcinoma (MCC) is a rare and highly aggressive neuroendocrine skin cancer for which no effective treatment is available. MCC represents a human cancer with the best experimental evidence for a causal role of a polyoma virus. Large T antigens (LTA) encoded by polyoma viruses are oncoproteins, which are thought to require support of cellular heat shock protein 70 (HSP70) to exert their transforming activity. Here we evaluated the capability of MAL3-101, a synthetic HSP70 inhibitor, to limit proliferation and survival of various MCC cell lines. Remarkably, MAL3-101 treatment resulted in considerable apoptosis in 5 out of 7 MCC cell lines. While this effect was not associated with the viral status of the MCC cells, quantitative mRNA expression analysis of the known HSP70 isoforms revealed a significant correlation between MAL3-101 sensitivity and HSC70 expression, the most prominent isoform in all cell lines. Moreover, MAL3-101 also exhibited in vivo antitumor activity in an MCC xenograft model suggesting that this substance or related compounds are potential therapeutics for the treatment of MCC in the future.

Lu Z, Song Q, Yang J, et al.
Comparative proteomic analysis of anti-cancer mechanism by periplocin treatment in lung cancer cells.
Cell Physiol Biochem. 2014; 33(3):859-68 [PubMed] Related Publications
BACKGROUND: Periplocin is used for treatment of rheumatoid arthritis, reinforcement of bones and tendons, palpitations or shortness of breath and lower extremity edema in traditional medicine. Our previous findings suggested that periplocin could inhibit the growth of lung cancer both in vitro and in vivo. But the biological processes and molecular pathways by which periplocin induces these beneficial effects remain largely undefined.
METHODS: To explore the molecular mechanisms of periplocin involved in anti-cancer activity, in the present study the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using the proteomics approaches (2-DE combined with MS/MS). Western blot was employed to verify the changed proteins. Interactions between changed proteins were analyzed by STRING.
RESULTS: 29 down-regulated protein species named GTP-binding nuclear protein Ran (RAN), Rho GDP-dissociation inhibitor 1 (ARHGDIA), eukaryotic translation initiation factor 5A-1 (EIF5A) and Profilin-1(PFN1), and 10 up-regulated protein species named Heat shock cognate 71 kDa protein (HSPA8),10 kDa heat shock protein (HSPE1), and Cofilin-1(CFL-1) were identified. Among them, GTP-binding nuclear protein Ran (RAN) and Rho GDP-dissociation inhibitor 1 (ARHGDIA) were the most significantly changed (over tenfold). The proteasome subunit beta type-6 (PSMB6), ATP synthase ecto-α-subunit (ATP5A1), Aldehyde dehydrogenase 1 (ALDH1) and EIF5A were verified by immunoblot assays to be dramatically down-regulated. By STRING bioinformatics analysis revealing interactions and signaling networks it became apparent that the proteins changed they are primarily involved in transcription and proteolysis.
CONCLUSION: Periplocin inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of periplocin on lung cancer cells.

Karantanos T, Tanimoto R, Edamura K, et al.
Systemic GLIPR1-ΔTM protein as a novel therapeutic approach for prostate cancer.
Int J Cancer. 2014; 134(8):2003-13 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
GLIPR1 is a p53 target gene known to be downregulated in prostate cancer, and increased endogenous GLIPR1 expression has been associated with increased production of reactive oxygen species, increased apoptosis, decreased c-Myc protein levels and increased cell cycle arrest. Recently, we found that upregulation of GLIPR1 in prostate cancer cells increases mitotic catastrophe through interaction with heat shock cognate protein 70 (Hsc70) and downregulation of Aurora kinase A and TPX2. In this study, we evaluated the mechanisms of recombinant GLIPR1 protein (glioma pathogenesis-related protein 1-transmembrane domain deleted [GLIPR1-ΔTM]) uptake by prostate cancer cells and the efficacy of systemic GLIPR1-ΔTM administration in a prostate cancer xenograft mouse model. GLIPR1-ΔTM was selectively internalized by prostate cancer cells, leading to increased apoptosis through reactive oxygen species production and to decreased c-Myc protein levels. Interestingly, GLIPR1-ΔTM was internalized through clathrin-mediated endocytosis in association with Hsc70. Systemic administration of GLIPR1-ΔTM significantly inhibited VCaP xenograft growth. GLIPR1-ΔTM showed no evidence of toxicity following elimination from mouse models 8 hr after injection. Our results demonstrate that GLIPR1-ΔTM is selectively endocytosed by prostate cancer cells, leading to increased reactive oxygen species production and apoptosis, and that systemic GLIPR1-ΔTM significantly inhibits growth of VCaP xenografts without substantial toxicity.

