Gene Summary

Gene:RAC2; ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)
Aliases: Gx, EN-7, HSPC022, p21-Rac2
Summary:This gene encodes a member of the Ras superfamily of small guanosine triphosphate (GTP)-metabolizing proteins. The encoded protein localizes to the plasma membrane, where it regulates diverse processes, such as secretion, phagocytosis, and cell polarization. Activity of this protein is also involved in the generation of reactive oxygen species. Mutations in this gene are associated with neutrophil immunodeficiency syndrome. There is a pseudogene for this gene on chromosome 6. [provided by RefSeq, Jul 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:ras-related C3 botulinum toxin substrate 2
Source:NCBIAccessed: 13 March, 2017


What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAC2 (cancer-related)

Wu X, Xia M, Chen D, et al.
Profiling of downregulated blood-circulating miR-150-5p as a novel tumor marker for cholangiocarcinoma.
Tumour Biol. 2016; 37(11):15019-15029 [PubMed] Related Publications
Altered microRNA (miRNA) expression plays a role in cholangiocarcinoma (CCA) development; thus, detection of blood-circulating miRNAs could be useful as CCA markers. This study profiled serum miRNA levels in patients with primary sclerosing cholangitis (PSC) and CCA and then assessed the role of miR-150-5p in CCA progression in vitro. Three samples were randomly selected from each of 50 sera of healthy controls, 30 PSC sera, and 28 CCA sera with matched bile samples for miRNA microarray profiling. The dysregulated miRNAs were confirmed using qRT-PCR, and miR-150-5p was selected for further in vitro and ex vivo studies. The miRNA microarray identified three dysregulated miRNAs in both CCA and PSC samples, while miR-150-5p level was consistently lower in CCA sera, bile, and tissues than in normal control and PSC sera (P < 0.05). Furthermore, levels of miR-150-5p were associated with serum carbohydrate antigen 19-9 (CA19-9) levels and CCA pathological grade. Bioinformatic Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that miR-150-5p could regulate hand-full gene pathways, including cancer pathway (P < 0.01). However, overexpression of miR-150-5p inhibited proliferation, migration, and invasion capability of CCA cells (P < 0.05). Luciferase reporter assay showed that miR-150-5p bound to an oncogene Ets including gene-1 (ELK1), and Western blot data confirmed that miR-150-5p suppressed ELK1 expression in CCA cell lines. These results suggest that reduced miR-150-5p expression could contribute to CCA development and progression due to uncontrolled ELK1 expression. Thus, further study could evaluate miR-150-5p as a novel target and predictor for CCA prevention and treatment.

Zhang JY, Weng MZ, Song FB, et al.
Long noncoding RNA AFAP1-AS1 indicates a poor prognosis of hepatocellular carcinoma and promotes cell proliferation and invasion via upregulation of the RhoA/Rac2 signaling.
Int J Oncol. 2016; 48(4):1590-8 [PubMed] Related Publications
It has been shown that long noncoding RNAs (lncRNAs) play a critical role in the regulation of cellular processes including cancer progression and metastasis. However, the biological functions and clinical significance of lncRNA AFAP1-AS1 in hepatocellular carcinoma (HCC) remain unclear. Expression of AFAP1-AS1 was analyzed in 78 HCC tissues by real-time PCR. The effect of AFAP1-AS1 on cell proliferation was examined by MTT assay, cell apoptosis was detected by flow cytometric analysis and cell invasion was determined by Transwell assay. RhoA/Rac2 signaling and downstream factors were verified by western blotting. HCC cells infected with si-AFAP1-AS1 were injected into nude mice to investigate the effect of AFAP1-AS1 on the tumorigenesis in vivo. We found that increased expression of AFAP1-AS1 was significantly correlated with pathological staging (P=0.024) and lymph-vascular space invasion (LVSI) in HCC patients (P=0.007). Multivariate analyses indicated that AFAP1-AS1 represented an independent predictor for overall survival of HCC (P=0.029). Further experiments showed that knockdown of AFAP1-AS1 by si-AFAP1-AS1 decreased the proliferation and invasion in vitro and in vivo, induced cell apoptosis and blocked cell cycle in S phase via inhibition of the RhoA/Rac2 signaling. Taken together, our findings indicate that AFAP1-AS1 may promote the HCC development through upregulation of RhoA/Rac2 signaling and provide a potential therapeutic target for HCC.

Caye A, Strullu M, Guidez F, et al.
Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network.
Nat Genet. 2015; 47(11):1334-40 [PubMed] Related Publications
Juvenile myelomonocytic leukemia (JMML) is a rare and severe myelodysplastic and myeloproliferative neoplasm of early childhood initiated by germline or somatic RAS-activating mutations. Genetic profiling and whole-exome sequencing of a large JMML cohort (118 and 30 cases, respectively) uncovered additional genetic abnormalities in 56 cases (47%). Somatic events were rare (0.38 events/Mb/case) and restricted to sporadic (49/78; 63%) or neurofibromatosis type 1 (NF1)-associated (8/8; 100%) JMML cases. Multiple concomitant genetic hits targeting the RAS pathway were identified in 13 of 78 cases (17%), disproving the concept of mutually exclusive RAS pathway mutations and defining new pathways activated in JMML involving phosphoinositide 3-kinase (PI3K) and the mTORC2 complex through RAC2 mutation. Furthermore, this study highlights PRC2 loss (26/78; 33% of sporadic JMML cases) that switches the methylation/acetylation status of lysine 27 of histone H3 in JMML cases with altered RAS and PRC2 pathways. Finally, the association between JMML outcome and mutational profile suggests a dose-dependent effect for RAS pathway activation, distinguishing very aggressive JMML rapidly progressing to acute myeloid leukemia.

