CDC25A

Gene Summary

Gene:CDC25A; cell division cycle 25A
Aliases: CDC25A2
Location:3p21
Summary:CDC25A is a member of the CDC25 family of phosphatases. CDC25A is required for progression from G1 to the S phase of the cell cycle. It activates the cyclin-dependent kinase CDC2 by removing two phosphate groups. CDC25A is specifically degraded in response to DNA damage, which prevents cells with chromosomal abnormalities from progressing through cell division. CDC25A is an oncogene, although its exact role in oncogenesis has not been demonstrated. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:M-phase inducer phosphatase 1
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • HCT116 Cells
  • Chromosome 3
  • Mutation
  • Phosphorylation
  • RTPCR
  • Gene Expression Profiling
  • Cell Survival
  • DNA Primers
  • Apoptosis
  • Western Blotting
  • Antineoplastic Agents
  • Transcription
  • Proto-Oncogene Proteins c-myc
  • Cell Cycle Proteins
  • Signal Transduction
  • Breast Cancer
  • Cell Proliferation
  • Protein-Serine-Threonine Kinases
  • DNA Damage
  • Transfection
  • Cell Cycle
  • MicroRNAs
  • DNA Repair
  • Protein Kinases
  • Squamous Cell Carcinoma
  • Messenger RNA
  • S Phase
  • DNA-Binding Proteins
  • Down-Regulation
  • Neoplasm Proteins
  • Promoter Regions
  • Radiation, Ionizing
  • Oligonucleotide Array Sequence Analysis
  • CHEK2
  • siRNA
  • Cancer Gene Expression Regulation
  • Neoplastic Cell Transformation
  • Cell Division
  • Staurosporine
  • Ataxia Telangiectasia Mutated Proteins
Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CDC25A (cancer-related)

Liu Q, Dai SJ, Li H, et al.
Silencing of NUF2 inhibits tumor growth and induces apoptosis in human hepatocellular carcinomas.
Asian Pac J Cancer Prev. 2014; 15(20):8623-9 [PubMed] Related Publications
BACKGROUND: As an important component of the NDC80 kinetochore complex, NUF2 is essential for kinetochore-microtubule attachment and chromosome segregation. Previous studies also suggested its involvement in development of various kinds of human cancers, however, its expression and functions in human hepatocellular carcinoma (HCC) are still unclear.
MATERIALS AND METHODS: In the present study, we aimed to test the hypothesis that NUF2 is aberrant in human HCCs and associated with cell growth.
RESULTS: Our results showed significantly elevated expression of NUF2 in human HCC tissues compared to adjacent normal tissues, and high expression of NUF2 in HCC cell lines. Using lentivirus-mediated silencing of NUF2 in HepG2 human HCC cells, we found that NUF2 depletion markedly suppressed proliferation and colony formation capacity in vitro, and dramatically hampered tumor growth of xenografts in vivo. Moreover, NUF2 silencing could induce cell cycle arrest and trigger cell apoptosis. Additionally, altered levels of cell cycle and apoptosis related proteins including cyclin B1, Cdc25A, Cdc2, Bad and Bax were also observed.
CONCLUSIONS: In conclusion, these results demonstrate that NUF2 plays a critical role in the regulation of HCC cell proliferation and apoptosis, indicating that NUF2 may serve as a potential molecular target for therapeutic approaches.

Li M, Lu J, Zhang F, et al.
Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway.
Cancer Lett. 2014; 355(2):201-9 [PubMed] Related Publications
The transcriptional coactivator Yes-associated protein 1 (YAP1), a key regulator of cell proliferation and organ size in vertebrates, has been implicated in various malignancies. However, little is known about the expression and biological function of YAP1 in human gallbladder cancer (GBC). In this study we examined the clinical significance and biological functions of YAP1 in GBC and found that nuclear YAP1 and its target gene AXL were overexpressed in GBC tissues. We also observed a significant correlation between high YAP1 and AXL expression levels and worse prognosis. The depletion of YAP1 using lentivirus shRNAs significantly inhibited cell proliferation by inducing cell cycle arrest in S phase in concordance with the decrease of CDK2, CDC25A, and cyclin A, and resulted in increased cell apoptosis and invasive repression in GBC cell lines in vitro. Furthermore, knockdown of YAP1 also inhibited tumor growth in vivo. Additionally, we demonstrated that the activation of the AXL/MAPK pathway was involved in the oncogenic functions of YAP1 in GBC. These results demonstrated that YAP1 is a putative oncogene and represents a prognostic marker and potentially a novel therapeutic target for GBC.

Rizwani W, Schaal C, Kunigal S, et al.
Mammalian lysine histone demethylase KDM2A regulates E2F1-mediated gene transcription in breast cancer cells.
PLoS One. 2014; 9(7):e100888 [PubMed] Free Access to Full Article Related Publications
It is established that histone modifications like acetylation, methylation, phosphorylation and ubiquitination affect chromatin structure and modulate gene expression. Lysine methylation/demethylation on Histone H3 and H4 is known to affect transcription and is mediated by histone methyl transferases and histone demethylases. KDM2A/JHDM1A/FBXL11 is a JmjC-containing histone demethylase that targets mono- and dimethylated Lys36 residues of Histone H3; its function in breast cancer is not fully understood. Here we show that KDM2A is strongly expressed in myoepithelial cells (MEPC) in breast cancer tissues by immunohistochemistry. Ductal cells from ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) show positive staining for KDM2A, the expression decreases with disease progression to metastasis. Since breast MEPCs have tumor-suppressive and anti-angiogenic properties, we hypothesized that KDM2A could be contributing to some of these functions. Silencing KDM2A with small interfering RNAs demonstrated increased invasion and migration of breast cancer cells by suppressing a subset of matrix metalloproteinases (MMP-2, -9, -14 and -15), as seen by real-time PCR. HUVEC cells showed increased angiogenic tubule formation ability in the absence of KDM2A, with a concomitant increase in the expression of VEGF receptors, FLT-1 and KDR. KDM2A physically bound to both Rb and E2F1 in a cell cycle dependent manner and repressed E2F1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assays revealed that KDM2A associates with E2F1-regulated proliferative promoters CDC25A and TS in early G-phase and dissociates in S-phase. Further, KDM2A could also be detected on MMP9, 14 and 15 promoters, as well as promoters of FLT1 and KDR. KDM2A could suppress E2F1-mediated induction of these promoters in transient transfection experiments. These results suggest a regulatory role for KDM2A in breast cancer cell invasion and migration, through the regulation of E2F1 function.

