Gene Summary

Gene:ZNF331; zinc finger protein 331
Aliases: RITA, ZNF361, ZNF463
Summary:This gene encodes a zinc finger protein containing a KRAB (Kruppel-associated box) domain found in transcriptional repressors. This gene may be methylated and silenced in cancer cells. This gene is located within a differentially methylated region (DMR) and shows allele-specific expression in placenta. Alternative splicing and the use of alternative promoters results in multiple transcript variants encoding the same protein. [provided by RefSeq, Nov 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:zinc finger protein 331
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ZNF331 (cancer-related)

Cohen A, Burgos-Aceves MA, Smith Y
Estrogen repression of microRNA as a potential cause of cancer.
Biomed Pharmacother. 2016; 78:234-8 [PubMed] Related Publications
MicroRNAs (miRNAs) are endogenous small molecules that regulate gene expression and have been implicated in the pathogenesis of many human diseases, including cancer. This review describes the results that show a global repression in miRNA expression in various tumors and cancer cell lines. Intriguingly, recent discoveries have shown a widespread downregulation of miRNA after exposure to the steroid hormone estrogen. The integration of the results suggests that estrogen-dependent repression of miRNA is a potential cause of cancer.

Eide HA, Halvorsen AR, Bjaanæs MM, et al.
The MYCN-HMGA2-CDKN2A pathway in non-small cell lung carcinoma--differences in histological subtypes.
BMC Cancer. 2016; 16:71 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Extensive research has increased our understanding of the molecular alterations needed for non-small cell lung cancer (NSCLC) development. Deregulation of a pathway including MYCN, HMGA2 and CDKN2A, with the participation of DICER1, is of importance in several solid tumours, and may also be of significance in the pathogenesis of NSCLC.
METHODS: Gene expression of MYCN, HMGA2, CDKN2A and DICER1 were investigated with RT-qPCR in surgically resected NSCLC tumour tissue from 175 patients. Expression of the let-7 microRNA family was performed in 78 adenocarcinomas and 16 matching normal lung tissue samples using microarrays. The protein levels of HMGA2 were determined by immunohistochemistry in 156 tumour samples and the protein expression was correlated with gene expression. Associations between clinical data, including time to recurrence, and expression of mRNA, protein and microRNAs were analysed.
RESULTS: Compared to adenocarcinomas, squamous cell carcinomas had a median 5-fold increase in mRNA expression of HMGA2 (p = 0.003). A positive correlation (r = 0.513, p < 0.010) between HMGA2 mRNA expression and HMGA2 protein expression was seen. At the protein level, 90% of the squamous cell carcinomas expressed high levels of the HMGA2 protein compared to 47% of the adenocarcinomas (p < 0.0001). MYCN was positively correlated with HMGA2 (p < 0.010) and DICER1 mRNA expression (p < 0.010), and the expression of the let-7 microRNAs seemed to be correlated with the genes studied. MYCN expression was associated with time to recurrence in multivariate survival analyses (p = 0.020).
CONCLUSIONS: A significant difference in HMGA2 mRNA expression between the histological subtypes of NSCLC was seen with a higher expression in the squamous cell carcinomas. This was also found at the protein level, and we found a good correlation between the mRNA and the protein expression of HMGA2. Moreover, the expression of MYCN, HMGA2, and DICER1 seems to be correlated to each other and the expression of the let7-genes impacted by their expression. MYCN gene expression seems to be of importance in time to recurrence in this patient cohort with resected NSCLC.

Kupcinskaite-Noreikiene R, Ugenskiene R, Noreika A, et al.
Gene methylation profile of gastric cancerous tissue according to tumor site in the stomach.
BMC Cancer. 2016; 16:40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is considerable information on the methylation of the promoter regions of different genes involved in gastric carcinogenesis. However, there is a lack of information on how this epigenetic process differs in tumors originating at different sites in the stomach. The aim of this study is to assess the methylation profiles of the MLH1, MGMT, and DAPK-1 genes in cancerous tissues from different stomach sites.
METHODS: Samples were acquired from 81 patients suffering stomach adenocarcinoma who underwent surgery for gastric cancer in the Lithuanian University of Health Sciences Hospital Kaunas Clinics in 2009-2012. Gene methylation was investigated with methylation-specific PCR. The study was approved by the Lithuanian Biomedical Research Ethics Committee.
RESULTS: The frequencies of methylation in cancerous tissues from the upper, middle, and lower thirds of the stomach were 11.1, 23.1, and 45.4%, respectively, for MLH1; 22.2, 30.8, and 57.6%, respectively, for MGMT; and 44.4, 48.7, and 51.5%, respectively, for DAPK-1. MLH1 and MGMT methylation was observed more often in the lower third of the stomach than in the upper third (p < 0.05). In the middle third, DAPK-1 promoter methylation was related to more-advanced disease in the lymph nodes (N2-3 compared with N0-1 [p = 0.02]) and advanced tumor stage (stage III rather than stages I-II [p = 0.05]). MLH1 and MGMT methylation correlated inversely when the tumor was located in the lower third of the stomach (coefficient, -0.48; p = 0.01). DAPK-1 and MLH1 methylation correlated inversely in tumors in the middle-third of the stomach (coefficient, -0.41; p = 0.01).
CONCLUSION: Gene promoter methylation depends on the gastric tumor location.