Čokić VP, Mossuz P, Han J, et al.
Microarray and Proteomic Analyses of Myeloproliferative Neoplasms with a Highlight on the mTOR Signaling Pathway.
PLoS One. 2015; 10(8):e0135463 [PubMed] Free Access to Full Article Related Publications
The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34+ cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34+ cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects. The granulocytes for proteomic studies were pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. The number of differentially regulated genes was about two fold larger in CD34+ cells compared to granulocytes. Thirty-six genes (including RUNX1, TNFRSF19) were persistently highly expressed, while 42 genes (including FOXD4, PDE4A) were underexpressed both in CD34+ cells and granulocytes. Using proteomic studies, significant up-regulation was observed for MAPK and PI3K/AKT signaling regulators that control myeloid cell apoptosis and proliferation: RAC2, MNDA, S100A8/9, CORO1A, and GNAI2. When the status of the mTOR signaling pathway related genes was analyzed, PI3K/AKT regulators were preferentially up-regulated in CD34+ cells of MPNs, with down-regulated major components of the protein complex EIF4F. Molecular profiling of CD34+ cells and granulocytes of MPN determined gene expression patterns beyond their recognized function in disease pathogenesis that included dominant up-regulation of PI3K/AKT signaling.

Fu J, Khaybullin R, Zhang Y, et al.
Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression.
BMC Cancer. 2015; 15:473 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In order to identify biomarkers involved in breast cancer, gene expression profiling was conducted using human breast cancer tissues.
METHODS: Total RNAs were extracted from 150 clinical patient tissues covering three breast cancer subtypes (Luminal A, Luminal B, and Triple negative) as well as normal tissues. The expression profiles of a total of 50,739 genes were established from a training set of 32 samples using the Agilent Sure Print G3 Human Gene Expression Microarray technology. Data were analyzed using Agilent Gene Spring GX 12.6 software. The expression of several genes was validated using real-time RT-qPCR.
RESULTS: Data analysis with Agilent GeneSpring GX 12.6 software showed distinct expression patterns between cancer and normal tissue samples. A group of 28 promising genes were identified with ≥ 10-fold changes of expression level and p-values < 0.05. In particular, MMP11 and HPSE2 were closely examined due to the important roles they play in cancer cell growth and migration. Real-time RT-qPCR analyses of both training and testing sets validated the gene expression profiles of MMP11 and HPSE2.
CONCLUSIONS: Our findings identified these 2 genes as a novel breast cancer biomarker gene set, which may facilitate the diagnosis and treatment in breast cancer clinical therapies.

Manukjan G, Ripperger T, Santer L, et al.
Expression of the ETS transcription factor GABPα is positively correlated to the BCR-ABL1/ABL1 ratio in CML patients and affects imatinib sensitivity in vitro.
Exp Hematol. 2015; 43(10):880-90 [PubMed] Related Publications
In Philadelphia-positive chronic myeloid leukemia (CML), imatinib resistance frequently emerges because of point mutations in the ABL1 kinase domain, but may also be the consequence of uncontrolled upstream signaling. Recently, the heteromeric transcription factor GA-binding protein (GABP) was found to promote CML-like myeloproliferative disease in mice. In a cohort of 70 CML patients, we found that expression of the GABP α subunit (GABPα) is positively correlated to the BCR-ABL1/ABL1 ratio. Moreover, significantly higher GABPα expression was detected in blast crisis than in chronic phase CML after performing data mining on 91 CML patients. In functional studies, imatinib sensitivity is enhanced after GABPα knockdown in tyrosine kinase inhibitors (TKI)-sensitive K-562, as well as by overexpression of a deletion mutant in TKI-resistant NALM-1 cells. Moreover, in K-562 cells, GABP-dependent expression variations of PRKD2 and RAC2, relevant signaling mediators in CML, were observed. Notably, protein kinase D2 (Prkd2) was reported to be a GABP target gene in mice. In line with this, we detected a positive correlation between GABPA and PRKD2 expression in primary human CML, indicating that the effects of GABP are mediated by PRKD2. These findings illustrate an important role for GABP in disease development and imatinib sensitivity in human CML.

Vulsteke C, Pfeil AM, Maggen C, et al.
Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients.
Breast Cancer Res Treat. 2015; 152(1):67-76 [PubMed] Related Publications
Anthracycline-induced cardiotoxicity (ACT) is a well-known serious adverse drug reaction leading to substantial morbidity. The purpose of this study was to assess ACT occurrence and clinical and genetic risk factors in early breast cancer patients. In 6 genes of interest (ABCC1, ABCC2, CYBA, NCF4, RAC2, SLC28A3), 10 single nucleotide polymorphisms (SNPs) involved in ACT were selected based on a literature search. Eight hundred and seventy-seven patients treated between 2000 and 2010 with 3-6 cycles of (neo) adjuvant 5-fluorouracil, epirubicin and cyclophosphamide (FEC) were genotyped for these SNPs using Sequenom MassARRAY. Main outcome measures were asymptomatic decrease of left ventricular ejection fraction (LVEF) > 10 % and cardiac failure grade 3-5 (CTCAE 4.0). To evaluate the impact of these 10 SNPs as well as clinical factors (age, relative dose intensity of epirubicin, left-sided radiotherapy, occurrence of febrile neutropenia, and planned and received cycles of epirubicin) on decrease of LVEF and cardiac failure, we performed uni- and multivariable logistic regression analysis. Additionally, exploratory analyses including 11 additional SNPs related to the metabolism of anthracyclines were performed. After a median follow-up of 3.62 years (range 0.40-9.60), a LVEF decline of > 10 % occurred in 153 patients (17.5 %) and cardiac failure in 16 patients (1.8 %). In multivariable analysis, six cycles of FEC compared to three cycles received and heterozygous carriers of the rs246221 T-allele in ABCC1 relative to homozygous carriers of the T-allele were significantly associated with LVEF decline of > 10 % (OR 1.3, 95 % CI 1.1-1.4, p < 0.001 and OR 1.6, 95 % CI 1.1-2.3, p = 0.02). Radiotherapy for left-sided breast cancer was associated with cardiac failure (OR 3.7, 95 % CI 1.2-11.5, p 0.026). The other 9 SNPs and clinical factors tested were not significantly associated. In our exploratory analysis, no other SNPs related to anthracycline metabolism were retained in the multivariate model for prediction of LVEF decline. ACT in breast cancer patients is related to number of received cycles of epirubicin and left-sided radiotherapy. Additional studies should be performed to independently confirm the potential association between rs246221 in ABCC1 and LVEF.

