Gene Summary

Gene:TRIO; trio Rho guanine nucleotide exchange factor
Aliases: tgat, MEBAS, MRD44, ARHGEF23
Summary:This gene encodes a large protein that functions as a GDP to GTP exchange factor. This protein promotes the reorganization of the actin cytoskeleton, thereby playing a role in cell migration and growth. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:triple functional domain protein
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (15)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Protein-Serine-Threonine Kinases
  • Cell Movement
  • Liver Cancer
  • Childhood Cancer
  • Single Nucleotide Polymorphism
  • Ovarian Cancer
  • Genome, Human
  • Biomarkers, Tumor
  • Neoplasm Invasiveness
  • Staging
  • Gene Dosage
  • Mutation
  • High-Throughput Nucleotide Sequencing
  • Chromosome 5
  • Genetic Predisposition
  • Severity of Illness Index
  • Guanine Nucleotide Exchange Factors
  • Hepatocellular Carcinoma
  • Transcriptome
  • Signal Transduction
  • Gene Expression Profiling
  • DNA
  • FISH
  • Gene Amplification
  • Chromosome Aberrations
  • fms-Like Tyrosine Kinase 3
  • Genotype
  • rho GTP-Binding Proteins
  • Transfection
  • Neoplastic Cell Transformation
  • Prostate Cancer
  • Oligonucleotide Array Sequence Analysis
  • Genome-Wide Association Study
  • Messenger RNA
  • Breast Cancer
  • Phosphoproteins
  • rac1 GTP-Binding Protein
  • Nucleic Acid Hybridization
  • DNA Sequence Analysis
  • Cancer Gene Expression Regulation
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TRIO (cancer-related)

Melloni GE, de Pretis S, Riva L, et al.
LowMACA: exploiting protein family analysis for the identification of rare driver mutations in cancer.
BMC Bioinformatics. 2016; 17:80 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The increasing availability of resequencing data has led to a better understanding of the most important genes in cancer development. Nevertheless, the mutational landscape of many tumor types is heterogeneous and encompasses a long tail of potential driver genes that are systematically excluded by currently available methods due to the low frequency of their mutations. We developed LowMACA (Low frequency Mutations Analysis via Consensus Alignment), a method that combines the mutations of various proteins sharing the same functional domains to identify conserved residues that harbor clustered mutations in multiple sequence alignments. LowMACA is designed to visualize and statistically assess potential driver genes through the identification of their mutational hotspots.
RESULTS: We analyzed the Ras superfamily exploiting the known driver mutations of the trio K-N-HRAS, identifying new putative driver mutations and genes belonging to less known members of the Rho, Rab and Rheb subfamilies. Furthermore, we applied the same concept to a list of known and candidate driver genes, and observed that low confidence genes show similar patterns of mutation compared to high confidence genes of the same protein family.
CONCLUSIONS: LowMACA is a software for the identification of gain-of-function mutations in putative oncogenic families, increasing the amount of information on functional domains and their possible role in cancer. In this context LowMACA emphasizes the role of genes mutated at low frequency otherwise undetectable by classical single gene analysis. LowMACA is an R package available at It is also available as a GUI standalone downloadable at:

Zheng GX, Lau BT, Schnall-Levin M, et al.
Haplotyping germline and cancer genomes with high-throughput linked-read sequencing.
Nat Biotechnol. 2016; 34(3):303-11 [PubMed] Free Access to Full Article Related Publications
Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.

Hecht JR, Bang YJ, Qin SK, et al.
Lapatinib in Combination With Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2-Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC--A Randomized Phase III Trial.
J Clin Oncol. 2016; 34(5):443-51 [PubMed] Related Publications
PURPOSE: To evaluate the efficacy of adding lapatinib to capecitabine and oxaliplatin (CapeOx) in patients with previously untreated human epidermal growth factor receptor 2 (HER2) -amplified advanced gastroesophageal adenocarcinoma.
PATIENTS AND METHODS: Patients with HER2-positive advanced gastroesophageal adenocarcinoma were randomly assigned at a one-to-one ratio to CapeOx plus lapatinib 1,250 mg or placebo daily. Primary end point was overall survival (OS) in patients with centrally confirmed HER2 amplification in the primary efficacy population.
RESULTS: A total of 545 patients were randomly assigned, and 487 patients comprised the primary efficacy population. Median OS in the lapatinib and placebo arms was 12.2 (95% CI, 10.6 to 14.2) and 10.5 months (95% CI, 9.0 to 11.3), respectively, which was not significantly different (hazard ratio, 0.91; 95% CI, 0.73 to 1.12). Median progression-free survival in the lapatinib and placebo arms was 6.0 (95% CI, 5.6 to 7.0) and 5.4 months (95% CI, 4.4 to 5.7), respectively (hazard ratio, 0.82; 95% CI, 0.68 to 1.00; P = .0381). Response rate was significantly higher in the lapatinib arm: 53% (95% CI, 46.4 to 58.8) compared with 39% (95% CI, 32.9 to 45.3) in the placebo arm (P = .0031). Preplanned exploratory subgroup analyses showed OS in the lapatinib arm was prolonged in Asian and younger patients. No correlation was observed between HER2 immunohistochemistry status and survival. There were increased toxicities in the lapatinib arm, particularly diarrhea.
CONCLUSION: Addition of lapatinib to CapeOx did not increase OS in patients with HER2-amplified gastroesophageal adenocarcinoma. There were clear differences in the effect of lapatinib depending on region and age. Future studies could examine this correlation.

Garg M, Nagata Y, Kanojia D, et al.
Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse.
Blood. 2015; 126(22):2491-501 [PubMed] Free Access to Full Article Related Publications
Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone.