Bjaanæs MM, Fleischer T, Halvorsen AR, et al.
Genome-wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene expression and prognosis.
Mol Oncol. 2016; 10(2):330-43 [PubMed] Related Publications
BACKGROUND: DNA methylation alterations are early events in tumorigenesis and important in the regulation of gene expression in cancer cells. Lung cancer patients have in general a poor prognosis, and a deeper insight into the epigenetic landscape in lung adenocarcinoma tumors and its prognostic implications is needed.
RESULTS: We determined whole-genome DNA methylation profiles of 164 fresh frozen lung adenocarcinoma samples and 19 samples of matched normal lung tissue using the Illumina Infinium 450K array. A large number of differentially methylated CpGs in lung adenocarcinoma tissue were identified, and specific methylation profiles were observed in tumors with mutations in the EGFR-, KRAS- or TP53 genes and according to the patients' smoking status. The methylation levels were correlated with gene expression and both positive and negative correlations were seen. Methylation profiles of the tumor samples identified subtypes of tumors with distinct prognosis, including one subtype enriched for TP53 mutant tumors. A prognostic index based on the methylation levels of 33 CpGs was established, and was significantly associated with prognosis in the univariate analysis using an independent cohort of lung adenocarcinoma patients from The Cancer Genome Atlas project. CpGs in the HOX B and HOX C gene clusters were represented in the prognostic signature.
CONCLUSIONS: Methylation differences mirror biologically important features in the etiology of lung adenocarcinomas and influence prognosis.

Prenen H, Smeets D, Mazzone M, et al.
Phospholipase C gamma 1 (PLCG1) R707Q mutation is counterselected under targeted therapy in a patient with hepatic angiosarcoma.
Oncotarget. 2015; 6(34):36418-25 [PubMed] Free Access to Full Article Related Publications
Hepatic angiosarcoma is a rare and aggressive vascular neoplasm. Pathogenic driver mutations are largely unknown. We present the case of a patient with recurrent hepatic angiosarcoma, who initially showed good response to sunitinib, followed by progression. Using comprehensive molecular techniques, we explored the potential mechanisms of resistance. By low-read-depth whole-genome sequencing, the comparison of copy number aberrations (CNAs) of the primary tumor to the skin metastatic lesion that developed after progression on sunitinib, revealed high-level amplification of the 4q11-q13.1 region (containing KIT, PDGFRA and VEGFR2 genes) that was sustained in both lesions. Whole exome sequencing on the germline, primary and metastatic tumor DNAs, resulted in 27 confirmed mutations, 19 of which (including TP53 mutation) presented in both primary and metastatic lesions. One mutation, ZNF331 frameshift deletion, was detected only in the primary tumor. In contrast, seven other mutations, including phospholipase C-gamma1 (PLCG1) R707Q mutation, were found only in the metastatic tumor, indicating selection of cells with the resistant genotype under sunitinib pressure. Our study supports the notion that PLCG1-R707Q mutation may confer VEGFR2-independent signaling and may thus cause resistance against VEGF(R)-directed therapies. This case illustrates also the advantages of using next-generation technologies in identifying individualized targeted therapy.

Demidenko R, Razanauskas D, Daniunaite K, et al.
Frequent down-regulation of ABC transporter genes in prostate cancer.
BMC Cancer. 2015; 15:683 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT).
METHODS: TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR.
RESULTS: Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001).
CONCLUSIONS: The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors.

Singh PK, Mistry KN
A computational approach to determine susceptibility to cancer by evaluating the deleterious effect of nsSNP in XRCC1 gene on binding interaction of XRCC1 protein with ligase III.
Gene. 2016; 576(1 Pt 1):141-9 [PubMed] Related Publications
Several reports suggest that non-synonymous single nucleotide polymorphisms affect the function of XRCC1 which impairs DNA repair capacity and thus increases risk to diseases like cancer. In our study, we predicted the most damaging nsSNPs using a computational approach and analysed its functional impact on the XRCC1 and LIG3 interaction. SNP rs2307166 was predicted to be deleterious using eight software programs: SIFT, PolyPhen, PANTHER, PhD-SNP, nsSNPAnalyzer, SNPS&GO, SNAP and I-Mutant. Protein structural analysis was performed using Swiss PDB viewer, and PyMOL. Xenoview was used for molecular dynamic simulation and energy minimisation. Finally, PatchDock and FireDock were used to analyse the interactions of XRCC1 and LIG3. By comparing the results we found that the mutant protein has less binding energy and the interacting amino acids than native protein. In silico analysis predicted rs2307166 to be more damaging than three other extensively studied SNPs. Identification of this SNP will help in determining the susceptibility of the individual to cancer, their prognosis and further treatment.