Lee HJ, Lee JJ, Song IH, et al.
Prognostic and predictive value of NanoString-based immune-related gene signatures in a neoadjuvant setting of triple-negative breast cancer: relationship to tumor-infiltrating lymphocytes.
Breast Cancer Res Treat. 2015; 151(3):619-27 [PubMed] Related Publications
The prognostic significance of tumor-infiltrating lymphocytes and immune signals has been described previously in triple-negative breast cancer (TNBC). Furthermore, recent studies have shown that immunologic parameters are relevant for the response to neoadjuvant chemotherapy (NAC) in breast cancer as well as for outcomes after adjuvant chemotherapy. However, immune signals are variable, and which signals are important is largely unknown. We, therefore, evaluated the expression of immune-related genes in TNBC treated with NAC. We retrospectively evaluated biopsy tissue from 55 patients with primary TNBC treated with NAC (anthracycline, cyclophosphamide, and docetaxel) against the NanoString nCounter GX Human Immunology Panel (579 immune-related genes). Higher expression of cytotoxic molecules, T cell receptor signaling pathway components, cytokines related to T helper cell type 1 (Th1), and B cell markers was associated with a pathologic complete response (pCR). Higher expression of NFKB1, MAPK1, TRAF1, CXCL13, GZMK, and IL7R was significantly associated with pCR, higher Miller-Payne grade, and lower residual cancer burden class. Expression of NFKB1, TRAF1, and CXCL13genes, in particular, was significantly correlated with a longer disease-free survival rate. Conversely, patients those who failed to achieve a pCR showed increased expression of genes related to neutrophils. Higher expression of cytotoxic molecules, T cell receptor signaling pathway components, Th1-related cytokines, and B cell markers is correlated with pCR and survival in TNBC patients treated with NAC. Our results suggest that the activation status of neutrophils may provide additional predictive information for TNBC patients treated with NAC.

Reichwagen A, Ziepert M, Kreuz M, et al.
Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20(+) B-cell lymphoma.
Pharmacogenomics. 2015; 16(4):361-72 [PubMed] Related Publications
AIM: To identify gene variants responsible for anthracycline-induced cardiotoxicity.
PATIENTS & METHODS: Polymorphisms of the NADPH oxidase subunits and of the anthracycline transporters ABCC1, ABCC2 and SLC28A3 were genotyped in elderly patients (61-80 years) treated for aggressive CD20(+) B-cell lymphomas with CHOP-14 with or without rituximab and followed up for 3 years.
RESULTS: The accumulation of RAC2 subunit genotypes TA/AA among cases was statistically significant upon adjustment for gender, age and doxorubicin dose in a multivariate logistic regression analysis (OR: 2.3, p = 0.028; univariate: OR: 1.8, p = 0.077). RAC2 and CYBA genotypes were significantly associated with anthracycline-induced cardiotoxicity in a meta-analysis of this and a similar previous study.
CONCLUSION: Our results support the theory that NADPH oxidase is involved in anthracycline-induced cardiotoxicity. Original submitted 9 July 2014; Revision submitted 19 December 2014.

Zu M, Xu X, Zhou WX, et al.
Whole genome expression profiling of gastric high-grade intraepithelial neoplasia with or without cancer.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2015; 37(1):23-9 [PubMed] Related Publications
OBJECTIVE: To investigate the whole genome expression profiles between gastric high-grade intraepithelial neoplasia (HGIN) tissues with cancer and HGIN tissues without cancer.
METHODS: Gastric specimens from an upper magnifying chromoendoscopic targeted biopsy were collected at Peking Union Medical College Hospital from March 2010 to May 2013. Each of the forceps biopsies from the 21 patients was HGIN,but there were 10 HGIN and 11 HGIN with cancer after the endoscopic submucosal dissection. The whole genome expression profiling was performed on 10 HGIN samples and 11 HGIN with cancer samples using Agilent 4 × 44K Whole Human Genome microarrays. Differentially expressed genes between different types of lesions were identified using an unpaired t-test and corrected with the Benjamini and Hochberg false discovery rate algorithm. A gene ontology(GO)enrichment analysis was performed using the GeneSpring software GX 12.6.
RESULTS: The gene expression patterns were different between HGIN tissues with cancer and HGIN tissues without cancer. There were 470 significantly differentially expressed transcripts between them (P<0.05,Fold Change>2), with 180 up-regulated genes and 290 down-regulated genes in HGIN tissues with cancer. A GO enrichment analysis demonstrated that the most striking over-expressed transcripts in HGIN with cancer were in the category of triglyceride biosynthetic process,acylglycerol biosynthetic process,neutral lipid biosynthetic process,glycerol ether metabolic process,organic ether metabolic process,and glycerolipid metabolic process.
CONCLUSION: The change of lipid metabolism may contribute to the pathogenesis of gastric cancer at an early stage.

Xu X, Feng L, Liu Y, et al.
Differential gene expression profiling of gastric intraepithelial neoplasia and early-stage adenocarcinoma.
World J Gastroenterol. 2014; 20(47):17883-93 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the differentiated whole genome expression profiling of gastric high- and low-grade intraepithelial neoplasia and early-stage adenocarcinoma.
METHODS: Gastric specimens from an upper magnifying chromoendoscopic targeted biopsy were collected from March 2010 to May 2013. Whole genome expression profiling was performed on 19 low-grade intraepithelial neoplasia (LGIN), 20 high-grade intraepithelial neoplasia (HGIN), 19 early-stage adenocarcinoma (EGC), and 19 chronic gastritis tissue samples using Agilent 4 × 44K Whole Human Genome microarrays. Differentially expressed genes between different types of lesions were identified using an unpaired t-test and corrected with the Benjamini and Hochberg false discovery rate algorithm. A gene ontology (GO) enrichment analysis was performed using the GeneSpring software GX 12.6. The differentially expressed gene was verified using a real-time TaqMan® PCR assay with independent tissue samples, including 26 LGIN, 15 HGIN, 14 EGC, and 20 chronic gastritis. The expression of G0S2 were further validated by immunohistochemical staining (IHC) in 24 LGIN, 40 HGIN, 30 EGC and 61 chronic gastritis specimens.
RESULTS: The gene expression patterns of LGIN and HGIN tissues were distinct. There were 2521 significantly differentially expressed transcripts in HGIN, with 951 upregulated and 1570 downregulated. A GO enrichment analysis demonstrated that the most striking overexpressed transcripts in HGIN compared with LGIN were in the category of metabolism, defense response, and nuclear factor κB (NF-κB) cascade. While the vast majority of transcripts had barely altered expression in HGIN and EGC tissues, only 38 transcripts were upregulated in EGC. A GO enrichment analysis revealed that the alterations of the immune response were most prominent in the progression from HGIN to EGC. It is worth noting that, compared with LGIN, 289 transcripts were expressed at higher levels both in HGIN and EGC. A characteristic gene, G0/G1 switch 2 (G0S2) was one of the 289 transcripts and related to metabolism, the immune response, and the NF-κB cascade, and its expression was validated in independent samples through real-time TaqMan® PCR and immunohistochemical staining. In real-time PCR analysis, the expression of G0S2 was elevated both in HGIN and EGC compared with that in LGIN (P < 0.01 and P < 0.001, respectively). In IHC analysis, G0S2 immunoreactivity was detected in the cytoplasmic of neoplastic cells, but was undetectable in chronic gastritis cells. The G0S2 expression in HGIN was higher than that of LGIN (P = 0.012, χ (2) = 6.28) and EGC (P = 0.008, χ (2) = 6.94).
CONCLUSION: A clear biological distinction between gastric high- and low-grade intraepithelial neoplasia was identified, and provides molecular evidence for clinical application.