Beyeler S, Joly S, Fries M, et al.
Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma.
Stem Cells. 2014; 32(10):2583-95 [PubMed] Related Publications
Glioblastomas (GB) are aggressive primary brain tumors. Helix-loop-helix (HLH, ID proteins) and basic HLH (bHLH, e.g., Olig2) proteins are transcription factors that regulate stem cell proliferation and differentiation throughout development and into adulthood. Their convergence on many oncogenic signaling pathways combined with the observation that their overexpression in GB correlates with poor clinical outcome identifies these transcription factors as promising therapeutic targets. Important dimerization partners of HLH/bHLH proteins are E proteins that are necessary for nuclear translocation and DNA binding. Here, we overexpressed a wild type or a dominant negative form of E47 (dnE47) that lacks its nuclear localization signal thus preventing nuclear translocation of bHLH proteins in long-term glioma cell lines and in glioma-initiating cell lines and analyzed the effects in vitro and in vivo. While overexpression of E47 was sufficient to induce apoptosis in absence of bHLH proteins, dnE47 was necessary to prevent nuclear translocation of Olig2 and to achieve similar proapoptotic responses. Transcriptional analyses revealed downregulation of the antiapoptotic gene BCL2L1 and the proproliferative gene CDC25A as underlying mechanisms. Overexpression of dnE47 in glioma-initiating cell lines with high HLH and bHLH protein levels reduced sphere formation capacities and expression levels of Nestin, BCL2L1, and CDC25A. Finally, the in vivo induction of dnE47 expression in established xenografts prolonged survival. In conclusion, our data introduce a novel approach to jointly neutralize HLH and bHLH transcriptional networks activities, and identify these transcription factors as potential targets in glioma.

Lv J, Ma L, Chen XL, et al.
Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3β/Cdc25A signaling pathway.
J Huazhong Univ Sci Technolog Med Sci. 2014; 34(3):363-9 [PubMed] Related Publications
LncRNAH19 has been implicated as having both oncogenic and tumor suppression properties in cancer. LncRNAH19 transcripts also serve as a precursor for miR-675. However, it is unknown whether LncRNAH19 and miR-675 are involved in the migration and invasion of hepatocellular carcinoma (HCC) cells. The purpose of this study was to investigate the effect and mechanism of LncRNAH19 and miR-675 on migration and invasion of HCC cells. The migration and invasion of HCC cells were measured by Transwell migration and invasion assays after transfection of HCC cells with miR-675 inhibitors and LncRNAH19siRNA. The levels of LncRNAH19 and miR-675 were detected by quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR), and the protein expression of AKT, GSK-3β and Cdc25A by Western blotting analysis. The expression levels of LncRNAH19 and miR-675 were higher in MHCC-97H cells than in L02, Huh-7 and HepG2 cells. Transwell migration assay revealed that the miR-675 inhibitor and LncRNAH19siRNA could significantly increase the migration of HCC cells (P<0.01) as compared with the control group. Transwell invasion assay demonstrated that the miR-675 inhibitor and LncRNAH19siRNA could significantly increase the invasion of HCC cells (P<0.01) as compared with the control group. Western blotting analysis showed that the expression levels of AKT and Cdc25A were significantly increased (P<0.05), and the expression level of GSK-3β was significantly decreased (P<0.05) after treatment with miR-675 inhibitors and LncRNAH19siRNA as compared with the control group. These findings suggested that inhibition of LncRNAH19 and miR-675 expression can promote migration and invasion of HCC cells via AKT/GSK-3β/Cdc25A signaling pathway.

Elias D, Vever H, Lænkholm AV, et al.
Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy.
Oncogene. 2015; 34(15):1919-27 [PubMed] Related Publications
To elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analyses and identified 366 genes with altered expression in four unique tamoxifen-resistant (TamR) cell lines vs the parental tamoxifen-sensitive MCF-7/S0.5 cell line. Most of these genes were functionally linked to cell proliferation, death and control of gene expression, and include FYN, PRKCA, ITPR1, DPYD, DACH1, LYN, GBP1 and PRLR. Treatment with FYN-specific small interfering RNA or a SRC family kinase inhibitor reduced cell growth of TamR cell lines while exerting no significant effect on MCF-7/S0.5 cells. Moreover, overexpression of FYN in parental tamoxifen-sensitive MCF-7/S0.5 cells resulted in reduced sensitivity to tamoxifen treatment, whereas knockdown of FYN in the FYN-overexpressing MCF-7/S0.5 cells restored sensitivity to tamoxifen, demonstrating growth- and survival-promoting function of FYN in MCF-7 cells. FYN knockdown in TamR cells led to reduced phosphorylation of 14-3-3 and Cdc25A, suggesting that FYN, by activation of important cell cycle-associated proteins, may overcome the anti-proliferative effects of tamoxifen. Evaluation of the subcellular localization of FYN in primary breast tumors from two cohorts of endocrine-treated ER+ breast cancer patients, one with advanced disease (N=47) and the other with early disease (N=76), showed that in the former, plasma membrane-associated FYN expression strongly correlated with longer progression-free survival (P<0.0002). Similarly, in early breast cancer patients, membrane-associated expression of FYN in the primary breast tumor was significantly associated with increased metastasis-free (P<0.04) and overall (P<0.004) survival independent of tumor size, grade or lymph node status. Our results indicate that FYN has an important role in tamoxifen resistance, and its subcellular localization in breast tumor cells may be an important novel biomarker of response to endocrine therapy in breast cancer.

Zeng G, Liu J, Chen H, et al.
Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells.
Oncol Rep. 2014; 31(6):2713-9 [PubMed] Related Publications
Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.