Zhu H, Abulimiti M, Liu H, et al.
RITA enhances irradiation-induced apoptosis in p53-defective cervical cancer cells via upregulation of IRE1α/XBP1 signaling.
Oncol Rep. 2015; 34(3):1279-88 [PubMed] Related Publications
Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.

Jiang S, Linghu E, Zhan Q, et al.
Methylation of ZNF331 Promotes Cell Invasion and Migration in Human Esophageal Cancer.
Curr Protein Pept Sci. 2015; 16(4):322-8 [PubMed] Related Publications
Loss of zinc-finger protein 331 (ZNF331) expression was reported in gastric cancer. To explore the regulation of expression and the function of ZNF331 in human esophageal cancer, 11 esophageal cancer cell lines, 7 cases of normal esophageal mucosa and 99 cases of primary esophageal squamous cancer were employed. Methylation specific PCR, semi-quantitive reverse transcriptase PCR, immunohistochemistry, western blot, flow cytometry, wound healing and transwell assay were used. The expression of ZNF331 was silenced by promoter region hypermethylation in 8 of 11 esophageal cancer cell lines. 56.5% (56/99) of primary human esophageal cancer was methylated, but no methylation was found in 7 cases of normal esophageal mucosa. The expression of ZNF331 was reduced in human primary esophageal cancer and reduced expression was associated with promoter region methylation. No significant change was found in cell viability (P>0.05) and cell phase distribution (P>0.05) before and after re-expression in KYSE150 and KYSE410 cells. The migration was suppressed by ZNF331 apparently under wound healing experiment. Re-expression of ZNF331 expression significantly suppressed cell migration and invasion (P<0.05). In conclusion, ZNF331 is frequently methylated in human esophageal cancer. The expression of ZNF331 is regulated by promoter region methylation. ZNF331 may suppress esophageal cancer metastasis.

Blein S, Bardel C, Danjean V, et al.
An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.
Breast Cancer Res. 2015; 17:61 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.
METHODS: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.
RESULTS: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.
CONCLUSIONS: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Zhou M, Ye Z, Gu Y, et al.
Genomic analysis of drug resistant pancreatic cancer cell line by combining long non-coding RNA and mRNA expression profling.
Int J Clin Exp Pathol. 2015; 8(1):38-52 [PubMed] Free Access to Full Article Related Publications
Recently, more and more studies show that long non-coding RNAs (lncRNAs) play a very important role in various biological processes. However, research on lncRNA in the tumor cell drug resistance of it is seldom reported. In this study, gemcitabine-resistant pancreatic cancer cell line SWl990/GZ was obtained by treating parental cell line SWl990 in vitro with increasing dosage of gemcitabine in culture medium intermittently for ten months. We identified 4983 of 13310 detected lncRNAs demonstrated > 2-fold abnormally expressed in response to the gemcitabine-resistant, among of them, 1993 and 2990 lncRNAs were upregulated and downregulated. Meanwhile, 4759 mRNAs exhibited at least a 2-fold, of these, 2671 and 2088 mRNAs were upregulated and downregulated. Gene Ontology analysis and Pathway analysis revealed that differential expression mRNA involved in significant biological regulatory function and some genes may be particular to pancreatic cancer chemotherapy resistance. Quantitative real time PCR confirmed the changes of six lncRNAs (RP11-58D2.1, lincRNA-ZNF532, AP000221.1, CTC-338M12.5, CR619813, DDX6P) and nine mRNAs (SYT1, FAM171B, ZNF331, FAM187B, CYP1A1, SRXN1, HIST1H2BL, TOMM40L and SPP1) in SW1990 and SW1990/GZ. We also found that the upregulating of gemcitabine on the expression of lincRNA-ZNF532 was time-dependent. Gemcitabine at a range from 1.0 μM to 16.0 μM induced a increase of lincRNA-ZNF532 in SW1990 cells. The relative level of DDX6P is opposite to that of lincRNA-ZNF53 in the same circumstance. In conclusion, the dysregulated lncRNAs and mRNAs identified in this work may represent good candidates for future diagnostic or prognostic biomarkers and therapeutic targets.