Barclay SF, Rand CM, Borch LA, et al.
Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD): exome sequencing of trios, monozygotic twins and tumours.
Orphanet J Rare Dis. 2015; 10:103 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is thought to be a genetic disease caused by de novo mutations, though causative mutations have yet to be identified. We searched for de novo coding mutations among a carefully-diagnosed and clinically homogeneous cohort of 35 ROHHAD patients.
METHODS: We sequenced the exomes of seven ROHHAD trios, plus tumours from four of these patients and the unaffected monozygotic (MZ) twin of one (discovery cohort), to identify constitutional and somatic de novo sequence variants. We further analyzed this exome data to search for candidate genes under autosomal dominant and recessive models, and to identify structural variations. Candidate genes were tested by exome or Sanger sequencing in a replication cohort of 28 ROHHAD singletons.
RESULTS: The analysis of the trio-based exomes found 13 de novo variants. However, no two patients had de novo variants in the same gene, and additional patient exomes and mutation analysis in the replication cohort did not provide strong genetic evidence to implicate any of these sequence variants in ROHHAD. Somatic comparisons revealed no coding differences between any blood and tumour samples, or between the two discordant MZ twins. Neither autosomal dominant nor recessive analysis yielded candidate genes for ROHHAD, and we did not identify any potentially causative structural variations.
CONCLUSIONS: Clinical exome sequencing is highly unlikely to be a useful diagnostic test in patients with true ROHHAD. As ROHHAD has a high risk for fatality if not properly managed, it remains imperative to expand the search for non-exomic genetic risk factors, as well as to investigate other possible mechanisms of disease. In so doing, we will be able to confirm objectively the ROHHAD diagnosis and to contribute to our understanding of obesity, respiratory control, hypothalamic function, and autonomic regulation.

Bousquet E, Calvayrac O, Mazières J, et al.
RhoB loss induces Rac1-dependent mesenchymal cell invasion in lung cells through PP2A inhibition.
Oncogene. 2016; 35(14):1760-9 [PubMed] Related Publications
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which is mainly due to its high risk of metastatic dissemination. One critical point of this process is the ability of cancer cells to detach from the primary tumor and migrate through the extracellular matrix; however, the underlying molecular mechanisms are not yet fully understood. In the present study, we identified the small GTPase RhoB as a key regulator of bronchial cell morphology in a three-dimensional (3D) matrix. RhoB loss, which is frequently observed during lung cancer progression, induced an epithelial-mesenchymal transition (EMT) characterized by an increased proportion of invasive elongated cells in 3D. The process was mediated by Slug induction and E-cadherin repression. In addition, downregulation of RhoB induced Akt1 activation, which in turn activated Rac1 through the guanine-exchange factor Trio to control cell shape rearrangement. Further, we provide evidence that RhoB interacted with and positively regulates phosphatase PP2A through the recruitment of its regulatory subunit B55, which was found to be crucial for Akt dephosphorylation. B55 inhibition completely suppressed RhoB-mediated PP2A regulation. Finally, we show that PP2A inactivation, by targeting either its catalytic or its regulatory B55 subunit, completely reversed RhoB-dependent morphological changes and also fully prevented the ability of RhoB to decrease the invasiveness of bronchial cells. Altogether, these results highlight a novel signaling axis and describe new molecular mechanisms that could explain the tumor suppressor role of RhoB in lung cancer. Therefore, we propose that RhoB could be responsible for early metastatic prevention by inhibiting the EMT-derived invasiveness of lung cells through the control of PP2A activity.

Wang B, Fang J, Qu L, et al.
Upregulated TRIO expression correlates with a malignant phenotype in human hepatocellular carcinoma.
Tumour Biol. 2015; 36(9):6901-8 [PubMed] Related Publications
Triple functional domain protein (TRIO) is an evolutionarily conserved Dbl family guanine nucleotide exchange factors (GEFs) involved in cell proliferation and progression of some types of cancer. However, the expression and prognostic role of TRIO in hepatocellular carcinoma (HCC) have not yet been determined. Therefore, we attempted to determine the impact of TRIO on the clinical outcome of HCC patients to further identify its role in HCC. TRIO expression was examined using quantitative real-time PCR (qRT-PCR) and Western blotting in nonmalignant liver cells, HCC cells, and 93 paired of HCC tissues and adjacent noncancerous tissues. Statistical analyses were used to assess associations between TRIO expression and clinicopathological and prognostic factors. Small interfering RNA (siRNA)-mediated TRIO inhibition was performed in Hep3B and Huh7 cells to elucidate its roles in HCC. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to measure cell proliferation, and apoptosis assay was analyzed by flow cytometry, respectively. Adhesion and transwell invasion assay were performed to determine the invasion ability of HCC cells in vitro. TRIO was significantly upregulated in the HCC cell lines and tissues compared with the nonmalignant liver cells and adjacent noncancerous liver tissues. In addition, high TRIO expression level associated with lymph node metastasis (P = 0.0183), clinical tumor node metastasis (TNM) stage (P = 0.0.0106), and decrease in overall survival (OS) (P = 0.017). Knockdown of TRIO on Hep3B and Huh7 cell lines suppressed cell proliferation and migration and induced apoptosis. Furthermore, silencing TRIO expression led to decrease of ras-related C3 botulinum toxin substrate 1 (Rac1), p-P38, B cell lymphoma 2 (BCL-2), and matrix metallopeptidase 9 (MMP-9). Our results demonstrated that TRIO protein expression is elevated and associated with a worse over survival rates in patients with HCC. Aberrant expression of TRIO might play an important role in HCC through promoting cell proliferation and invasion, and TRIO may be a novel therapeutic target for the treatment of HCC.