Zali H, Rezaei Tavirani M
Meningioma protein-protein interaction network.
Arch Iran Med. 2014; 17(4):262-72 [PubMed] Related Publications
BACKGROUND: Meningioma is one of the most common central nervous system tumors that derived from meningothelial (arachnoid cap) cells. This paper identified the network-based Protein-Protein Interactions (PPI) for meningioma relative to healthy control.
METHODS: Gene expression data including 384 gene or protein names extracted from a number of beforehand investigations.
RESULTS: Out of these 384 proteins, 176 were found to be exclusively expressed in meningiomas and 208 proteins were down-regulated. The networks of related differentially expressed genes were explored using cytoscape and the PPI analysis methods such as MCODE and ClueGO. Results analysis introduced a number of hub proteins and 27 clusters (protein complex) with distinctive seed genes. Identified ClueGO Pathways based on subnetworks mined by MCODE composed of positive regulation in RBC homeostasis, dysregulation of transport from ER to Golgi, disruption regulation of cell cycle and antigen processing and presentation of exogenous peptide antigen and neutralization of exogenous dsRNA. Combination of over expression of TCEA1, UBE2E1, XRCC5, IFIT1, IFIT-3, MCM2, and MCM7 and under expression of CDC25A, SEC31A, and CDK6 can serve as diagnostic biomarker panel for meningiomas.
CONCLUSION: These introduced network-based biomarkers for the meningioma patterns may be helpful in diagnosis, prognosis and treatment processes however biomarker validation is necessary.

Stolfi C, De Simone V, Colantoni A, et al.
A functional role for Smad7 in sustaining colon cancer cell growth and survival.
Cell Death Dis. 2014; 5:e1073 [PubMed] Free Access to Full Article Related Publications
Initially identified as an inhibitor of transforming growth factor (TGF)-β mainly owing to its ability to bind TGF-β receptor type I and abrogate TGF-β-driven signaling, Smad7 can interact with additional intracellular proteins and regulate TGF-β-independent pathways, thus having a key role in the control of neoplastic processes in various organs. Genome-wide association studies have shown that common alleles of Smad7 influence the risk of colorectal cancer (CRC), even though the contribution of Smad7 in colon carcinogenesis is not fully understood. In this study, we assessed the expression and role of Smad7 in human and mouse models of sporadic CRC. We document a significant increase of Smad7 in human CRC relative to the surrounding nontumor tissues and show that silencing of Smad7 inhibits the growth of CRC cell lines both in vitro and in vivo after transplantation into immunodeficient mice. Knockdown of Smad7 results in enhanced phosphorylation of the cyclin-dependent kinase (CDK)2, accumulation of CRC cells in S phase and enhanced cell death. Smad7-deficient CRC cells have lower levels of CDC25A, a phosphatase that dephosphorylates CDK2, and hyperphosphorylated eukaryotic initiation factor 2 (eIF2)α, a negative regulator of CDC25 protein translation. Consistently, knockdown of Smad7 associates with inactivation of eIF2α, lower CDC25A expression and diminished fraction of proliferating cells in human CRC explants, and reduces the number of intestinal tumors in Apc(min/+) mice. Altogether, these data support a role for Smad7 in sustaining colon tumorigenesis.

Leu WJ, Chang HS, Chan SH, et al.
Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle.
PLoS One. 2014; 9(1):e87323 [PubMed] Free Access to Full Article Related Publications
In the past decade, there has been a profound increase in the number of studies revealing that cardenolide glycosides display inhibitory activity on the growth of human cancer cells. The use of potential cardenolide glycosides may be a worthwhile approach in anticancer research. Reevesioside A, a cardenolide glycoside isolated from the root of Reevesia formosana, displayed potent anti-proliferative activity against human hormone-refractory prostate cancers. A good correlation (r² = 0.98) between the expression of Na⁺/K⁺-ATPase α₃ subunit and anti-proliferative activity suggested the critical role of the α₃ subunit. Reevesioside A induced G1 arrest of the cell cycle and subsequent apoptosis in a thymidine block-mediated synchronization model. The data were supported by the down-regulation of several related cell cycle regulators, including cyclin D1, cyclin E and CDC25A. Reevesioside A also caused a profound decrease of RB phosphorylation, leading to an increased association between RB and E2F1 and the subsequent suppression of E2F1 activity. The protein and mRNA levels of c-myc, which can activate expression of many downstream cell cycle regulators, were dramatically inhibited by reevesioside A. Transient transfection of c-myc inhibited the down-regulation of both cyclin D1 and cyclin E protein expression to reevesioside A action, suggesting that c-myc functioned as an upstream regulator. Flow cytometric analysis of JC-1 staining demonstrated that reevesioside A also induced the significant loss of mitochondrial membrane potential. In summary, the data suggest that reevesioside A inhibits c-myc expression and down-regulates the expression of CDC25A, cyclin D1 and cyclin E, leading to a profound decrease of RB phosphorylation. G1 arrest is, therefore, induced through E2F1 suppression. Consequently, reevesioside A causes mitochondrial damage and an ultimate apoptosis in human hormone-refractory prostate cancer cells.

Sengupta S, Jana S, Bhattacharyya A
TGF-β-Smad2 dependent activation of CDC 25A plays an important role in cell proliferation through NFAT activation in metastatic breast cancer cells.
Cell Signal. 2014; 26(2):240-52 [PubMed] Related Publications
In late stages of cancer, TGF-β promotes the metastasis process by enhancing the invasiveness of cancer cells and inducing the epithelial-to-mesenchymal transition (EMT), a process that is concomitantly associated with breast cancer metastasis. Metastasis comprises of multiple steps with the regulation of complex network of signaling. Metastasis is associated with both the EMT and cell proliferation, but yet it has not been clearly distinguished how the balance between the cell proliferation and EMT is maintained together. Recently, it has been accounted that a transcription factor, NFAT has an important role for switching tumor suppressive to progressive effect of TGF-β and NFAT has a role in TGF-β mediated EMT by regulating N-cadherin. CDC 25A phosphatase, an important cell cycle regulator is overexpressed in breast cancer. Our results demonstrate that TGF-β regulating the CDC 25A in a Smad2 dependent way, translocates NFAT to nucleus and NFAT in co-operation with Smad2 promotes the tumor progression by upregulating the CDK2, CDK4, and cyclin E. This result signifies that TGF-β by regulating NFAT in different ways maintains the balance between EMT and cell proliferation mechanism concurrently during the late stage of breast cancer.