Suryawanshi S, Huang X, Elishaev E, et al.
Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer.
Clin Cancer Res. 2014; 20(23):6163-74 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Mechanisms of immune dysregulation associated with advanced tumors are relatively well understood. Much less is known about the role of immune effectors against cancer precursor lesions. Endometrioid and clear-cell ovarian tumors partly derive from endometriosis, a commonly diagnosed chronic inflammatory disease. We performed here a comprehensive immune gene expression analysis of pelvic inflammation in endometriosis and endometriosis-associated ovarian cancer (EAOC).
EXPERIMENTAL DESIGN: RNA was extracted from 120 paraffin tissue blocks comprising of normal endometrium (n = 32), benign endometriosis (n = 30), atypical endometriosis (n = 15), and EAOC (n = 43). Serous tumors (n = 15) were included as nonendometriosis-associated controls. The immune microenvironment was profiled using Nanostring and the nCounter GX Human Immunology Kit, comprising probes for a total of 511 immune genes.
RESULTS: One third of the patients with endometriosis revealed a tumor-like inflammation profile, suggesting that cancer-like immune signatures may develop earlier, in patients classified as clinically benign. Gene expression analyses revealed the complement pathway as most prominently involved in both endometriosis and EAOC. Complement proteins are abundantly present in epithelial cells in both benign and malignant lesions. Mechanistic studies in ovarian surface epithelial cells from mice with conditional (Cre-loxP) mutations show intrinsic production of complement in epithelia and demonstrate an early link between Kras- and Pten-driven pathways and complement upregulation. Downregulation of complement in these cells interferes with cell proliferation.
CONCLUSIONS: These findings reveal new characteristics of inflammation in precursor lesions and point to previously unknown roles of complement in endometriosis and EAOC.

Wan YJ, Yang Y, Leng QL, et al.
Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells.
Cell Signal. 2014; 26(10):2202-9 [PubMed] Related Publications
Vav proteins are guanine nucleotide exchange factors (GEFs) that activate a group of small G proteins (GTPases). Vav1 is predominantly expressed in hematopoietic cells, whereas Vav2 and Vav3 are ubiquitously distributed in almost all human tissues. All three Vav proteins contain conserved structural motifs and associate with a variety of cellular activities including proliferation, migration, and survival. Previous observation with Jurkat leukemia T cells showed that Vav1 possessed anti-apoptotic activity by enhancing Bcl-2 transcription. However the mechanism has not been unveiled. Here, we explored the effectors of Vav1 in promoting Bcl-2 expression in Jurkat cells and revealed that Rac2-Akt was specifically evoked by the expression of Vav1, but not Vav2 or Vav3. Although all three Vav isoforms existed in Jurkat cells, Rac2 was distinguishably activated by Vav1 and that led to enhanced Bcl-2 expression and cell survival. Akt was modulated downstream of Vav1-Rac2, and the activation of Akt was indispensable in the enhanced transcription of Bcl-2. Intriguingly, neither Vav2 nor Vav3 was able to activate Rac2-Akt pathway as determined by gene silencing approach. Our data illustrated a unique role of Vav1 in T leukemia survival by selectively triggering Rac2-Akt axis and elevating the expression of anti-apoptotic Bcl-2.

López-Guerra M, Xargay-Torrent S, Rosich L, et al.
The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells.
Leukemia. 2015; 29(1):96-106 [PubMed] Related Publications
Targeting Notch signaling has emerged as a promising therapeutic strategy for chronic lymphocytic leukemia (CLL), especially for the poor prognostic subgroup of NOTCH1-mutated patients. Here, we report that the γ-secretase inhibitor PF-03084014 inhibits the constitutive Notch activation and induces selective apoptosis in CLL cells carrying NOTCH1 mutations. Combination of PF-03084014 with fludarabine has a synergistic antileukemic effect in primary NOTCH1-mutated CLL cells, even in the presence of the protective stroma. At transcriptional level, PF-03084014 plus fludarabine treatment induces the upregulation of the proapoptotic gene HRK and the downmodulation of MMP9, IL32 and RAC2 genes that are related to invasion and chemotaxis. PF-03084014 also overcomes fludarabine-mediated activation of nuclear factor-κB signaling. Moreover, this combination impairs angiogenesis and CXCL12-induced responses in NOTCH1-mutated CLL cells, in particular those related to tumoral migration and invasion. Importantly, all these collaborative effects are specific for NOTCH1 mutation and do not occur in unmutated cases. In conclusion, we provide evidence that Notch is a therapeutic target in CLL cases with NOTCH1-activating mutations, supporting the use of Notch pathway inhibitors in combination with chemotherapy as a promising approach for the treatment of these high-risk CLL patients.