Greenop KR, Scott RJ, Attia J, et al.
Folate pathway gene polymorphisms and risk of childhood brain tumors: results from an Australian case-control study.
Cancer Epidemiol Biomarkers Prev. 2015; 24(6):931-7 [PubMed] Related Publications
BACKGROUND: Recent research suggests that maternal folic acid supplementation is associated with a reduced risk of childhood brain tumors (CBT); polymorphisms in folate pathway genes could modify this association or directly influence CBT risk.
METHODS: Associations between risk of CBT and folate pathway polymorphisms were investigated in a population-based case-control study in Australia (2005-2010). Cases were recruited through all Australian pediatric oncology centers and controls by national random digit dialing. Data were available from 321 cases and 552 controls. Six polymorphisms were genotyped in children and parents (MTHFR 677C>T, MTHFR 1298A>C, MTRR 66A>G, MTR 2756A>G, MTR 5049C>A, and CBS 2199 T>C). Maternal folic acid use was ascertained via questionnaire. ORs were estimated using unconditional logistic regression. Case-parent trio analyses were also undertaken.
RESULTS: There was weak evidence of a reduced risk of CBT for the MTRR 66GG genotype in the child or father: ORs 0.71 [95% confidence interval (CI), 0.48-1.07]; 0.54 (95% CI, 0.34-0.87), respectively. Maternal prepregnancy folic acid supplementation showed a stronger negative association with CBT risk where the child, mother, or father had the MTRR 66GG genotype (Pinteraction = 0.07, 0.10, and 0.18, respectively).
CONCLUSIONS: Evidence for an association between folate pathway genotypes and CBT is limited in this study. There was possible protection by the MTRR 66GG genotype, particularly when combined with maternal prepregnancy folic acid supplementation; these results are novel and require replication.
IMPACT: The possible interaction between folic acid supplementation and MTRR 66A>G, if confirmed, would strengthen evidence for prepregnancy folate protection against CBT.

Pratt VM, Beyer BN, Koller DL, et al.
Report of new haplotype for ABCC2 gene: rs17222723 and rs8187718 in cis.
J Mol Diagn. 2015; 17(2):201-5 [PubMed] Free Access to Full Article Related Publications
The ATP-binding cassette, subfamily C [CFTR/MRP], member 2 (ABCC2) gene is a member of the ATP-binding cassette transporters and is involved in the transport of molecules across cellular membranes. Substrates transported by ABCC2 include antiepileptics, statins, tenofovir, cisplatin, irinotecan, and carbamazepine. Because of the pharmacogenomics implications, we developed a clinical laboratory-developed assay to test for seven variants in the ABCC2 gene: c.3563T>A (p.V1188E, rs17222723), c.1249G>A (p.V417I, rs2273697), c.3972C>T (p.I1324I, rs3740066), c.2302C>T (p.R768W, rs56199535), c.2366C>T (p.S789F, rs56220353), c.-24C>T (5'UTR, rs717620), and c.4544G>A (p.C1515Y, rs8187710). During the validation process, we noted several DNA samples, obtained from the Coriell Cell Repository, that contained both c.3563T>A, c.4544G>A, and a third variant, suggesting that c.3563T>A and c.4544G>A are in cis on the chromosome in some individuals. We obtained DNA samples from a trio (father, mother, and child), tested their ABCC2 variants, and confirmed that c.3563T>A and c.4544G>A were in cis on the same chromosome. Here, we report a new haplotype in ABCC2.

Sonoshita M, Itatani Y, Kakizaki F, et al.
Promotion of colorectal cancer invasion and metastasis through activation of NOTCH-DAB1-ABL-RHOGEF protein TRIO.
Cancer Discov. 2015; 5(2):198-211 [PubMed] Related Publications
UNLABELLED: We have recently identified a metastasis suppressor gene for colorectal cancer: AES/Aes, which encodes an endogenous inhibitor of NOTCH signaling. When Aes is knocked out in the adenomatous epithelium of intestinal polyposis mice, their tumors become malignant, showing marked submucosal invasion and intravasation. Here, we show that one of the genes induced by NOTCH signaling in colorectal cancer is DAB1/Dab1. Genetic depletion of DAB1 suppresses cancer invasion and metastasis in the NOTCH signaling-activated mice. DAB1 is phosphorylated by ABL tyrosine kinase, which activates ABL reciprocally. Consistently, inhibition of ABL suppresses cancer invasion in mice. Furthermore, we show that one of the targets of ABL is the RAC/RHOGEF protein TRIO, and that phosphorylation at its Tyr residue 2681 (pY2681) causes RHO activation in colorectal cancer cells. Its unphosphorylatable mutation TRIO Y2681F reduces RHOGEF activity and inhibits invasion of colorectal cancer cells. Importantly, TRIO pY2681 correlates with significantly poorer prognosis of patients with colorectal cancer after surgery.
SIGNIFICANCE: These results indicate that TRIO pY2681 is one of the downstream effectors of NOTCH signaling activation in colorectal cancer, and can be a prognostic marker, helping to determine the therapeutic modality of patients with colorectal cancer.