Masyuk TV, Lee SO, Radtke BN, et al.
Centrosomal abnormalities characterize human and rodent cystic cholangiocytes and are associated with Cdc25A overexpression.
Am J Pathol. 2014; 184(1):110-21 [PubMed] Free Access to Full Article Related Publications
Hepatic cystogenesis in polycystic liver diseases is associated with abnormalities of cholangiocyte cilia. Given the crucial association between cilia and centrosomes, we tested the hypothesis that centrosomal defects occur in cystic cholangiocytes of rodents (Pkd2(WS25/-) mice and PCK rats) and of patients with polycystic liver diseases, contributing to disturbed ciliogenesis and cyst formation. We examined centrosomal cytoarchitecture in control and cystic cholangiocytes, the effects of centrosomal abnormalities on ciliogenesis, and the role of the cell-cycle regulator Cdc25A in centrosomal defects by depleting cholangiocytes of Cdc25A in vitro and in vivo and evaluating centrosome morphology, cell-cycle progression, proliferation, ciliogenesis, and cystogenesis. The cystic cholangiocytes had atypical centrosome positioning, supernumerary centrosomes, multipolar spindles, and extra cilia. Structurally aberrant cilia were present in cystic cholangiocytes during ciliogenesis. Depletion of Cdc25A resulted in i) a decreased number of centrosomes and multiciliated cholangiocytes, ii) an increased fraction of ciliated cholangiocytes with longer cilia, iii) a decreased proportion of cholangiocytes in G1/G0 and S phases of the cell cycle, iv) decreased cell proliferation, and v) reduced cyst growth in vitro and in vivo. Our data support the hypothesis that centrosomal abnormalities in cholangiocytes are associated with aberrant ciliogenesis and that accelerated cystogenesis is likely due to overexpression of Cdc25A, providing additional evidence that pharmacological targeting of Cdc25A has therapeutic potential in polycystic liver diseases.

Trautmann M, Sievers E, Aretz S, et al.
SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma.
Oncogene. 2014; 33(42):5006-16 [PubMed] Related Publications
Synovial sarcoma is a high-grade soft tissue malignancy characterized by a specific reciprocal translocation t(X;18), which leads to the fusion of the SS18 (SYT) gene to one of three SSX genes (SSX1, SSX2 or SSX4). The resulting chimeric SS18-SSX protein is suggested to act as an oncogenic transcriptional regulator. Despite multimodal therapeutic approaches, metastatic disease is often lethal and the development of novel targeted therapeutic strategies is required. Several expression-profiling studies identified distinct gene expression signatures, implying a consistent role of Wnt/β-catenin signaling in synovial sarcoma tumorigenesis. Here we investigate the functional and therapeutic relevance of Wnt/β-catenin pathway activation in vitro and in vivo. Immunohistochemical analyses of nuclear β-catenin and Wnt downstream targets revealed activation of canonical Wnt signaling in a significant subset of 30 primary synovial sarcoma specimens. Functional aspects of Wnt signaling including dependence of Tcf/β-catenin complex activity on the SS18-SSX fusion proteins were analyzed. Efficient SS18-SSX-dependent activation of the Tcf/β-catenin transcriptional complex was confirmed by TOPflash reporter luciferase assays and immunoblotting. In five human synovial sarcoma cell lines, inhibition of the Tcf/β-catenin protein-protein interaction significantly blocked the canonical Wnt/β-catenin signaling cascade, accompanied by the effective downregulation of Wnt targets (AXIN2, CDC25A, c-MYC, DKK1, CyclinD1 and Survivin) and the specific suppression of cell viability associated with the induction of apoptosis. In SYO-1 synovial sarcoma xenografts, administration of small molecule Tcf/β-catenin complex inhibitors significantly reduced tumor growth, associated with diminished AXIN2 protein levels. In summary, SS18-SSX-induced Wnt/β-catenin signaling appears to be of crucial biological importance in synovial sarcoma tumorigenesis and progression, representing a potential molecular target for the development of novel therapeutic strategies.

Neumann J, Boerries M, Köhler R, et al.
The natural anticancer compound rocaglamide selectively inhibits the G1-S-phase transition in cancer cells through the ATM/ATR-mediated Chk1/2 cell cycle checkpoints.
Int J Cancer. 2014; 134(8):1991-2002 [PubMed] Related Publications
Targeting the cancer cell cycle machinery is an important strategy for cancer treatment. Cdc25A is an essential regulator of cycle progression and checkpoint response. Over-expression of Cdc25A occurs often in human cancers. In this study, we show that Rocaglamide-A (Roc-A), a natural anticancer compound isolated from the medicinal plant Aglaia, induces a rapid phosphorylation of Cdc25A and its subsequent degradation and, thereby, blocks cell cycle progression of tumor cells at the G1-S phase. Roc-A has previously been shown to inhibit tumor proliferation by blocking protein synthesis. In this study, we demonstrate that besides the translation inhibition Roc-A can induce a rapid degradation of Cdc25A by activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway. However, Roc-A has no influence on cell cycle progression in proliferating normal T lymphocytes. Investigation of the molecular basis of tumor selectivity of Roc-A by a time-resolved microarray analysis of leukemic vs. proliferating normal T lymphocytes revealed that Roc-A activates different sets of genes in tumor cells compared with normal cells. In particular, Roc-A selectively stimulates a set of genes responsive to DNA replication stress in leukemic but not in normal T lymphocytes. These findings further support the development of Rocaglamide for antitumor therapy.