Wang X, Docanto MM, Sasano H, et al.
Prostaglandin E2 inhibits p53 in human breast adipose stromal cells: a novel mechanism for the regulation of aromatase in obesity and breast cancer.
Cancer Res. 2015; 75(4):645-55 [PubMed] Related Publications
Obesity is a risk factor for postmenopausal breast cancer and the majority of these cancers are estrogen dependent. Aromatase converts androgens into estrogens and its increased expression in breast adipose stromal cells (ASC) is a major driver of estrogen receptor-positive breast cancer. In particular, obesity-associated and tumor-derived factors, such as prostaglandin E2 (PGE2), have been shown to drive the expression of aromatase by stimulating the activity of the proximal promoter II (PII). The tumor-suppressor p53 is a key regulator of cell-cycle arrest and apoptosis and is frequently mutated in breast cancer. Mutations in p53 are rare in tumor-associated ASCs. Therefore, it was hypothesized that p53 is regulated by PGE2 and involved in the PGE2-mediated regulation of aromatase. Results demonstrate that PGE2 causes a significant decrease in p53 transcript and nuclear protein expression, as well as phosphorylation at Ser15 in primary human breast ASCs. Stabilization of p53 with RITA leads to a significant decrease in the PGE2-stimulated aromatase mRNA expression and activity, and PII activity. Interaction of p53 with PII was demonstrated and this interaction is decreased in the presence of PGE2. Moreover, mutation of the identified p53 response element leads to an increase in the basal activity of the promoter. Immunofluorescence on clinical samples demonstrates that p53 is decreased in tumor-associated ASCs compared with ASCs from normal breast tissue, and that there is a positive association between perinuclear (inactive) p53 and aromatase expression in these cells. Furthermore, aromatase expression is increased in breast ASCs from Li-Fraumeni patients (germline TP53 mutations) compared with non-Li-Fraumeni breast tissue. Overall, our results demonstrate that p53 is a negative regulator of aromatase in the breast and its inhibition by PGE2 provides a novel mechanism for aromatase regulation in obesity and breast cancer.

Wang H, Yang Z, Liu C, et al.
RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53-Fbxw7 pathway.
Biochem Biophys Res Commun. 2014; 454(1):71-7 [PubMed] Related Publications
Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.

Fiorini C, Cordani M, Padroni C, et al.
Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine.
Biochim Biophys Acta. 2015; 1853(1):89-100 [PubMed] Related Publications
Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide; PDAC is characterized by poor prognosis, resistance to conventional chemotherapy and high mortality rate. TP53 tumor suppressor gene is frequently mutated in PDAC, resulting in the accumulation of mutated protein with potential gain-of-function (GOF) activities, such as genomic instability, hyperproliferation and chemoresistance. The purpose of this study was to assess the relevance of the p53 status on the PDAC cells response to the standard drug gemcitabine. We also examined the potential therapeutic effect of p53-reactivating molecules to restore the mutant p53 function in GEM treated PDAC cells. We showed that gemcitabine stabilized mutant p53 protein in the nuclei and induced chemoresistance, concurrent with the mutant p53-dependent expression of Cdk1 and CCNB1 genes, resulting in a hyperproliferation effect. Despite the adverse activation of mutant p53 by gemcitabine, simultaneous treatment of PDAC cells with gemcitabine and p53-reactivating molecules (CP-31398 and RITA) reduced growth rate and induced apoptosis. This synergistic effect was observed in both wild-type and mutant p53 cell lines and was absent in p53-null cells. The combination drug treatment induced p53 phosphorylation on Ser15, apoptosis and autophagosome formation. Furthermore, pharmacological inhibition of autophagy further increased apoptosis stimulated by gemcitabine/CP-31398 treatment. Together, our results show that gemcitabine aberrantly stimulates mutant p53 activity in PDAC cells identifying key processes with potential for therapeutic targeting. Our data also support an anti-tumoral strategy based on inhibition of autophagy combined with p53 activation and standard chemotherapy for both wild-type and mutant p53 expressing PDACs.

Chuang HC, Yang LP, Fitzgerald AL, et al.
The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.
PLoS One. 2014; 9(8):e104821 [PubMed] Free Access to Full Article Related Publications
TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

Magro G, Salvatorelli L, Vecchio GM, et al.
Cytoplasmic expression of Wilms tumor transcription factor-1 (WT1): a useful immunomarker for young-type fibromatoses and infantile fibrosarcoma.
Acta Histochem. 2014; 116(7):1134-40 [PubMed] Related Publications
There is increasing evidence that Wilms' tumor transcription factor-1 (WT1) is expressed in the cytoplasm of neoplastic cells from different benign and malignant tumors. Only a few studies on WT1 cytoplasmic immunolocalization are available in pediatric tumors. The aim of the present study was to investigate immunohistochemically the expression and distribution of WT1 in a large series of soft tissue fibroblastic/myofibroblastic lesions occurring in children and adolescents. Notably WT1 was not expressed in nodular fasciitis and desmoid-type (adult) fibromatosis, while it stained diffusely and strongly in several infantile-type fibromatoses, such as fibrous hamartoma of infancy, myofibroma/myofibromatosis, and lipofibromatosis. Interestingly, WT1 cytoplasmic expression was also found in all cases (10/10) of infantile fibrosarcomas examined. The present study shows that a diffuse WT1 cytoplasmic expression is of complementary diagnostic value to conventional myofibroblastic markers (α-smooth muscle actin; desmin) in confirming diagnosis of young-type fibromatoses or infantile fibrosarcoma and in ruling out both desmoid-type fibromatoses and nodular fasciitis. WT1 cytoplasmic expression in infantile fibrosarcoma is a novel finding which could be exploitable as an immunomarker for this tumor. Although highly sensitive, WT1 cytoplasmic immunostaining is not specific for infantile fibrosarcoma, and thus it should be evaluated in the context of a wide immunohistochemical panel when pathologists are dealing with spindle cell lesions of soft tissues in children and adolescents. Accordingly we recommend that a correct diagnosis of fibroblastic/myofibroblastic soft tissue lesion in pediatric patients is usually achieved on the basis of a careful correlation of morphological and immunohistochemical findings in the appropriate clinical context. The different cellular localization of WT1, namely nuclear, cytoplasmic or nucleo-cytoplasmic, in different benign and malignant tumors supports the hypothesis that this transcription factor plays a complex role in tumorigenesis, likely as a chameleon protein functioning as either a tumor suppressor gene or an oncogene, depending on cellular context.