Evans TJ, Milne E, Anderson D, et al.
Confirmation of childhood acute lymphoblastic leukemia variants, ARID5B and IKZF1, and interaction with parental environmental exposures.
PLoS One. 2014; 9(10):e110255 [PubMed] Free Access to Full Article Related Publications
Genome wide association studies (GWAS) have established association of ARID5B and IKZF1 variants with childhood acute lymphoblastic leukemia (ALL). Epidemiological studies suggest that environmental factors alone appear to make a relatively minor contribution to disease risk. The polygenic nature of childhood ALL predisposition together with the timing of environmental triggers may hold vital clues for disease etiology. This study presents results from an Australian GWAS of childhood ALL cases (n = 358) and population controls (n = 1192). Furthermore, we utilised family trio (n = 204) genotypes to extend our investigation to gene-environment interaction of significant loci with parental exposures before conception, and child's sex and age. Thirteen SNPs achieved genome wide significance in the population based case/control analysis; ten annotated to ARID5B and three to IKZF1. The most significant SNPs in these regions were ARID5B rs4245595 (OR 1.63, CI 1.38-1.93, P = 2.13×10(-9)), and IKZF1 rs1110701 (OR 1.69, CI 1.42-2.02, p = 7.26×10(-9)). There was evidence of gene-environment interaction for risk genotype at IKZF1, whereby an apparently stronger genetic effect was observed if the mother took folic acid or if the father did not smoke prior to pregnancy (respective interaction P-values: 0.04, 0.05). There were no interactions of risk genotypes with age or sex (P-values >0.2). Our results evidence that interaction of genetic variants and environmental exposures may further alter risk of childhood ALL however, investigation in a larger population is required. If interaction of folic acid supplementation and IKZF1 variants holds, it may be useful to quantify folate levels prior to initiating use of folic acid supplements.

Vacca M, D'Amore S, Graziano G, et al.
Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma.
PLoS One. 2014; 9(8):e104449 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis.
METHODS & RESULTS: We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells.
CONCLUSIONS: Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation.

Feng X, Degese MS, Iglesias-Bartolome R, et al.
Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry.
Cancer Cell. 2014; 25(6):831-45 [PubMed] Free Access to Full Article Related Publications
Mutually exclusive activating mutations in the GNAQ and GNA11 oncogenes, encoding heterotrimeric Gαq family members, have been identified in ∼ 83% and ∼ 6% of uveal and skin melanomas, respectively. However, the molecular events underlying these GNAQ-driven malignancies are not yet defined, thus limiting the ability to develop cancer-targeted therapies. Here, we focused on the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway that controls organ size. We found that Gαq stimulates YAP through a Trio-Rho/Rac signaling circuitry promoting actin polymerization, independently of phospholipase Cβ and the canonical Hippo pathway. Furthermore, we show that Gαq promotes the YAP-dependent growth of uveal melanoma cells, thereby identifying YAP as a suitable therapeutic target in uveal melanoma, a GNAQ/GNA11-initiated human malignancy.

Tournier I, Marlin R, Walton K, et al.
Germline mutations of inhibins in early-onset ovarian epithelial tumors.
Hum Mutat. 2014; 35(3):294-7 [PubMed] Free Access to Full Article Related Publications
To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors.

Pasini FS, Zilberstein B, Snitcovsky I, et al.
A gene expression profile related to immune dampening in the tumor microenvironment is associated with poor prognosis in gastric adenocarcinoma.
J Gastroenterol. 2014; 49(11):1453-66 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The TNM Classification of Malignant Tumours (TNM) staging system is the primary means of determining a prognosis for gastric adenocarcinoma (GC). However, tumor behavior in the individual patient is unpredictable and in spite of treatment advances, a classification of 'advanced stage' still portends a poor prognosis. Thus, further insights from molecular analyses are needed for better prognostic stratification and determination of new therapeutic targets.
METHODS: A total of fifty-one fresh frozen tumor samples from patients with histopathologically confirmed diagnoses of GC, submitted to surgery with curative intent, were included in the study. Total RNA was extracted from an initial group of fifteen samples matched for known prognostic factors, categorized into two subgroups, according to patient overall survival: poor (<24 months) or favorable (at or above 24 months), and hybridized to Affymetrix Genechip human genome U133 plus 2.0 for genes associated with prognosis selection. Thirteen genes were selected for qPCR validation using those initial fifteen samples plus additional thirty-six samples.
RESULTS: A total of 108 genes were associated with poor prognosis, independent of tumor staging. Using systems biology, we suggest that this panel reflects the dampening of immune/inflammatory response in the tumor microenvironment level and a shift to Th2/M2 activity. A gene trio (OLR1, CXCL11 and ADAMDEC1) was identified as an independent marker of prognosis, being the last two markers validated in an independent patient cohort.
CONCLUSIONS: We determined a panel of three genes with prognostic value in gastric cancer, which should be further investigated. A gene expression profile suggestive of a dysfunctional inflammatory response was associated with unfavorable prognosis.

Zheng Q, Zeng TT, Chen J, et al.
Association between DNA methyltransferases 3B gene polymorphisms and the susceptibility to acute myeloid leukemia in Chinese Han population.
PLoS One. 2013; 8(9):e74626 [PubMed] Free Access to Full Article Related Publications
DNMT3B plays a crucial role in the generation of aberrant methylation during carcinogenesis. Polymorphisms in the DNMT3B gene may influence the DNA methylation enzymatic activity of DNMT3B, thereby modulating the susceptibility to AML. Thus, we investigated the association between SNPs in the DNMT3Bgene and their haplotypes with the risk of AML in the Chinese Han population. The DNMT3B genotype was determined by HRM in 317 de novo AML patients and 406 healthy control subjects matched for age and gender. Among the 5 SNPs investigated in this study, rs2424913 demonstrated no polymorphisms in the Chinese Han populations, rs1569686 and rs2424908 were significantly associated with AML risk. The GG genotype of rs1569686 was associated with increased AML risk (OR: 5.76; 95%CI: 2.60-12.73; P<0.01) compared with the TT genotype, and individuals with a G allele had a significantly increased risk (OR: 1.89; 95%CI: 1.41-2.52; P<0.01) for AML compared with those harboring a C allele, this polymorphism can predict the risk of AML in a minority of patients. While the CC genotype of rs2424908 appeared to reduce the AML risk (OR: 0.57; 95%CI: 0.36-0.91; P=0.01) compared with the TT genotype, individuals with a C allele were associated with a lower risk (OR: 0.79, 95%CI: 0.64-0.97, P=0.03) for developing AML compared with those harboring a T allele. The other 2 SNPs, rs6087990 and rs6119954, had no significant association with AML risk in the study population. The CGGT, CTAT, TGAT, and CGAT haplotypes of rs6087990, rs1569686, rs6119954, and rs2424908 appeared to significantly increase the AML risk, and the TTGC haplotype appeared to significantly reduce the risk. These results suggest that DNMT3B polymorphisms may contribute to the genetic susceptibility to AML; in particular, the G allele of rs1569686 serves as a risk factor for AML, whereas the C allele of rs2424908 represents a potential protective factor.