Guo SL, Ye H, Teng Y, et al.
Akt-p53-miR-365-cyclin D1/cdc25A axis contributes to gastric tumorigenesis induced by PTEN deficiency.
Nat Commun. 2013; 4:2544 [PubMed] Free Access to Full Article Related Publications
Although PTEN/Akt signaling is frequently deregulated in human gastric cancers, the in vivo causal link between its dysregulation and gastric tumorigenesis has not been established. Here we show that inactivation of PTEN in mouse gastric epithelium initiates spontaneous carcinogenesis with complete penetrance by 2 months of age. Mechanistically, activation of Akt suppresses the abundance of p53, leading to decreased transcription of miR-365, thus causing upregulation of cyclin D1 and cdc25A, which promotes gastric cell proliferation. Importantly, genetic ablation of Akt1 restores miR-365 expression and effectively rescues gastric tumorigenesis in PTEN-mutant mice. Moreover, orthotopic restoration of miR-365 represses PTEN-deficient-induced hyperplasia. In human gastric cancer tissues, miR-365 reduction correlates with poorly differentiated histology, deep invasion and advanced stage, as well as the deregulation of PTEN, phosphorylated Akt, p53, cyclin D1 and cdc25A. These data demonstrate that the PTEN-Akt-p53-miR-365-cyclin D1/cdc25A axis serves as a new mechanism underlying gastric tumorigenesis, providing potential new therapeutic targets.

Gubanova E, Issaeva N, Gokturk C, et al.
SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways.
Cell Cycle. 2013; 12(24):3770-80 [PubMed] Free Access to Full Article Related Publications
The DNA damage response is coordinated by phosphatidylinositol 3-kinase-related kinases, ATM, ATR, and DNA-PK. SMG-1 is the least studied stress-responsive member of this family. Here, we show that SMG-1 regulates the G 1/S checkpoint through both a p53-dependent, and a p53-independent pathway. We identify Cdc25A as a new SMG-1 substrate, and show that cells depleted of SMG-1 exhibit prolonged Cdc25A stability, failing to inactivate CDK2 in response to radiation. Given an increased tumor growth following depletion of SMG-1, our data demonstrate a novel role for SMG-1 in regulating Cdc25A and suppressing oncogenic CDK2 driven proliferation, confirming SMG-1 as a tumor suppressor.

Mattarocci S, Abbruzzese C, Mileo AM, et al.
Identification of pivotal cellular factors involved in HPV-induced dysplastic and neoplastic cervical pathologies.
J Cell Physiol. 2014; 229(4):463-70 [PubMed] Related Publications
Cervical carcinoma represents the paradigm of virus-induced cancers, where virtually all cervical cancers come from previous "high-risk" HPV infection. The persistent expression of the HPV viral oncoproteins E6 and E7 is responsible for the reprogramming of fundamental cellular functions in the host cell, thus generating a noticeable, yet only partially explored, imbalance in protein molecular networks and cell signaling pathways. Eighty-eight cellular factors, identified as HPV direct or surrogate targets, were chosen and monitored in a retrospective analysis for their mRNA expression in HPV-induced cervical lesions, from dysplasia to cancer. Real-time quantitative PCR (qPCR) was performed by using formalin-fixed, paraffin embedded archival samples. Gene expression analysis identified 40 genes significantly modulated in LSIL, HSIL, and squamous cervical carcinoma. Interestingly, among these, the expression level of a panel of four genes, TOP2A, CTNNB1, PFKM, and GSN, was able to distinguish between normal tissues and cervical carcinomas. Immunohistochemistry was also done to assess protein expression of two genes among those up-regulated during the transition between dysplasia and carcinoma, namely E2F1 and CDC25A, and their correlation with clinical parameters. Besides the possibility of significantly enhancing the use of some of these factors in diagnostic or prognostic procedures, these data clearly outline specific pathways, and thus key biological processes, altered in cervical dysplasia and carcinoma. Deeper insight on how these molecular mechanisms work may help widen the spectrum of novel innovative approaches to these virus-induced cell pathologies.

Bertero T, Bourget-Ponzio I, Puissant A, et al.
Tumor suppressor function of miR-483-3p on squamous cell carcinomas due to its pro-apoptotic properties.
Cell Cycle. 2013; 12(14):2183-93 [PubMed] Free Access to Full Article Related Publications
The frequent alteration of miRNA expression in many cancers, together with our recent reports showing a robust accumulation of miR-483-3p at the final stage of skin wound healing, and targeting of CDC25A leading to an arrest of keratinocyte proliferation, led us to hypothesize that miR-483-3p could also be endowed with antitumoral properties. We tested that hypothesis by documenting the in vitro and in vivo impacts of miR-483-3p in squamous cell carcinoma (SCC) cells. miR-483-3p sensitized SCC cells to serum deprivation- and drug-induced apoptosis, thus exerting potent tumor suppressor activities. Its pro-apoptotic activity was mediated by a direct targeting of several anti-apoptotic genes, such as API5, BIRC5, and RAN. Interestingly, an in vivo delivery of miR-483-3p into subcutaneous SCC xenografts significantly hampered tumor growth. This effect was explained by an inhibition of cell proliferation and an increase of apoptosis. This argues for its further use as an adjuvant in the many instances of cancers characterized by a downregulation of miR-483-3p.

Zhou Z, Wang C, Liu H, et al.
Cadmium induced cell apoptosis, DNA damage, decreased DNA repair capacity, and genomic instability during malignant transformation of human bronchial epithelial cells.
Int J Med Sci. 2013; 10(11):1485-96 [PubMed] Free Access to Full Article Related Publications
Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mechanisms of DNA damage in cadmium-induced malignant transformation of human bronchial epithelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells. These cells consisted of untreated control cells, cells in the fifth, 15th, and 35th passage of cadmium-treated cells, and tumorigenic cells from nude mice using flow cytometry, Hoechst 33258 staining, comet assay, quantitative real-time polymerase chain reaction (PCR), Western blot analysis, random amplified polymorphic DNA (RAPD)-PCR, and sequence analysis. We observed a progressive increase in cell population of the G0/G1 phase of the cell cycle and the rate of apoptosis, DNA damage, and cadmium-induced apoptotic morphological changes in cerebral cortical neurons during malignant transformation. Gene expression analysis revealed increased expression of cell proliferation (PCNA), cell cycle (CyclinD1), pro-apoptotic activity (Bax), and DNA damage of the checkpoint genes ATM, ATR, Chk1, Chk2, Cdc25A. Decreased expression of the anti-apoptotic gene Bcl-2 and the DNA repair genes hMSH2, hMLH1, ERCC1, ERCC2, and hOGG1 was observed. RAPD-PCR revealed genomic instability in cadmium-exposed cells, and sequence analysis showed mutation of exons in hMSH2, ERCC1, XRCC1, and hOGG1 in tumorigenic cells. This study suggests that Cadmium can increase cell apoptosis and DNA damage, decrease DNA repair capacity, and cause mutations, and genomic instability leading to malignant transformation. This process could be a viable mechanism for cadmium-induced cancers.