Vedeld HM, Andresen K, Eilertsen IA, et al.
The novel colorectal cancer biomarkers CDO1, ZSCAN18 and ZNF331 are frequently methylated across gastrointestinal cancers.
Int J Cancer. 2015; 136(4):844-53 [PubMed] Free Access to Full Article Related Publications
We have previously shown that gastrointestinal cancers display similar epigenetic aberrations. In a recent study, we identified frequently methylated genes for cholangiocarcinoma (CDO1, DCLK1, SFRP1 and ZSCAN18), where one of these genes, DCLK1, was also confirmed to be highly methylated in colorectal cancer. The aim of the present study was to determine whether these four genes, in addition to one gene found to be methylated in colon cancer cell lines (ZNF331), are commonly methylated across gastrointestinal malignancies, as well as explore their role as potential biomarkers. Quantitative methylation specific PCR (qMSP) of colorectal cancer (n=164) and normal colorectal mucosa (n=106) samples showed that all genes were frequently methylated in colorectal cancer (71-92%) with little or no methylation in normal mucosa (0-3%). Methylation of minimum two of these five genes identified 95% of the tumors with a specificity of 98%, and an area under the receiver operating characteristics curve (AUC) of 0.98. For gastric (n=25) and pancreatic (n=20) cancer, the same panel detected 92% and 90% of the tumors, respectively. Seventy-four cancer cell lines were further analyzed by qMSP and real time RT-PCR. In addition to the previously reported DCLK1, a high negative correlation between promoter DNA methylation and gene expression was observed for CDO1, ZNF331 and ZSCAN18. In conclusion, the high methylation frequency of these genes in colorectal- as well as in gastric-, pancreatic- and bile duct cancer confirmed an epigenetic similarity between gastrointestinal cancer types, and simultaneously demonstrated their potential as biomarkers, particularly for colorectal cancer detection.

Surget S, Descamps G, Brosseau C, et al.
RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway.
BMC Cancer. 2014; 14:437 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells.
METHODS: A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines.
RESULTS: Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%).
CONCLUSION: These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.

Johnson N, Dudbridge F, Orr N, et al.
Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study.
Breast Cancer Res. 2014; 16(3):R51 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age ≤50 years.
METHODS: We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics.
RESULTS: We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P(trend) = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P(trend) = 0.005) but not cases (P(trend) = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P(het) = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age ≥15 years (OR(het) = 0.84, 95% CI 0.75, 0.94; OR(hom) = 0.81, 95% CI 0.51, 1.30; P(trend) = 0.002) but not for those who had their menarche age ≤11 years (OR(het) = 1.06, 95% CI 0.95, 1.19, OR(hom) = 1.07, 95% CI 0.67, 1.72; P(trend) = 0.29).
CONCLUSIONS: To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.

Kupčinskaitė-Noreikienė R, Skiecevičienė J, Jonaitis L, et al.
CpG island methylation of the MLH1, MGMT, DAPK, and CASP8 genes in cancerous and adjacent noncancerous stomach tissues.
Medicina (Kaunas). 2013; 49(8):361-6 [PubMed] Related Publications
BACKGROUND AND OBJECTIVE. Many factors are involved in the development of gastric adenocarcinoma. The CpG island methylation of apoptosis and mismatch repair genes by the loss of their function is important in gastric adenocarcinoma. The aim of this study was to determine the methylation frequency of MLH1, MGMT, CASP8, and DAPK in cancerous and adjacent noncancerous stomach tissues, to determine possible associations with the selected clinicopathological characteristics, and to identify possible correlation between the methylation of individual genes. MATERIAL AND METHODS. The methylation status of MLH1, MGMT, DAPK, and CASP8 was investigated in 69 patients with gastric adenocarcinoma by using methylation-specific polymerase chain reaction. The associations between patients' clinical characteristics and methylation status were assessed. RESULTS. The methylation frequency of the MLH1, DAPK, MGMT, and CASP8 gene promoters in cancerous and adjacent noncancerous tissues was 31.9% and 27.5%; 47.8% and 46.4%; 36.2% and 44.9%; and 5.8% and 5.8%, respectively, but the differences were not significant. There was no significant association between the methylation status of the mentioned genes and clinicopathological characteristics, such as age, sex, tumor type by the Lauren classification, degree of differentiation G, and TNM staging. An inverse correlation between the methylation of the DAPK and MLH1 gene promoters in cancerous and surrounding noncancerous tissues was found. CONCLUSIONS. The methylation of the MLH1, MGMT, DAPK, and CASP8 genes was found to occur both in cancerous and noncancerous stomach tissues. These findings provide additional insights into gene methylation patterns in gastric adenocarcinoma.