Patel R, Gao M, Ahmad I, et al.
Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression.
J Clin Invest. 2013; 123(3):1157-75 [PubMed] Free Access to Full Article Related Publications
Concurrent activation of RAS/ERK and PI3K/AKT pathways is implicated in prostate cancer progression. The negative regulators of these pathways, including sprouty2 (SPRY2), protein phosphatase 2A (PP2A), and phosphatase and tensin homolog (PTEN), are commonly inactivated in prostate cancer. The molecular basis of cooperation between these genetic alterations is unknown. Here, we show that SPRY2 deficiency alone triggers activation of AKT and ERK, but this is insufficient to drive tumorigenesis. In addition to AKT and ERK activation, SPRY2 loss also activates a PP2A-dependent tumor suppressor checkpoint. Mechanistically, the PP2A-mediated growth arrest depends on GSK3β and is ultimately mediated by nuclear PTEN. In murine prostate cancer models, Pten haploinsufficiency synergized with Spry2 deficiency to drive tumorigenesis, including metastasis. Together, these results show that loss of Pten cooperates with Spry2 deficiency by bypassing a novel tumor suppressor checkpoint. Furthermore, loss of SPRY2 expression correlates strongly with loss of PTEN and/or PP2A subunits in human prostate cancer. This underlines the cooperation between SPRY2 deficiency and PTEN or PP2A inactivation in promoting tumorigenesis. Overall, we propose SPRY2, PTEN, and PP2A status as an important determinant of prostate cancer progression. Characterization of this trio may facilitate patient stratification for targeted therapies and chemopreventive interventions.

Hayashi A, Hiatari R, Tsuji T, et al.
p63RhoGEF-mediated formation of a single polarized lamellipodium is required for chemotactic migration in breast carcinoma cells.
FEBS Lett. 2013; 587(6):698-705 [PubMed] Related Publications
Short hairpin RNAs targeting 66 Rho-GEFs were screened for inhibition of chemotaxis. Six Rho-GEFs (p63RhoGEF, Trio, Duet, Net1, Frabin/Fgd4, and AAH33666) were found to be required for the serum-induced chemotactic migration of MDA-MB-231 human breast carcinoma cells. Knockdown of p63RhoGEF suppressed serum-induced RhoA activation and chemotaxis and caused the aberrant formation of multiple lamellipodial protrusions after serum stimulation while control cells formed a single polarized lamellipodium. These results indicate that p63RhoGEF plays a crucial role in serum-induced chemotaxis by limiting lamellipodial protrusion to one direction via RhoA activation.

Ehrentraut S, Nagel S, Scherr ME, et al.
t(8;9)(p22;p24)/PCM1-JAK2 activates SOCS2 and SOCS3 via STAT5.
PLoS One. 2013; 8(1):e53767 [PubMed] Free Access to Full Article Related Publications
Fusions of the tyrosine kinase domain of JAK2 with multiple partners occur in leukemia/lymphoma where they reportedly promote JAK2-oligomerization and autonomous signalling, Affected entities are promising candidates for therapy with JAK2 signalling inhibitors. While JAK2-translocations occur in myeloid, B-cell and T-cell lymphoid neoplasms, our findings suggest their incidence among the last group is low. Here we describe the genomic, transcriptional and signalling characteristics of PCM1-JAK2 formed by t(8;9)(p22;p24) in a trio of cell lines established at indolent (MAC-1) and aggressive (MAC-2A/2B) phases of a cutaneous T-cell lymphoma (CTCL). To investigate signalling, PCM1-JAK2 was subjected to lentiviral knockdown which inhibited 7 top upregulated genes in t(8;9) cells, notably SOCS2/3. SOCS3, but not SOCS2, was also upregulated in a chronic eosinophilic leukemia bearing PCM1-JAK2, highlighting its role as a central signalling target of JAK2 translocation neoplasia. Conversely, expression of GATA3, a key T-cell developmental gene silenced in aggressive lymphoma cells, was partially restored by PCM1-JAK2 knockdown. Treatment with a selective JAK2 inhibitor (TG101348) to which MAC-1/2A/2B cells were conspicuously sensitive confirmed knockdown results and highlighted JAK2 as the active moiety. PCM1-JAK2 signalling required pSTAT5, supporting a general paradigm of STAT5 activation by JAK2 alterations in lymphoid malignancies. MAC-1/2A/2B--the first JAK2-translocation leukemia/lymphoma cell lines described--display conspicuous JAK/STAT signalling accompanied by T-cell developmental and autoimmune disease gene expression signatures, confirming their fitness as CTCL disease models. Our data support further investigation of SOCS2/3 as signalling effectors, prognostic indicators and potential therapeutic targets in cancers with JAK2 rearrangements.