Bian J, Li B, Zeng X, et al.
Mutation of TGF-β receptor II facilitates human bladder cancer progression through altered TGF-β1 signaling pathway.
Int J Oncol. 2013; 43(5):1549-59 [PubMed] Related Publications
Tumor cells commonly adapt survival strategies by downregulation or mutational inactivation of TGF-β receptors thereby reversing TGF-β1-mediated growth arrest. However, TGF-β1-triggered signaling also has a protumor effect through promotion of tumor cell migration. The mechanism(s) through which malignant cells reconcile this conflict by avoiding growth arrest, but strengthening migration remains largely unclear. TGF-βRII was overexpressed in the bladder cancer cell line T24, concomitant with point mutations, especially the Glu269 to Lys mutation (G → A). Whilst leaving Smad2/3 binding unaffected, TGF-βRII mutations resulted in the unaffected tumor cell growth and also enhanced cell mobility by TGF-β1 engagement. Such phenomena are perhaps partially explained by the mutated TGF-βRII pathway deregulating the p15 and Cdc25A genes that are important to cell proliferation and CUTL1 gene relevant to motility. On the other hand, transfecting recombinant TGF-βRII-Fc vectors or smad2/3 siRNA blocked such abnormal gene expressions. Clinically, such G → A mutations were also found in 18 patients (n=46) with bladder cancer. Comparing the clinical and pathologic characteristics, the pathologic T category (χ2 trend = 7.404, P<0.01) and tumor grade (χ2 trend = 9.127, P<0.01) tended to increase in the G → A mutated group (TGF-βRII point-mutated group). These findings provide new insights into how TGF-β1 signaling is tailored during tumorigenesis and new information into the current TGF-β1-based therapeutic strategies, especially in bladder cancer patient treatment.

Ajeawung NF, Faure R, Jones C, Kamnasaran D
Preclinical evaluation of dipotassium bisperoxo (picolinato) oxovanadate V for the treatment of pediatric low-grade gliomas.
Future Oncol. 2013; 9(8):1215-29 [PubMed] Related Publications
AIM: The treatment of pediatric low-grade gliomas with current treatment modalities still remains ineffective among a subset of patients; hence, justifying the need to further investigate more effective therapies. Dipotassium bisperoxo (picolinato) oxovanadate V (Bpv[pic]), is a derivative of the trace metal vanadium and a potent inhibitor of protein tyrosine phosphatases, which are important mediators of oncogenic and tumor suppressive activities in cancers. In this study, we undertook a preclinical evaluation of the antineoplastic functions of Bpv(pic) in the treatment of pediatric low-grade gliomas.
MATERIALS & METHODS: We utilized pediatric low-grade glioma cell lines (Res186, Res259 and R286) in a wide variety of cancer assays to determine whether Bpv(pic) can abrogate the neoplastic properties of these cells.
RESULTS: Our preclinical evaluation of the antineoplastic properties of Bpv(pic) in pediatric low-grade gliomas reveals a significant dose-dependent decrease in cell viability as a consequence of decreased proliferation and sustained induction of growth arrest and apoptosis. Bpv(pic) significantly decreases cell migration/invasion and anchorage-independent growth in soft agarose. Within cells, Bpv(pic) functions by attenuating CDC25A activity, and by decreasing the expression of multiple protein tyrosine phosphatases, DNA repair genes, microtubule-associated genes, such as PLK1, AURKA and HDAC6, and conversely augmenting the expression of proapoptotic mediators such as BAK, AIFM and CTSL1.
CONCLUSION: Collectively, our data strongly suggest novel evidence of Bpv(pic) being a potent antineoplastic drug and a suitable alternative for the treatment of pediatric low-grade gliomas.

Zekri A, Ghaffari SH, Yousefi M, et al.
Autocrine human growth hormone increases sensitivity of mammary carcinoma cell to arsenic trioxide-induced apoptosis.
Mol Cell Endocrinol. 2013; 377(1-2):84-92 [PubMed] Related Publications
Human growth hormone (hGH) has been increasingly implicated in a variety of cancers; its up-regulation is observed in breast cancer and correlates with a poor outcome. Autocrine hGH promotes mammary carcinoma cell survival, proliferation, immortalization; it confers an invasive phenotype as a result of an epithelial-mesenchymal transition and contributes to chemoresistance and radioresistance. Arsenic trioxide (ATO) is being successfully used as a first and second line therapy for the treatment of patients with acute promyelocytic leukemia. It also inhibits tumor cell growth and induces apoptosis in a broad range of solid tumors. In the present study, we investigated the effect of hGH on sensitivity of a mammary adenocarcinoma cell to ATO, using a stable hGH-transfectant MCF-7 cell line, MCF7-hGH. Our results demonstrated for the first time that the overexpression of hGH increased sensitivity of the breast cancer cell line MCF-7 to ATO through apoptotic and anti-proliferative mechanisms. The effect of ATO on the transcriptional level of genes involved in survival (Bcl-2, Bax and Survivin), self-sufficiency in growth signals (c-Myc, ARF, Cdc25A, p53 and Bax), immortalization (hTERT) and invasion and metastasis (MMP-2 and MMP-9, uPA and uPAR and E-cadherin) was more pronounced in MCF7-hGH compared with its parental MCF-7 line. Our study may highlight the potential application of ATO for the treatment of patients with breast cancer, especially in those who have metastatic and chemoresistant tumor phenotype possibly due to the over expression of hGH.