Zwaenepoel K, Van Dongen A, Lambin S, et al.
Detection of ALK expression in non-small-cell lung cancer with ALK gene rearrangements--comparison of multiple immunohistochemical methods.
Histopathology. 2014; 65(4):539-48 [PubMed] Related Publications
AIM: Testing for ALK rearrangements in advanced, non-squamous non-small-cell lung cancers that are wild-type for activating EGFR mutation has become standard care. Fluorescence in-situ hybridization is considered the gold standard for this evaluation. Pre-screening with immunohistochemistry has been suggested, to reduce testing costs and to make testing more widely available. By analysing the sensitivity and specificity of different ALK immunohistochemical assays, we aimed to identify the most reliable assay to detect ALK rearrangement.
METHODS AND RESULTS: ALK screening performed by FISH analysis was compared with three different immunohistochemical assays, in which two ALK antibody clones (5A4 and D5F3) were used on two detection platforms (Dako AutostainerLink 48 and Ventana Benchmark GX). Data from 30 ALK FISH-positive cases show that the sensitivity of the immunohistochemical assays varies from 93.3% to 96.6%. Head-to-head comparison of the 5A4 and D5F3 ALK antibody clones demonstrates similar staining potency. In general, homogeneous, intermediate to strong staining of the ALK-positive samples was obtained.
CONCLUSIONS: ALK immunohistochemistry can be considered as a pre-screen method if one accepts a sensitivity of 93.3-96.6%. Because ALK immunohistochemical staining needs to be performed close to the detection limit of the assay, vigilant quality control monitoring is required to guarantee trustworthy results.

Gu DL, Chen YH, Shih JH, et al.
Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.
World J Gastroenterol. 2013; 19(47):8873-9 [PubMed] Free Access to Full Article Related Publications
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.

Li M, Huang L, Qiu H, et al.
Helicobacter pylori infection synergizes with three inflammation-related genetic variants in the GWASs to increase risk of gastric cancer in a Chinese population.
PLoS One. 2013; 8(9):e74976 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Three recent genome-wide association studies (GWASs) have reported that three SNPs (rs4072037, rs13361707 and rs2274223) located on genes related to host inflammatory response are significantly associated with susceptibility to gastric cancer (GC) in Chinese populations. Helicobacter pylori infection is also an important risk factor for GC through causing inflammatory response in the gastric mucosa. However, no study has established whether there are potential gene-environment interactions between these genetic variants and H. pylori infection to the risk of GC.
METHODS: We genotyped three polymorphisms (rs4072037 at 1q22, rs13361707 at 5p13, and rs2274223 at 10q23) in 335 Chinese gastric adenocarcinoma patients and 334 controls. H. pylori serology was examined by enzyme-linked immunosorbent assay. Multivariable logistic regression models were used to evaluate the association between the variables and GC risk.
RESULTS: We confirmed that the three SNPs (rs4072037, rs13361707 and rs2274223) were significantly associated with GC susceptibility. H. pylori infection also significantly increased the risk of GC. Furthermore, there were joint effects between H. pylori infection and the three SNPs on the risk of GC. The most elevated risk of GC was found in subjects with H. pylori seropositivity and AA genotypes for rs4072037 [odds ratio (OR), 3.95; 95% confidence interval (CI), 2.29-6.79], H. pylori seropositivity and CT/CC genotypes for rs13361707 (OR, 2.68; 95% CI, 1.62-4.43), H. pylori seropositivity and AG/GG genotypes for rs2274223 (OR, 2.45; 95% CI, 1.55-3.88) compared with those with H. pylori seronegativity and other genotypes of each SNP. Significant interactions were observed between H. pylori seropositivity and the three SNPs (all P(G× E) <0.05) to the risk of GC.
CONCLUSION: These findings indicate that the three SNPs (rs4072037, rs13361707 and rs2274223) identified in the GWASs may interact with H. pylori infection to increase the risk of GC.

Snoeren N, Emmink BL, Koerkamp MJ, et al.
Maspin is a marker for early recurrence in primary stage III and IV colorectal cancer.
Br J Cancer. 2013; 109(6):1636-47 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Little is known about the factors that drive metastasis formation in colorectal cancer (CRC). Here, we set out to identify genes and proteins in patients with colorectal liver metastases that correlate with early disease recurrence. Such factors may predict a propensity for metastasis in earlier stages of CRC.
METHODS: Gene expression profiling and proteomics were used to identify differentially expressed genes/proteins in resected liver metastases that recurred within 6 months following liver surgery vs those that did not recur for >24 months. Expression of the identified genes/proteins in stage II (n=243) and III (n=176) tumours was analysed by immunohistochemistry on tissue microarrays. Correlation of protein levels with stage-specific outcome was assessed by uni- and multivariable analyses.
RESULTS: Both gene expression profiling and proteomics identified Maspin to be differentially expressed in colorectal liver metastases with early (<6 months) and prolonged (>24 months) time to recurrence. Immunohistochemical analysis of Maspin expression on tumour sections revealed that it was an independent predictor of time to recurrence (log-rank P=0.004) and CRC-specific survival (P=0.000) in stage III CRC. High Maspin expression was also correlated with mucinous differentiation. In stage II CRC patients, high Maspin expression did not correlate with survival but was correlated with a right-sided tumour location.
CONCLUSION: High Maspin expression correlates with poor outcome in CRC after spread to the local lymph nodes. Therefore, Maspin may have a stage-specific function possibly related to tumour cell dissemination and/or metastatic outgrowth.

Armenian SH, Ding Y, Mills G, et al.
Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation.
Br J Haematol. 2013; 163(2):205-13 [PubMed] Free Access to Full Article Related Publications
Haematopoietic cell transplantation (HCT) survivors are at increased risk for developing congestive heart failure (CHF), primarily due to pre-HCT exposure to anthracyclines. We examined the association between the development of CHF after HCT and polymorphisms in 16 candidate genes involved in anthracycline metabolism, iron homeostasis, anti-oxidant defence, and myocardial remodelling. A nested case-control study design was used. Cases (post-HCT CHF) were identified from 2950 patients who underwent HCT between 1988 and 2007 at City of Hope and had survived ≥1 year. This cohort formed the sampling frame for selecting controls (without CHF) matched on: age, race/ethnicity, cumulative anthracycline exposure, stem cell source (allogeneic, autologous), and length of follow-up. Seventy-seven cases with pre-HCT germline DNA and 178 controls were genotyped. Multivariate analysis revealed that the odds of CHF was higher in females [Odds Ratio (OR) = 2·9, P < 0·01], individuals with pre-HCT chest radiation (OR = 4·7, P = 0·05), hypertension (OR = 2·9, P = 0·01), and with variants of genes coding for the NAD(P)H-oxidase subunit RAC2 (rs13058338, 7508T→A; OR = 2·8, P < 0·01), HFE (rs1799945, 63C→G; OR = 2·5, P = 0·05) or the doxorubicin efflux transporter ABCC2 (rs8187710, 1515G→A; OR = 4·3, P < 0·01). A combined (clinical and genetic) CHF predictive model performed better [area under the curve (AUC), 0·79] than the genetic (AUC = 0·67) or the clinical (AUC = 0·69) models alone.