Hattermann K, Mentlein R
An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology.
Ann Anat. 2013; 195(2):103-10 [PubMed] Related Publications
Chemokines are small peptide mediators that play a role in many physiological and pathological processes. Apart from their initially discovered function in trafficking of leukocytes, they also influence migration, proliferation, survival and gene expression of a variety of cell types in their respective microenvironment. Chemokines can exert these effects via their respective G protein-coupled receptor. Over the recent decade, the involvement of chemokines and their respective receptors in tumor biology has been successively elucidated. This review will focus on the signaling and effects of the widespread chemokine CXCL12 and its long known G protein-coupled receptor CXCR4 and the recently discovered non-G protein-coupled receptor CXCR7 with a detailed reflection on glioma biology.

Yang H, Cho ME, Li TW, et al.
MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma.
J Clin Invest. 2013; 123(1):285-98 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs) and methionine adenosyltransferase 1A (MAT1A) are dysregulated in hepatocellular carcinoma (HCC), and reduced MAT1A expression correlates with worse HCC prognosis. Expression of miR-664, miR-485-3p, and miR-495, potential regulatory miRNAs of MAT1A, is increased in HCC. Knockdown of these miRNAs individually in Hep3B and HepG2 cells induced MAT1A expression, reduced growth, and increased apoptosis, while combined knockdown exerted additional effects on all parameters. Subcutaneous and intraparenchymal injection of Hep3B cells stably overexpressing each of this trio of miRNAs promoted tumorigenesis and metastasis in mice. Treatment with miRNA-664 (miR-664), miR-485-3p, and miR-495 siRNAs reduced tumor growth, invasion, and metastasis in an orthotopic liver cancer model. Blocking MAT1A induction significantly reduced the antitumorigenic effect of miR-495 siRNA, whereas maintaining MAT1A expression prevented miRNA-mediated enhancement of growth and metastasis. Knockdown of these miRNAs increased total and nuclear level of MAT1A protein, global CpG methylation, lin-28 homolog B (Caenorhabditis elegans) (LIN28B) promoter methylation, and reduced LIN28B expression. The opposite occurred with forced expression of these miRNAs. In conclusion, upregulation of miR-664, miR-485-3p, and miR-495 contributes to lower MAT1A expression in HCC, and enhanced tumorigenesis may provide potential targets for HCC therapy.

Vaqué JP, Dorsam RT, Feng X, et al.
A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors.
Mol Cell. 2013; 49(1):94-108 [PubMed] Free Access to Full Article Related Publications
Activating mutations in GNAQ and GNA11, encoding members of the Gα(q) family of G protein α subunits, are the driver oncogenes in uveal melanoma, and mutations in Gq-linked G protein-coupled receptors have been identified recently in numerous human malignancies. How Gα(q) and its coupled receptors transduce mitogenic signals is still unclear because of the complexity of signaling events perturbed upon Gq activation. Using a synthetic-biology approach and a genome-wide RNAi screen, we found that a highly conserved guanine nucleotide exchange factor, Trio, is essential for activating Rho- and Rac-regulated signaling pathways acting on JNK and p38, and thereby transducing proliferative signals from Gα(q) to the nucleus independently of phospholipase C-β. Indeed, whereas many biological responses elicited by Gq depend on the transient activation of second-messenger systems, Gq utilizes a hard-wired protein-protein-interaction-based signaling circuitry to achieve the sustained stimulation of proliferative pathways, thereby controlling normal and aberrant cell growth.

Lee JW, Yeo SG, Kang BH, et al.
Echovirus 30 induced neuronal cell death through TRIO-RhoA signaling activation.
PLoS One. 2012; 7(5):e36656 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Echovirus 30 (Echo30) is one of the most frequently identified human enteroviruses (EVs) causing aseptic meningitis and encephalitis. However the mechanism underlying the pathogenesis of Echo30 infection with significant clinical outcomes is not completely understood. The aim of this investigation is to illustrate molecular pathologic alteration in neuronal cells induced by Echo30 infection using clinical isolate from young patient with neurologic involvement.
METHODOLOGY/PRINCIPAL FINDINGS: To characterize the neuronal cellular response to Echo30 infection, we performed a proteomic analysis based on two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF Mass Spectrophotometric (MS) analysis. We identified significant alteration of several protein expression levels in Echo30-infected SK-N-SH cells. Among these proteins, we focused on an outstanding up-regulation of Triple functional domain (TRIO) in Echo30-infected SK-N-SH cells. Generally, TRIO acts as a key component in the regulation of axon guidance and cell migration. In this study, we determined that TRIO plays a role in the novel pathways in Echo30 induced neuronal cell death.
CONCLUSIONS/SIGNIFICANCE: Our finding shows that TRIO plays a critical role in neuronal cell death by Echo30 infection. Echo30 infection activates TRIO-guanine nucleotide exchange factor (GEF) domains (GEFD2) and RhoA signaling in turn. These results suggest that Echo30 infection induced neuronal cell death by activation of the TRIO-RhoA signaling. We expect the regulation of TRIO-RhoA signaling may represent a new therapeutic approach in treating aseptic meningitis and encephalitis induced by Echo30.