Pang CY, Chiu SC, Harn HJ, et al.
Proteomic-based identification of multiple pathways underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells.
Food Chem Toxicol. 2013; 59:281-8 [PubMed] Related Publications
Although numerous studies have shown the cancer-preventive properties of butylidenephthalide (BP), there is little report of BP affecting human prostate cancer cells. In the present study, proteomic-based approaches were used to elucidate the anticancer mechanism of BP in LNCaP human prostate cancer cells. BP treatment decreased the viability of LNCaP human prostate cancer cells in a concentration- and time-dependent manner, which was correlated with G0/G1 phase cell cycle arrest. Increased cell cycle arrest was associated with a decrease in the level of CCND1, CDK2, and PCNA proteins and an increase in the level of CDKN2A, CDKN1A, and SFN proteins. Proteomic studies revealed that among 48 differentially expressed proteins, 25 proteins were down-regulated and 23 proteins were up-regulated and these proteins fall into one large protein protein interaction network. Among these proteins, FAS, AIFM1, BIK, CYCS, SFN, PPP2R1A, CALR, HSPA5, DDIT3, and ERN1 are apoptosis and endoplasmic reticulum (ER) stress associated proteins. Proteomic data suggested that multiple signaling pathways including FAS-dependent pathway, mitochondrial pathway, and ER stress pathway are involved in the apoptosis induced by BP.

Schmidt J, Braggio E, Kortuem KM, et al.
Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276.
Leukemia. 2013; 27(12):2357-65 [PubMed] Free Access to Full Article Related Publications
RNA interference screening identified XPO1 (exportin 1) among the 55 most vulnerable targets in multiple myeloma (MM). XPO1 encodes CRM1, a nuclear export protein. XPO1 expression increases with MM disease progression. Patients with MM have a higher expression of XPO1 compared with normal plasma cells (P<0.04) and to patients with monoclonal gammopathy of undetermined significance/smoldering MM (P<0.0001). The highest XPO1 level was found in human MM cell lines (HMCLs). A selective inhibitor of nuclear export compound KPT-276 specifically and irreversibly inhibits the nuclear export function of XPO1. The viability of 12 HMCLs treated with KTP-276 was significantly reduced. KPT-276 also actively induced apoptosis in primary MM patient samples. In gene expression analyses, two genes of probable relevance were dysregulated by KPT-276: cell division cycle 25 homolog A (CDC25A) and bromodomain-containing protein 4 (BRD4), both of which are associated with c-MYC pathway. Western blotting and reverse transcription-PCR confirm that c-MYC, CDC25A and BRD4 are all downregulated after treatment with KPT-276. KPT-276 reduced monoclonal spikes in the Vk*MYC transgenic MM mouse model, and inhibited tumor growth in a xenograft MM mouse model. A phase I clinical trial of an analog of KPT-276 is ongoing in hematological malignancies including MM.

Liu Y, Gao F, Jiang H, et al.
Induction of DNA damage and ATF3 by retigeric acid B, a novel topoisomerase II inhibitor, promotes apoptosis in prostate cancer cells.
Cancer Lett. 2013; 337(1):66-76 [PubMed] Related Publications
Retigeric acid B (RB) has been reported to exhibit its anti-tumor activity in vitro and in vivo. Here, we found that RB significantly inhibited activity of topoisomerase IIα (Topo IIα), leading to remarkable DNA damage in prostate cancer (PCa) cells as evidenced by a strong induction of γH2AX and DNA fragmentation. Activation of ATM and ATR sequentially led to induction of phospho-Chk1/2 and phospho-Cdc25 in response to RB. Blockade of ATM/ATR signaling resulted in the attenuation of RB-induced γH2AX, and partially rescued RB-mediated cell death. RB treatment also resulted in inactivation of DNA repair proteins such as phospho-BRCA1, impairment of HR, and NHEJ repair as indicated by DNA end-joining assays. Meanwhile, a stress-responsive gene activating transcription factor 3 (ATF3) was noted for its predominant expression in response to RB-induced DNA damage. Knockdown of ATF3 inhibited the RB-induced expression changes of cell cycle- and apoptosis-related genes such as DR5, DDIT4, CDC25A, GADD45A, and partially blocked RB-mediated inhibition on cell proliferation and induction of apoptosis, suggesting the crucial involvement of ATF3 in this event. Microarray data displayed that RB caused changes of genes required for damaged-DNA binding and repair, as well as ATF3 and its target genes. Our data firstly demonstrated that RB was a novel DNA Topo II inhibitor and triggered cell death by inducing DNA damage and stress-response, suggesting a promising anticancer agent.

Zhang Z, Wang CZ, Du GJ, et al.
Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.
Int J Oncol. 2013; 43(1):289-96 [PubMed] Free Access to Full Article Related Publications
Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

Maiti GP, Mondal P, Mukherjee N, et al.
Overexpression of EGFR in head and neck squamous cell carcinoma is associated with inactivation of SH3GL2 and CDC25A genes.
PLoS One. 2013; 8(5):e63440 [PubMed] Free Access to Full Article Related Publications
The aim of this study is to understand the mechanism of EGFR overexpression in head and neck squamous cell carcinoma (HNSCC). For this reason, expression/mutation of EGFR were analyzed in 30 dysplastic head and neck lesions and 148 HNSCC samples of Indian patients along with 3 HNSCC cell lines. In addition, deletion/methylation/mutation/expression of SH3GL2 (associated with EGFR degradation) and CDC25A (associated with dephosphorylation of EGFR) were analyzed in the same set of samples. Our study revealed high frequency of EGFR overexpression (66-84%), low frequency of gene amplification (10-32.5%) and absence of functional mutation in the dysplastic lesions and HNSCC samples. No correlation was found between protein overexpression and mRNA expression/gene amplification status of EGFR. On the other hand, frequent alterations (deletion/methylation) of SH3GL2 (63-77%) and CDC25A (37-64%) were seen in the dysplastic and HNSCC samples. Two novel single nucleotide polymorphism (SNPs) were found in the promoter region of SH3GL2. Reduced expression of these genes showed concordance with their alterations. Overexpression of EGFR and p-EGFR were significantly associated with reduced expression and alterations of SH3GL2 and CDC25A respectively. In-vitro demethylation experiment by 5-aza-2'-deoxycytidine (5-aza-dC) showed upregulation of SH3GL2 and CDC25A and downregulation of EGFR expression in Hep2 cell line. Poor patient outcome was predicted in the cases with alterations of SH3GL2 and CDC25A in presence of human papilloma virus (HPV) infection. Also, low SH3GL2 and high EGFR expression was a predictor of poor patient survival. Thus, our data suggests that overexpression of EGFR due to its reduced degradation and dephosphorylation is needed for development of HNSCC.