Lv Y, Song S, Zhang K, et al.
CHIP regulates AKT/FoxO/Bim signaling in MCF7 and MCF10A cells.
PLoS One. 2013; 8(12):e83312 [PubMed] Article available free on PMC after 20/10/2017 Related Publications
A number of studies have shown that apoptosis resistance can be observed in multiple human tumors; however the detailed mechanism remains unclear. In the present study, we demonstrated that the abnormal overexpression of the C terminus of Hsc70-interacting protein (CHIP) induced apoptosis resistance by regulating the AKT/FoxO/Bim signaling pathway in the breast cancer cell MCF7 and the human non-tumorigenic cell MCF10A. We found that CHIP overexpression in MCF7 and MCF10A cells activated AKT and inhibited the Forkhead box O (FoxO) transcription factors FoxO1, FoxO3, and FoxO4, thereby inhibiting transcription of the target genes bim and pten. Inhibition of PI3K by a chemical reagent revealed that these events may be critical for CHIP-induced apoptosis resistance. We also determined that inhibition of FoxO3 by CHIP led to the decrease in PTEN and further activated the AKT survival pathway. We corroborated our findings in breast cancer tissues. In general, the CHIP-modulated AKT/FoxO/Bim signaling pathway was shown to induce apoptosis resistance by decreasing the protein level of the tumor suppressor PTEN in both transcriptional and post-translational regulations.

Wang Y, Ren F, Wang Y, et al.
CHIP/Stub1 functions as a tumor suppressor and represses NF-κB-mediated signaling in colorectal cancer.
Carcinogenesis. 2014; 35(5):983-91 [PubMed] Related Publications
The carboxyl terminus of Hsc70-interacting protein (CHIP, also named Stub1), a U-box containing E3 ubiquitin ligase, is involved in degradation of certain oncogenic proteins. Recent studies indicated that CHIP suppresses tumor progression in human cancers by targeting Src-3, hypoxia inducible factor 1α, NF-κB, ErbB2 and c-Myc. Here, we report that CHIP was downregulated, predominantly, in the late stages of human colorectal cancer (CRC), and that the CHIP promoter was hypermethylated in CRC specimens. Overexpression of CHIP in HCT-116 cells resulted in impaired tumor growth in nude mice and decreased abilities of tumor cell migration and invasion. Conversely, depletion of CHIP in HCT-116 cells promoted tumor growth and increased tumor cell migration and invasion. CHIP was further found to negatively regulate NF-κB signaling in HCT-116 cells by promoting ubiquitination and degradation of p65, a subunit of the NF-κB complex. The suppressive effect of CHIP led to decreased expression of NF-κB-targeted oncogenes including Cyclin D1, c-Myc, MMP-2, VEGF and IL-8. We proposed that CHIP inhibits the malignancy of CRC cells, possibly through targeting NF-κB signaling. This study provides functional evidence for CHIP as a potential tumor suppressor in CRC, and CHIP expression may be a marker for stages of CRC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HSPA8, Cancer Genetics Web: http://www.cancer-genetics.org/HSPA8.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999