Fortin SP, Ennis MJ, Schumacher CA, et al.
Cdc42 and the guanine nucleotide exchange factors Ect2 and trio mediate Fn14-induced migration and invasion of glioblastoma cells.
Mol Cancer Res. 2012; 10(7):958-68 [PubMed] Free Access to Full Article Related Publications
Malignant glioblastomas are characterized by their ability to infiltrate into normal brain. We previously reported that binding of the multifunctional cytokine TNF-like weak inducer of apoptosis (TWEAK) to its receptor fibroblast growth factor-inducible 14 (Fn14) induces glioblastoma cell invasion via Rac1 activation. Here, we show that Cdc42 plays an essential role in Fn14-mediated activation of Rac1. TWEAK-treated glioma cells display an increased activation of Cdc42, and depletion of Cdc42 using siRNA abolishes TWEAK-induced Rac1 activation and abrogates glioma cell migration and invasion. In contrast, Rac1 depletion does not affect Cdc42 activation by Fn14, showing that Cdc42 mediates TWEAK-stimulated Rac1 activation. Furthermore, we identified two guanine nucleotide exchange factors (GEF), Ect2 and Trio, involved in TWEAK-induced activation of Cdc42 and Rac1, respectively. Depletion of Ect2 abrogates both TWEAK-induced Cdc42 and Rac1 activation, as well as subsequent TWEAK-Fn14-directed glioma cell migration and invasion. In contrast, Trio depletion inhibits TWEAK-induced Rac1 activation but not TWEAK-induced Cdc42 activation. Finally, inappropriate expression of Fn14 or Ect2 in mouse astrocytes in vivo using an RCAS vector system for glial-specific gene transfer in G-tva transgenic mice induces astrocyte migration within the brain, corroborating the in vitro importance of the TWEAK-Fn14 signaling cascade in glioblastoma invasion. Our results suggest that the TWEAK-Fn14 signaling axis stimulates glioma cell migration and invasion through two GEF-GTPase signaling units, Ect2-Cdc42 and Trio-Rac1. Components of the Fn14-Rho GEF-Rho GTPase signaling pathway present innovative drug targets for glioma therapy.

Chung CC, Boland J, Yeager M, et al.
Comprehensive resequence analysis of a 123-kb region of chromosome 11q13 associated with prostate cancer.
Prostate. 2012; 72(5):476-86 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Genome-wide association studies of prostate cancer have identified single nucleotide polymorphism (SNP) markers in a region of chromosome 11q13.3 in men of European decent. A fine-mapping analysis with tag SNPs in the cancer genetic markers of susceptibility study identified three independent loci, marked by rs10896438, rs12793759, and rs10896449. This study further annotates common and uncommon variation across this region.
METHODS: A next generation resequence analysis of a 122.9-kb region of 11q13.3(68,642,755-68,765,690) was conducted in 78 unrelated individuals of European background,1 CEPH trio, and 1 YRI trio.
RESULTS: In total, 644 polymorphic loci were identified by our sequence analysis. Of these,166 variants—118 SNPs and 48 insertion-deletion polymorphisms (indels)—were novel,namely not present in the 1000 Genomes or International HapMap Projects. We identified 22,25, 6, and 4 variants strongly correlated (r2 ≥ 0.8) with rs10896438, rs10896449, rs12793759,and rs11228565, respectively. HapMap SNPs were in linkage disequilibrium (r2 ≥ 0.8) with 48%, 69%, 14%, and 60% of SNPs marking bins by rs10896438, rs10896449, rs12793759, and rs11228565, respectively.
CONCLUSIONS: Our next generation resequence analysis compliments publicly available datasets of European descent (HapMap, build 28 and 1000 Genome, Pilot 1, October 2010),underscoring the value of targeted resequence analysis prior to initiating functional studies based on public databases alone. Increasing the number of common variants enables investigators to better prioritize variants for functional studies designed to uncover the biological basis of the direct association(s) in the region.

Li CF, Wang JM, Kang HY, et al.
Characterization of gene amplification-driven SKP2 overexpression in myxofibrosarcoma: potential implications in tumor progression and therapeutics.
Clin Cancer Res. 2012; 18(6):1598-610 [PubMed] Related Publications
PURPOSE: Myxofibrosarcoma remains obscure in molecular determinants of clinical aggressiveness, for which we elucidated implications of SKP2 amplification.
EXPERIMENTAL DESIGN: Array comparative genomic hybridization was applied on samples and cell lines (NMFH-1 to OH931) to search causal genes of tumor progression. SKP2 gene dosage was determined in 82 independent tumors for clinical correlates. Stable SKP2 knockdown was achieved in myxofibrosarcoma cells to assess its oncogenic attributes and candidate mediators in prometastatic function. Pharmacologic assays were evaluated in vitro and in vivo for the therapeutic relevance of bortezomib.
RESULTS: DNA gains frequently involved 5p in which three amplicons were differentially overrepresented in samples behaving unfavorably, encompassing mRNA-upregulated TRIO, SKP2, and AMACR genes. Detected in NMFH-1 cells and 38% of tumors, SKP2 amplification was associated with SKP2 immunoexpression and adverse prognosticators and independently predictive of worse outcomes. Nevertheless, SKP2-expressing OH931 cells and 14% of such tumors lacked gene amplification. Knockdown of SKP2 suppressed proliferation, anchorage-independent growth, migration, and invasion of sarcoma cells and downregulated motility-promoting genes, including ITGB2, ACTN1, IGF1, and ENAH. In vitro, bortezomib downregulated SKP2 expression at the mRNA level with p27(kip1) accumulation, induced caspase activation, and decreased cell viability in myxofibrosarcoma cells but not in fibroblasts. In vivo, bortezomib inhibited growth of NMFH-1 xenografts, the cells of which displayed decreased SKP2 expression but increased p27(kip1) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL).
CONCLUSIONS: As a predominant mechanism driving protein overexpression, SKP2 amplification confers tumor aggressiveness in myxofibrosarcoma. The sensitivity of myxofibrosarcoma cells to bortezomib with SKP2-repressing effect indicates the potentiality of ubiquitin-proteasome pathway as a therapeutic target.