Henkels KM, Boivin GP, Dudley ES, et al.
Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model.
Oncogene. 2013; 32(49):5551-62 [PubMed] Free Access to Full Article Related Publications
Breast cancer is one of the most common malignancies in human females in the world. One protein that has elevated enzymatic lipase activity in breast cancers in vitro is phospholipase D (PLD), which is also involved in cell migration. We demonstrate that the PLD2 isoform, which was analyzed directly in the tumors, is crucial for cell invasion that contributes critically to the growth and development of breast tumors and lung metastases in vivo. We used three complementary strategies in a SCID mouse model and also addressed the underlying molecular mechanism. First, the PLD2 gene was silenced in highly metastatic, aggressive breast cancer cells (MDA-MB-231) with lentivirus-based short hairpin RNA, which were xenotransplanted in SCID mice. The resulting mouse primary mammary tumors were reduced in size (65%, P<0.05) and their onset delayed when compared with control tumors. Second, we stably overexpressed PLD2 in low-invasive breast cancer cells (MCF-7) with a biscistronic MIEG retroviral vector and observed that these cells were converted into a highly aggressive phenotype, as primary tumors that formed following xenotransplantation were larger, grew faster and developed lung metastases more readily. Third, we implanted osmotic pumps into SCID xenotransplanted mice that delivered two different small-molecule inhibitors of PLD activity (5-fluoro-2-indolyl des-chlorohalopemide and N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4,5]dec-8-yl)ethyl]-2-naphthalenecarboxamide). These inhibitors led to significant (>70%, P<0.05) inhibition of primary tumor growth, metastatic axillary tumors and lung metastases. In order to define the underlying mechanism, we determined that the machinery of PLD-induced cell invasion is mediated by phosphatidic acid, Wiscott-Aldrich Syndrome protein, growth receptor-bound protein 2 and Rac2 signaling events that ultimately affect actin polymerization and cell invasion. In summary, this study shows for the first time that PLD2 has a central role in the development, metastasis and level of aggressiveness of breast cancer, raising the possibility that PLD2 could be used as a new therapeutic target.

Cleary SP, Jeck WR, Zhao X, et al.
Identification of driver genes in hepatocellular carcinoma by exome sequencing.
Hepatology. 2013; 58(5):1693-702 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Genetic alterations in specific driver genes lead to disruption of cellular pathways and are critical events in the instigation and progression of hepatocellular carcinoma (HCC). As a prerequisite for individualized cancer treatment, we sought to characterize the landscape of recurrent somatic mutations in HCC. We performed whole-exome sequencing on 87 HCCs and matched normal adjacent tissues to an average coverage of 59×. The overall mutation rate was roughly two mutations per Mb, with a median of 45 nonsynonymous mutations that altered the amino acid sequence (range, 2-381). We found recurrent mutations in several genes with high transcript levels: TP53 (18%); CTNNB1 (10%); KEAP1 (8%); C16orf62 (8%); MLL4 (7%); and RAC2 (5%). Significantly affected gene families include the nucleotide-binding domain and leucine-rich repeat-containing family, calcium channel subunits, and histone methyltransferases. In particular, the MLL family of methyltransferases for histone H3 lysine 4 were mutated in 20% of tumors.
CONCLUSION: The NFE2L2-KEAP1 and MLL pathways are recurrently mutated in multiple cohorts of HCC.

Dhawan D, Ramos-Vara JA, Hahn NM, et al.
DNMT1: an emerging target in the treatment of invasive urinary bladder cancer.
Urol Oncol. 2013; 31(8):1761-9 [PubMed] Related Publications
OBJECTIVES: More than 14,000 people die from invasive urothelial carcinoma (iUC) of the urinary bladder each year in the USA, and more effective therapies are needed. Naturally occurring canine iUC very closely resembles the disease in humans and serves as a highly relevant translational model for novel therapy of human iUC. Work was undertaken to identify new targets for anticancer therapy in dogs with the goal of translating successful therapeutic strategies into humans with iUC.
MATERIALS AND METHODS: Microarray expression analyses were conducted on mRNA extracted from canine normal bladder (n = 4) and iUC tissues (n = 4) using Genome Array 1.0 and analyzed by GeneSpring GX 11, with the stringency of P < 0.02 and a ≥ 2-fold change. The genes thus identified were further analyzed for functional and pathway analysis using Protein ANalysis THrough Evolutionary Relationships (PANTHER) Classification System. In selecting genes for further study, consideration was given for evidence of a role of the gene in human iUC. From these analyses, DNA methyltransferase 1 (DNMT1) was selected for further study. Immunohistochemistry (IHC) of canine normal bladder and iUC tissues was performed to confirm the microarray expression analyses. The effects of targeting DNMT1 in vitro was assessed through MTT assay and Western blot of canine iUC cells treated with 5-azacitidine (5-azaC) and trichostatin A (TSA).
RESULTS: DNMT1 was expressed in 0 of 6 normal canine bladder samples and in 10 of 22 (45%) canine iUC samples. The proliferation of canine iUC cells was inhibited by 5-azaC (at concentrations ≥ 5 μm) and by TSA (at concentrations ≥ 0.1 μm). Western blot results were supportive of DNMT1-related effects having a role in the antiproliferative activity.
CONCLUSIONS: Microarray expression analyses on canine tissues identified DNMT1 as a potentially "targetable" gene. Expression of DNMT1 in canine iUC was confirmed by IHC, and in vitro studies confirmed that drugs that inhibit DNMT1 have antiproliferative effects. These findings are similar to those recently reported in human iUC and are also in line with results of a preclinical (prehuman) trial of 5-azaC in dogs with naturally occurring iUC. DNMT1 has excellent potential as a target for iUC therapy in humans.