Failli A, Legitimo A, Migheli F, et al.
Efficacy and feasibility of the epithelial cell adhesion molecule (EpCAM) immunomagnetic cell sorter for studies of DNA methylation in colorectal cancer.
Int J Mol Sci. 2013; 15(1):44-57 [PubMed] Free Access to Full Article Related Publications
The aim of this work was to assess the impact on measurements of methylation of a panel of four cancer gene promoters of purifying tumor cells from colorectal tissue samples using the epithelial cell adhesion molecule (EpCAM)-immunomagnetic cell enrichment approach. We observed that, on average, methylation levels were higher in enriched cell fractions than in the whole tissue, but the difference was significant only for one out of four studied genes. In addition, there were strong correlations between methylation values for individual samples of whole tissue and the corresponding enriched cell fractions. Therefore, assays on whole tissue are likely to provide reliable estimates of tumor-specific methylation of cancer genes. However, tumor cell tissue separation using immunomagnetic beads could, in some cases, give a more accurate value of gene promoter methylation than the analysis of the whole cancer tissue, although relatively expensive and time-consuming. The efficacy and feasibility of the immunomagnetic cell sorting for methylation studies are discussed.

Wang H, Chen G, Wang H, Liu C
RITA inhibits growth of human hepatocellular carcinoma through induction of apoptosis.
Oncol Res. 2013; 20(10):437-45 [PubMed] Related Publications
RBP-J-interacting and tubulin-associated (RITA) is a novel RBP-J-interacting protein that downregulates Notch-mediated transcription. The current study focuses on the antitumor effect of RITA in human hepatocellular carcinoma (HCC) and aims to explore its molecular mechanism. Thirty paired HCC and adjacent non-tumoral liver samples were analyzed by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RITA overexpression was induced by transfection of a pcDNA3.1-Flag-RITA plasmid into HepG2 cells. RITA knockdown was achieved by siRNA transfection. mRNA and protein expression of target genes were quantified by qRT-PCR and Western blotting, respectively. Cell proliferation and apoptosis were measured using MTT assay and flow cytometry. Our results demonstrate that adjacent nontumoral liver samples exhibited increased RITA expression compared to HCC tissues (p < 0.05); RITA levels were associated with tumor differentiation status. Overexpression of RITA suppressed cell proliferation and promoted early apoptosis, while its silencing promoted cell growth dramatically (p < 0.05). RITA overexpression upregulated p53 and reduced cyclin E levels, whereas silencing of RITA had the opposite effect on p53 and cyclin E expression. Our in vitro results represent the first evidence that RITA might suppress tumor growth and induce apoptosis in HCCs, and may be a potent antitumoral agent for HCC treatment that deserves further exploration.

Huang X, Meng B, Iqbal J, et al.
Activation of the STAT3 signaling pathway is associated with poor survival in diffuse large B-cell lymphoma treated with R-CHOP.
J Clin Oncol. 2013; 31(36):4520-8 [PubMed] Free Access to Full Article Related Publications
PURPOSE: We previously reported that constitutive STAT3 activation is a prominent feature of the activated B-cell subtype of diffuse large B-cell lymphomas (ABC-DLBCL). In this study, we investigated whether STAT3 activation can risk stratify patients with DLBCL.
PATIENTS AND METHODS: By an immunohistochemical method, we investigated phosphotyrosine STAT3 (PY-STAT3) expression from 185 patients with DLBCL treated with R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone). Cell line-based siRNA experiments were also performed to generate an 11-gene, PY-STAT3 activation signature, which was used to study a previously published cohort of 222 patients with DLBCL. The STAT3 activation status determined by these two methods and by STAT3 mRNA levels were then correlated with survival.
RESULTS: PY-STAT3 was detected in 37% of DLBCL and enriched in ABC-DLBCL cases (P = .03). PY-STAT3 positivity significantly correlated with poor overall survival (OS; P = .01) and event-free survival (EFS; P = .006). Similar observations were made for high levels of STAT3 mRNA. In multivariable analysis, PY-STAT3 status (P = .02), International Prognostic Index (P = .02), and BCL2 expression (P = .046) were independent prognosticators of OS in this cohort. Among the cell-of-origin subgroups, PY-STAT3 was associated with poor EFS among non-germinal center B-cell DLBCL cases only (P = .027). Similarly, the 11-gene STAT3 activation signature correlated with poor survival in the entire DLBCL cohort (OS, P < .001; EFS, P < .001) as well as the ABC-DLBCL subgroup (OS, P = .029; EFS, P = .025).
CONCLUSION: STAT3 activation correlated with poor survival in patients with DLBCL treated with R-CHOP, especially those with tumors of the ABC-DLBCL subtype.