de Leeuw N, Hehir-Kwa JY, Simons A, et al.
SNP array analysis in constitutional and cancer genome diagnostics--copy number variants, genotyping and quality control.
Cytogenet Genome Res. 2011; 135(3-4):212-21 [PubMed] Related Publications
Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first line diagnostic test for ID/CA patients in our laboratory in 2009, because its diagnostic yield is significantly higher than that of routine cytogenetic analysis. In addition to the detection of copy number variations, the genotype information obtained with SNP array analysis enables the detection of stretches of homozygosity and thereby the possible identification of recessive disease genes, mosaic aneuploidy, or uniparental disomy. Patient-parent (trio) information analysis is used to screen for the presence of any form of uniparental disomy in the patient and can determine the parental origin of a de novo copy number variation. Moreover, the outcome of a genotype analysis is used as a final quality control by ruling out potential sample mismatches due to non-paternity or sample mix-up. SNP array analysis is now also used in our laboratory for patients with disorders for which locus heterogeneity is known (homozygosity pre-screening), in prenatal diagnosis in case of structural ultrasound anomalies, and for patients with leukemia. In this report, we summarize our array findings and experiences in the various diagnostic applications and demonstrate the power of a SNP-based array platform for molecular karyotyping, because it not only significantly improves the diagnostic yield in both constitutional and cancer genome diagnostics, but it also enhances the quality of the diagnostic laboratory workflow.

Dawson MI
A strong case for personalized, targeted cancer prevention.
Cancer Prev Res (Phila). 2011; 4(2):173-6 [PubMed] Related Publications
The study reported by Lee and colleagues in this issue of the journal (beginning on page 185) incorporated global genetic variation within a new assessment of the outcome of a previously reported phase-III trial of low-dose 13-cis-retinoic acid (13-cRA) for preventing second primary tumors (SPT) or the recurrence of head-and-neck cancer. This analysis identified genotypes of common single-nucleotide polymorphisms (SNP) and cumulative effect and potential gene-gene interactions that were highly associated with increased placebo-arm risk (prognostic) and/or with reduced treatment-arm risk and longer event-free survival (predictive). For example, the wild-type rs3118570 SNP of the retinoid X receptor alpha gene (carried by 71% of the 13-cRA trial population) marked a 3.33-fold increased SPT/recurrence risk in the placebo arm and a 38% reduced risk in the treatment arm. Adding two other informative genotypes strengthened the treatment-arm risk reduction to 76%, although the genotype trio reflected only 13% of the trial population. This report extends the concept of personalized therapy to cancer prevention.

Barros Filho MC, Katayama ML, Brentani H, et al.
Gene trio signatures as molecular markers to predict response to doxorubicin cyclophosphamide neoadjuvant chemotherapy in breast cancer patients.
Braz J Med Biol Res. 2010; 43(12):1225-31 [PubMed] Related Publications
In breast cancer patients submitted to neoadjuvant chemotherapy (4 cycles of doxorubicin and cyclophosphamide, AC), expression of groups of three genes (gene trio signatures) could distinguish responsive from non-responsive tumors, as demonstrated by cDNA microarray profiling in a previous study by our group. In the current study, we determined if the expression of the same genes would retain the predictive strength, when analyzed by a more accessible technique (real-time RT-PCR). We evaluated 28 samples already analyzed by cDNA microarray, as a technical validation procedure, and 14 tumors, as an independent biological validation set. All patients received neoadjuvant chemotherapy (4 AC). Among five trio combinations previously identified, defined by nine genes individually investigated (BZRP, CLPTM1, MTSS1, NOTCH1, NUP210, PRSS11, RPL37A, SMYD2, and XLHSRF-1), the most accurate were established by RPL37A, XLHSRF-1 based trios, with NOTCH1 or NUP210. Both trios correctly separated 86% of tumors (87% sensitivity and 80% specificity for predicting response), according to their response to chemotherapy (82% in a leave-one-out cross-validation method). Using the pre-established features obtained by linear discriminant analysis, 71% samples from the biological validation set were also correctly classified by both trios (72% sensitivity; 66% specificity). Furthermore, we explored other gene combinations to achieve a higher accuracy in the technical validation group (as a training set). A new trio, MTSS1, RPL37 and SMYD2, correctly classified 93% of samples from the technical validation group (95% sensitivity and 80% specificity; 86% accuracy by the cross-validation method) and 79% from the biological validation group (72% sensitivity and 100% specificity). Therefore, the combined expression of MTSS1, RPL37 and SMYD2, as evaluated by real-time RT-PCR, is a potential candidate to predict response to neoadjuvant doxorubicin and cyclophosphamide in breast cancer patients.

Chen SH, Yang W, Fan Y, et al.
A genome-wide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity.
Leukemia. 2011; 25(1):66-74 [PubMed] Free Access to Full Article Related Publications
Asparaginase is an important component for treatment of childhood acute lymphoblastic leukemia (ALL). The basis for interindividual differences in asparaginase sensitivity remains unclear. To comprehensively identify genetic variants important in the cytotoxicity of asparaginase, we used a genome-wide association approach using the HapMap lymphoblastoid cell lines (87 CEU trio members) and 54 primary ALL leukemic blast samples at diagnosis. Asparaginase sensitivity was assessed as the drug concentration necessary to inhibit 50% of growth (inhibitory concentration (IC)(50)). In CEU lines, we tested 2,390,203 single-nucleotide polymorphism (SNP) genotypes at the individual SNP (P<0.001) and gene level (P<0.05), and identified 329 SNPs representing 94 genes that were associated with asparaginase IC(50). The aspartate metabolism pathway was the most overrepresented among 199 pathways evaluated (P=8.1 × 10(-3)), with primary involvement of adenylosuccinate lyase and aspartyl-tRNA synthetase genes. We validated that SNPs in the aspartate metabolism pathway were also associated with asparaginase sensitivity in primary ALL leukemic blast samples (P=5.5 × 10(-5)). Our genome-wide interrogation of CEU cell lines and primary ALL blasts revealed that inherited genomic interindividual variation in a plausible candidate pathway can contribute to asparaginase sensitivity.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TRIO, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999