Kim C, Zheng T, Lan Q, et al.
Genetic polymorphisms in oxidative stress pathway genes and modification of BMI and risk of non-Hodgkin lymphoma.
Cancer Epidemiol Biomarkers Prev. 2012; 21(5):866-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Being overweight and obese increases oxidative stress in the body. To test the hypothesis that genetic variations in oxidative stress pathway genes modify the relationship between body mass index (BMI) and risk of non-Hodgkin lymphoma (NHL), we conducted a population-based case-control study in Connecticut women.
METHODS: Individuals who were overweight/obese (BMI ≥ 25) were compared with normal and underweight individuals (BMI < 25), and their risk of NHL stratified assuming a dominant allele model for each oxidative stress pathway single-nucleotide polymorphism.
RESULTS: Polymorphisms in AKR1A1, AKR1C1, AKR1C3, CYBA, GPX1, MPO, NCF2, NCF4, NOS1, NOS2A NOS3, OGG1, ATG9B, SOD1, SOD2, SOD3, RAC1, and RAC2 genes after false discovery rate adjustment did not modify the association between BMI and risk of NHL overall and histologic subtypes.
CONCLUSIONS: The results suggest that common genetic variations in oxidative stress genes do not modify the relationship between BMI and risk of NHL.
IMPACT: Studies of BMI and oxidative stress independently may elevate NHL risk, but this study suggests no interaction of the two risk factors. Future studies with larger study populations may reveal interactions.

Chen GX, Zheng LH, Liu SY, He XH
rAd-p53 enhances the sensitivity of human gastric cancer cells to chemotherapy.
World J Gastroenterol. 2011; 17(38):4289-97 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate potential antitumor effects of rAd-p53 by determining if it enhanced sensitivity of gastric cancer cells to chemotherapy.
METHODS: Three gastric cancer cell lines with distinct levels of differentiation were treated with various doses of rAd-p53 alone, oxaliplatin (OXA) alone, or a combination of both. Cell growth was assessed with an 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide assay and the expression levels of p53, Bax and Bcl-2 were determined by immunohistochemistry. The presence of apoptosis and the expression of caspase-3 were determined using flow cytometry.
RESULTS: Treatment with rAd-p53 or OXA alone inhibited gastric cancer cell growth in a time- and dose-dependent manner; moreover, significant synergistic effects were observed when these treatments were combined. Immunohistochemical analysis demonstrated that treatment with rAd-p53 alone, OXA alone or combined treatment led to decreased Bcl-2 expression and increased Bax expression in gastric cancer cells. Furthermore, flow cytometry showed that rAd-p53 alone, OXA alone or combination treatment induced apoptosis of gastric cancer cells, which was accompanied by increased expression of caspase-3.
CONCLUSION: rAd-p53 enhances the sensitivity of gastric cancer cells to chemotherapy by promoting apoptosis. Thus, our results suggest that p53 gene therapy combined with chemotherapy represents a novel avenue for gastric cancer treatment.

Mizukawa B, Wei J, Shrestha M, et al.
Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia.
Blood. 2011; 118(19):5235-45 [PubMed] Free Access to Full Article Related Publications
The Rac family of small Rho GTPases coordinates diverse cellular functions in hematopoietic cells including adhesion, migration, cytoskeleton rearrangements, gene transcription, proliferation, and survival. The integrity of Rac signaling has also been found to critically regulate cellular functions in the initiation and maintenance of hematopoietic malignancies. Using an in vivo gene targeting approach, we demonstrate that Rac2, but not Rac1, is critical to the initiation of acute myeloid leukemia in a retroviral expression model of MLL-AF9 leukemogenesis. However, loss of either Rac1 or Rac2 is sufficient to impair survival and growth of the transformed MLL-AF9 leukemia. Rac2 is known to positively regulate expression of Bcl-2 family proteins toward a prosurvival balance. We demonstrate that disruption of downstream survival signaling through antiapoptotic Bcl-2 proteins is implicated in mediating the effects of Rac2 deficiency in MLL-AF9 leukemia. Indeed, overexpression of Bcl-xL is able to rescue the effects of Rac2 deficiency and MLL-AF9 cells are exquisitely sensitive to direct inhibition of Bcl-2 family proteins by the BH3-mimetic, ABT-737. Furthermore, concurrent exposure to NSC23766, a small-molecule inhibitor of Rac activation, increases the apoptotic effect of ABT-737, indicating the Rac/Bcl-2 survival pathway may be targeted synergistically.

Wahlström O, Linder CH, Ansell A, et al.
Acidic preparations of lysed platelets upregulate proliferative pathways in osteoblast-like cells as demonstrated by genome-wide microarray analysis.
Platelets. 2011; 22(6):452-60 [PubMed] Related Publications
Platelets contain numerous growth factors essential for wound and fracture healing. We investigated the gene expression in human osteoblast-like cells stimulated with lysed platelets prepared in acidic, neutral, or alkaline buffers. Lysed platelets prepared in buffers at pH 5.4, 7.4, and 7.9, were added after neutralization to hFOB 1.19 cells. Genome-wide microarray analysis was performed using the Affymetrix GeneChip 7G Scanner. Biometric, cluster, and pathway analyses were performed with GeneSpring GX. Biometric analyses demonstrated that 53 genes were differentially regulated (p ≤ 0.005, ≥2-fold increase). Pathway analysis revealed 10 significant pathways of which eight are common ones regulating bone formation and cancer growth. Eleven genes were selected for quantitative real-time polymerase chain reaction (PCR) based on the microarray analysis of the lysed platelets prepared in the pH 5.4 experiments. In conclusion, acidic preparations of lysed platelet concentrates release factors essential for cell proliferation and particularly cell metabolism under hypoxic conditions. The genetic response from these factors was dominated by genes associated with the same pathways observed in bone formation and cancer growth. Activation of TGF-β in the acidic preparation could be a stimulatory key factor of cell proliferation. These results support the hypothesis that acidification of platelets modifies the stimulatory response of mesenchymal cells in vitro, which is analogous with the observed milieu of a low pH present in wound and fracture sites, as well as in growing tumors.