Burmakin M, Shi Y, Hedström E, et al.
Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro.
Clin Cancer Res. 2013; 19(18):5092-103 [PubMed] Related Publications
PURPOSE: Restoration of the p53 function in tumors is a promising therapeutic strategy due to the high potential of p53 as tumor suppressor and the fact that established tumors depend on p53 inactivation for their survival. Here, we addressed the question whether small molecule RITA can reactivate p53 in neuroblastoma and suppress the growth of neuroblastoma cells in vitro and in vivo.
EXPERIMENTAL DESIGN: The ability of RITA to inhibit growth and to induce apoptosis was shown in seven neuroblastoma cell lines. Mechanistic studies were carried out to determine the p53 dependence and the molecular mechanism of RITA-induced apoptosis in neuroblastoma, using cell viability assays, RNAi silencing, co-immunoprecipitation, qPCR, and Western blotting analysis. In vivo experiments were conducted to study the effect of RITA on human neuroblastoma xenografts in mice.
RESULTS: RITA induced p53-dependent apoptosis in a set of seven neuroblastoma cell lines, carrying wild-type or mutant p53; it activated p53 and triggered the expression of proapoptotic p53 target genes. Importantly, p53 activated by RITA inhibited several key oncogenes that are high-priority targets for pharmacologic anticancer strategies in neuroblastoma, including N-Myc, Aurora kinase, Mcl-1, Bcl-2, Wip-1, MDM2, and MDMX. Moreover, RITA had a strong antitumor effect in vivo.
CONCLUSIONS: Reactivation of wild-type and mutant p53 resulting in the induction of proapoptotic factors along with ablation of key oncogenes by compounds such as RITA may be a highly effective strategy to treat neuroblastoma.

Yoneda T, Kuboyama A, Kato K, et al.
Association of MDM2 SNP309 and TP53 Arg72Pro polymorphisms with risk of endometrial cancer.
Oncol Rep. 2013; 30(1):25-34 [PubMed] Free Access to Full Article Related Publications
The incidence of endometrial cancer, a common gynecological malignancy, is increasing in Japan. We have previously shown that the ER/MDM2/p53/p21 pathway plays an important role in endometrial carcinogenesis. In the present study, we investigated the effects of germline single nucleotide polymorphisms in murine double minute 2 (MDM2) SNP309, TP53 Arg72Pro, ESR1 PvuII and XbaI, and p21 codon 31 on endometrial cancer risk. We evaluated these polymorphisms in DNA samples from 125 endometrial cancer cases and 200 controls using polymerase chain reaction-based restriction fragment length polymorphism. The association of each genetic polymorphism with endometrial cancer was examined by the odds ratio and 95% confidence interval, which were obtained using logistic regression analysis. The SNP309 GG genotype non-significantly increased the risk of endometrial cancer. The 95% confidence interval for the GG genotype vs. the TT genotype of MDM2 SNP309 was 1.76 (0.93-3.30). Endometrial cancer was not associated with tested SNP genotypes for TP53, ESR1 and p21. The combination of SNP309 GG + TG and TP53 codon 72 Arg/Arg significantly increased endometrial cancer risk. The adjusted OR was 2.53 (95% confidence interval, 1.03-6.21) and P for the interaction was 0.04. This result was supported by in vitro data showing that endometrial cancer cell lines with the SNP309 G allele failed to show growth inhibition by treatment with RITA, which reduces p53-MDM2 binding. The presence of the SNP309 G allele and TP53 codon 72 Arg/Arg genotype is associated with an increased risk of endometrial cancer in Japanese women.

Giuseppe P, Daniele R, Rita BM
Cutaneous complications of Anderson-Fabry disease.
Curr Pharm Des. 2013; 19(33):6031-6 [PubMed] Related Publications
Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by a defect in the α-galactosidase A gene, which leads to the deficiency of the hydrolytic enzyme α-galactosidase A. The consequent inability to catabolize glycosphingolipids causes progressive accumulation of globotriaosylceramide in the vascular endothelium throughout the body. Fatalities in the classical phenotype may usually occur as a consequence of cerebral, cardiac or renal disease. Dermatological manifestations are a relevant feature of Fabry disease and include angiokeratomas, telangiectasiae, lymphedema, anhidrosis or hypohidrosis and pseudo-acromegalic facial appearance. The actual causal treatment for Fabry disease is the enzyme replacement therapy. Dermatologists have a key role, since cutaneous manifestations may lead to the diagnosis. This may help an early therapeutic intervention, reducing both morbidity and mortality.