Ito K, Maruyama Z, Sakai A, et al.
Overexpression of Cdk6 and Ccnd1 in chondrocytes inhibited chondrocyte maturation and caused p53-dependent apoptosis without enhancing proliferation.
Oncogene. 2014; 33(14):1862-71 [PubMed] Related Publications
Cell proliferation and differentiation are closely coupled. However, we previously showed that overexpression of cyclin-dependent kinase (Cdk6) blocks chondrocyte differentiation without affecting cell-cycle progression in vitro. To investigate whether Cdk6 inhibits chondrocyte differentiation in vivo, we generated chondrocyte-specific Cdk6 transgenic mice using Col2a1 promoter. Unexpectedly, differentiation and cell-cycle progression of chondrocytes in the Cdk6 transgenic mice were similar to those in wild-type mice. Then, we generated chondrocyte-specific Ccnd1 transgenic mice and Cdk6/Ccnd1 double transgenic mice to investigate the possibility that Cdk6 inhibits chondrocyte differentiation through E2f activation. Bromodeoxyuridine (BrdU)-positive chondrocytes and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive chondrocytes were increased in number, and chondrocyte maturation was inhibited only in Cdk6/Ccnd1 transgenic mice (K6(H)/D1(H) mice), which showed dwarfism. Retinoblastoma protein (pRb) was highly phosphorylated but p107 was upregulated, and the expression of E2f target genes was dysregulated as shown by upregulation of Cdc6 but downregulation of cyclin E, dihydrofolate reductase (dhfr), Cdc25a and B-Myb in chondrocytes of K6(H)/D1(H) mice. Similarly, overexpression of Cdk6/Ccnd1 in a chondrogenic cell line ATDC5 highly phosphorylated pRb, upregulated p107, induced apoptosis, upregulated Cdc6 and downregulated cyclin E, dhfr and B-Myb and p107 small interfering RNA reversed the expression of downregulated genes. Further, introduction of kinase-negative Cdk6 and cyclin D1 abolished all effects by Cdk6/cyclin D1 in ATDC5 cells, indicating the requirement of the kinase activity on these effects. p53 deletion partially restored the size of the skeleton and almost completely rescued chondrocyte apoptosis, but failed to enhance chondrocyte proliferation in K6(H)/D1(H) mice. These findings indicated that Cdk6/Ccnd1 overexpression inhibited chondrocyte maturation and enhanced G1/S cell-cycle transition by phosphorylating pRb, but the chondrocytes failed to accomplish the cell cycle, and underwent p53-dependent apoptosis probably due to the dysregulation of E2f target genes. Our findings also indicated that p53 deletion in addition to the inactivation of Rb was not sufficient to accelerate chondrocyte proliferation, suggesting the resistance of chondrocytes to sarcomagenesis.

Furuta M, Kozaki K, Tanimoto K, et al.
The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma.
PLoS One. 2013; 8(3):e60155 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression and commonly deregulated in carcinogenesis. To explore functionally crucial tumor-suppressive (TS)-miRNAs in hepatocellular carcinoma (HCC), we performed integrative function- and expression-based screenings of TS-miRNAs in six HCC cell lines. The screenings identified seven miRNAs, which showed growth-suppressive activities through the overexpression of each miRNA and were endogenously downregulated in HCC cell lines. Further expression analyses using a large panel of HCC cell lines and primary tumors demonstrated four miRNAs, miR-101, -195, -378 and -497, as candidate TS-miRNAs frequently silenced in HCCs. Among them, two clustered miRNAs miR-195 and miR-497 showed significant growth-suppressive activity with induction of G1 arrest. Comprehensive exploration of their targets using Argonute2-immunoprecipitation-deep-sequencing (Ago2-IP-seq) and genome-wide expression profiling after their overexpression followed by pathway analysis, revealed a significant enrichment of cell cycle regulators. Among the candidates, we successfully identified CCNE1, CDC25A, CCND3, CDK4, and BTRC as direct targets for miR-497 and miR-195. Moreover, target genes frequently upregulated in HCC in a tumor-specific manner, such as CDK6, CCNE1, CDC25A and CDK4, showed an inverse correlation in the expression of miR-195 and miR-497, and their targets. These results suggest the molecular pathway regulating cell cycle progression to be integrally altered by downregulation of miR-195 and miR-497 expression, leading to the aberrant cell proliferation in hepatocarcinogenesis.

Zhan M, Qu Q, Wang G, et al.
Let-7c inhibits NSCLC cell proliferation by targeting HOXA1.
Asian Pac J Cancer Prev. 2013; 14(1):387-92 [PubMed] Related Publications
OBJECTIVE: The aim of the present study was to explore mechanisms by which let-7c suppresses NSCLC cell proliferation.
METHODS: The expression level of let-7c was quantified by qRT-PCR. A549 and H1299 cells were transfected with let-7c mimics to restore the expression of let-7c. The effects of let-7c were then assessed by cell proliferation, colony formation and cell cycle assay. Mouse experiments were used to confirm the effect of let-7c on tumorigenicity in vivo. Luciferase reporter assays and Western blotting were performed to identify target genes for let-7c.
RESULTS: HOXA1 was identified as a novel target of let-7c. MTS, colony formation and flow cytometry assays demonstrated that forced expression of let-7c inhibited NSCLC cell proliferation by inducing G1 arrest in vitro, consistent with inhibitory effects induced by knockdown of HOXA1. Mouse experiments demonstrated that let-7c expression suppressed tumorigenesis. Furthermore, we found that let-7c could regulate the expression of HOXA1 downstream effectors CCND1, CDC25A and CDK2.
CONCLUSIONS: Collectively, these results demonstrate let-7c inhibits NSCLC cell proliferation and tumorigenesis by partial direct targeting of the HOXA1 pathway, which suggests that restoration of let-7c expression may thus offer a potential therapeutic intervention strategy for NSCLC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CDC25A, Cancer Genetics Web: http://www.cancer-genetics.org/CDC25A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999