Holland M, Castro FV, Alexander S, et al.
RAC2, AEP, and ICAM1 expression are associated with CNS disease in a mouse model of pre-B childhood acute lymphoblastic leukemia.
Blood. 2011; 118(3):638-49 [PubMed] Related Publications
We developed a murine model of CNS disease to obtain a better understanding of the pathogenesis of CNS involvement in pre-B-cell acute lymphoblastic leukemia (ALL). Semiquantitative proteomic discovery-based approaches identified unique expression of asparaginyl endopeptidase (AEP), intercellular adhesion molecule 1 (ICAM1), and ras-related C3 botulinum toxin substrate 2 (RAC2), among others, in an invasive pre-B-cell line that produced CNS leukemia in NOD-SCID mice. Targeting RAC2 significantly inhibited in vitro invasion and delayed disease onset in mice. Induced expression of RAC2 in cell lines with low/absent expression of AEP and ICAM1 did not result in an invasive phenotype or murine CNS disease. Flow cytometric analysis identified an enriched population of blast cells expressing ICAM1/lymphocyte function associated antigen-1 (LFA-1)/CD70 in the CD10(+)/CD19(+) fraction of bone marrow aspirates obtained from relapsed compared with normal controls and those with primary disease. CD10(+)/CD19(+) fractions obtained from relapsed patients also express RAC2 and give rise to CNS disease in mice. Our data suggest that combinations of processes are involved in the pathogenesis of CNS disease in pre-B-cell ALL, support a model in which CNS disease occurs as a result of external invasion, and suggest that targeting the processes of adhesion and invasion unique to pre-B cells may prevent recurrences within the CNS.

Kars MD, Işeri OD, Gündüz U
A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells.
Eur J Pharmacol. 2011; 657(1-3):4-9 [PubMed] Related Publications
Resistance to the broad spectrum of chemotherapeutic agents in cancer cell lines and tumors has been called multiple drug resistance (MDR). In this study, the molecular mechanisms of resistance to two anticancer agents (paclitaxel and vincristine) in mammary carcinoma cell line MCF-7 were investigated. Drug resistant sublines to paclitaxel (MCF-7/Pac) and vincristine (MCF-7/Vinc) that were developed from sensitive MCF-7 cells (MCF-7/S) were used. cDNA microarray analysis was performed for the RNA samples of sensitive and resistant cells in duplicate experiments. GeneSpring GX 7.3.1 Software was used in data analysis. The results indicated that the upregulation of MDR1 gene is the dominating mechanism of the paclitaxel and vincristine drug resistance. Additionally the upregulation of the genes encoding the detoxifying enzymes (i.e. GSTP1) was observed. Significant downregulation of apoptotic genes (i.e. PDCD2/4/6/8) and upregulation of some cell cycle regulatory genes (CDKN2A, CCNA2 etc.) was seen which may be in close relation to MDR in breast cancer. Drug resistant cancer cells exhibit different gene expression patterns depending on drug treatment, and each drug resistance phenotype is probably genetically different. Further functional studies are needed to demonstrate the complete set of genes contributing to the drug resistance phenotype in breast cancer cells.

Wang T, Satoh F, Morimoto R, et al.
Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands.
Eur J Endocrinol. 2011; 164(4):613-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Primary aldosteronism (PA) is the most common form of endocrine hypertension affecting ∼8-10% of hypertensive subjects. Aldosterone production in PA occurs under low-renin conditions, and the mechanisms that maintain the production of aldosterone in PA remain unknown. Objective This study was designed to compare the transcript profiles between aldosterone-producing adenoma (APA) and their adjacent adrenal gland (AAG) from the same adrenal.
METHODS: Total RNA was extracted from ten APA and ten AAG; and subsequently analyzed by microarray and real-time quantitative RT-PCR (qPCR). The microarray data were paired for each APA-AAG, and analyzed by GeneSpring GX 11 with paired t-test and fold change calculations for each transcript. Changes identified by microarray analysis were confirmed by qPCR.
RESULTS: Microarray analysis indicated that 14 genes had significantly up-regulated expression in APA compared to AAG. Among the elevated genes were aldosterone synthase (CYP11B2) as well as novel transcription factors, calmodulin-binding proteins, and other genes that have not been previously studied in APA. Selective analysis of 11 steroidogenic enzymes using microarray demonstrated that only CYP11B2 showed a significantly higher transcript level in APA compared to AAG (P<0.001). In contrast, AKR1C3 (17β-hydroxysteroid dehydrogenase type 5), CYP17 (17α-hydroxylase/17,20 lyase), and CYB5 (cytochrome b5) showed significantly lower transcript level in APA (P<0.05).
CONCLUSION: The transcriptome analysis of APA compared with AAG showed several novel genes that are associated with APA phenotype. This gene list provides new candidates for the elucidation of the molecular mechanisms leading to PA.

Yin J, Wan YJ, Li SY, et al.
The distinct role of guanine nucleotide exchange factor Vav1 in Bcl-2 transcription and apoptosis inhibition in Jurkat leukemia T cells.
Acta Pharmacol Sin. 2011; 32(1):99-107 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate a novel function of proto-oncogene Vav1 in the apoptosis of human leukemia Jurkat cells.
METHODS: Jurkat cells, Jurkat-derived vav1-null cells (J.Vav1) and Vav1-reconstituted J.WT cells were treated with a Fas agonist antibody, IgM clone CH11. Apoptosis was determined using propidium iodide (PI) staining, Annexin-V staining, DNA fragmentation, cleavage of caspase 3/caspase 8, and poly (ADP-ribose) polymerase (PARP). Mitochondria transmembrane potential (ΔΨ(m)) was measured using DiOC(6)(3) staining. Transcription and expression of the Bcl-2 family of proteins were evaluated using semi-quantitative RT-PCR and Western blot, respectively. Bcl-2 promoter activity was analyzed using luciferase reporter assays.
RESULTS: Cells lacking Vav1 were more sensitive to Fas-mediated apoptosis than Jurkat and J.WT cells. J.Vav1 cells lost mitochondria transmembrane potential (ΔΨ(m)) more rapidly upon Fas induction. These phenotypes could be rescued by re-expression of Vav1 in J.Vav1 cells. The expression of Vav1 increased the transcription of pro-survival Bcl-2. The guanine nucleotide exchange activity of Vav1 was required for enhancing Bcl-2 promoter activity, and the Vav1 downstream substrate, small GTPase Rac2, was likely involved in the control of Bcl-2 expression.
CONCLUSION: Vav1 protects Jurkat cells from Fas-mediated apoptosis by promoting Bcl-2 transcription through its GEF activity.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAC2, Cancer Genetics Web: http://www.cancer-genetics.org/RAC2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999