Gao C, Devarajan K, Zhou Y, et al.
Identifying breast cancer risk loci by global differential allele-specific expression (DASE) analysis in mammary epithelial transcriptome.
BMC Genomics. 2012; 13:570 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The significant mortality associated with breast cancer (BCa) suggests a need to improve current research strategies to identify new genes that predispose women to breast cancer. Differential allele-specific expression (DASE) has been shown to contribute to phenotypic variables in humans and recently to the pathogenesis of cancer. We previously reported that nonsense-mediated mRNA decay (NMD) could lead to DASE of BRCA1/2, which is associated with elevated susceptibility to breast cancer. In addition to truncation mutations, multiple genetic and epigenetic factors can contribute to DASE, and we propose that DASE is a functional index for cis-acting regulatory variants and pathogenic mutations, and that global analysis of DASE in breast cancer precursor tissues can be used to identify novel causative alleles for breast cancer susceptibility.
RESULTS: To test our hypothesis, we employed the Illumina(®) Omni1-Quad BeadChip in paired genomic DNA (gDNA) and double-stranded cDNA (ds-cDNA) samples prepared from eight BCa patient-derived normal mammary epithelial lines (HMEC). We filtered original array data according to heterozygous genotype calls and calculated DASE values using the Log ratio of cDNA allele intensity, which was normalized to the corresponding gDNA. We developed two statistical methods, SNP- and gene-based approaches, which allowed us to identify a list of 60 candidate DASE loci (DASE ≥ 2.00, P ≤ 0.01, FDR ≤ 0.05) by both methods. Ingenuity Pathway Analysis of DASE loci revealed one major breast cancer-relevant interaction network, which includes two known cancer causative genes, ZNF331 (DASE = 2.31, P = 0.0018, FDR = 0.040) and USP6 (DASE = 4.80, P = 0.0013, FDR = 0.013), and a breast cancer causative gene, DMBT1 (DASE=2.03, P = 0.0017, FDR = 0.014). Sequence analysis of a 5' RACE product of DMBT1 demonstrated that rs2981745, a putative breast cancer risk locus, appears to be one of the causal variants leading to DASE in DMBT1.
CONCLUSIONS: Our study demonstrated for the first time that global DASE analysis is a powerful new approach to identify breast cancer risk allele(s).

Michaelis M, Rothweiler F, Agha B, et al.
Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents.
Cell Death Dis. 2012; 3:e294 [PubMed] Free Access to Full Article Related Publications
Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3(r)RITA(10 μM) to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.

Yu J, Liang QY, Wang J, et al.
Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer.
Oncogene. 2013; 32(3):307-17 [PubMed] Related Publications
Zinc-finger protein 331 (ZNF331), a Kruppel-associated box zinc-finger protein gene, was identified as a putative tumor suppressor in our previous study. However, the role of ZNF331 in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in gastric cancer. ZNF331 was silenced or downregulated in 71% (12/17) gastric cancer cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancer tissues. In contrast, ZNF331 was readily expressed in various normal adult tissues. The downregulation of ZNF331 was closely linked to the promoter hypermethylation as evidenced by methylation-specific PCR, bisulfite genomic sequencing and reexpression by demethylation agent treatment. DNA sequencing showed no genetic mutation/deletion of ZNF331 in gastric cancer cell lines. Ectopic expression of ZNF331 in the silenced cancer cell lines MKN28 and HCT116 significantly reduced colony formation and cell viability, induced cell cycle arrests and repressed cell migration and invasive ability. Concordantly, knockdown of ZNF331 increased cell viability and colony formation ability of gastric cancer cell line MKN45. Two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic approach were applied to analyze the molecular basis of the biological functions of ZNF331. In all, 10 downstream targets of ZNF331 were identified to be associated with regulation of cell growth and metastasis. The tumor-suppressive effect of ZNF331 is mediated at least by downregulation of genes involved in cell growth promotion (DSTN, EIF5A, GARS, DDX5, STAM, UQCRFS1 and SET) and migration/invasion (DSTN and ACTR3), and upregulation of genome-stability gene (SSBP1) and cellular senescence gene (PNPT1). A novel target of ZNF331 (DSTN) was functionally validated. Overexpression of DSTN in BGC-823 cells increased colony formation and migration ability. In conclusion, our results suggest that ZNF331 possesses important functions for the suppression of gastric carcinogenesis as a novel functional tumor-suppressor gene.

Brandão RD, Tserpelis D, Gómez García E, Blok MJ
Detection of exon skipping events in BRCA1 RNA using MLPA kit P002.
Mol Biol Rep. 2012; 39(7):7429-33 [PubMed] Free Access to Full Article Related Publications
A rapid and easy method to screen for aberrant cDNA would be a very useful diagnostic tool in genetics since a fraction of the DNA variants found affect RNA splicing. The currently used RT-PCR methods require new primer combinations to study each variant that might affect splicing. Since MLPA is routinely used to detect large genomic deletions and successfully detected exon skipping events in Duchenne muscular dystrophy in cDNA, we performed a pilot study to evaluate its value for BRCA1 cDNA. The effect of puromycin, DNase I and two different DNA cleaning protocols were tested in the RNA analysis of lymphocyte cultures. We used two samples from unrelated families with two different BRCA1 exon deletion events, two healthy unrelated controls and six samples from hereditary breast/ovarian cancer syndrome (HBOC) patients without BRCA1/2 mutations. Using RNA treated with DNase I and cleaned in a column system from puromycin-treated fractions, we were able to identify the two BRCA1 deletions. Additional HBOC patients did not show additional splice events. However, we were not able to get reproducible results. Therefore, the cDNA-MLPA technique using kit BRCA1 P002 is in our hands currently not reliable enough for routine RNA analysis and needs further optimization.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ZNF331, Cancer Genetics Web: http://www.cancer-genetics.org/ZNF331.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999