Gene Summary

Gene:CIITA; class II major histocompatibility complex transactivator
Summary:This gene encodes a protein with an acidic transcriptional activation domain, 4 LRRs (leucine-rich repeats) and a GTP binding domain. The protein is located in the nucleus and acts as a positive regulator of class II major histocompatibility complex gene transcription, and is referred to as the "master control factor" for the expression of these genes. The protein also binds GTP and uses GTP binding to facilitate its own transport into the nucleus. Once in the nucleus it does not bind DNA but rather uses an intrinsic acetyltransferase (AT) activity to act in a coactivator-like fashion. Mutations in this gene have been associated with bare lymphocyte syndrome type II (also known as hereditary MHC class II deficiency or HLA class II-deficient combined immunodeficiency), increased susceptibility to rheumatoid arthritis, multiple sclerosis, and possibly myocardial infarction. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:MHC class II transactivator
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (23)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression Profiling
  • Immunohistochemistry
  • STAT1 Transcription Factor
  • Promoter Regions
  • Polymerase Chain Reaction
  • DNA-Binding Proteins
  • Transcription Factors
  • Signal Transduction
  • Transfection
  • B-Cell Lymphoma
  • Translocation
  • Up-Regulation
  • Cancer Gene Expression Regulation
  • Flow Cytometry
  • Melanoma
  • Histocompatibility Antigens Class II
  • Mutation
  • Messenger RNA
  • HLA-D Antigens
  • Genes, MHC Class II
  • HLA-DR Antigens
  • Transcription
  • Homologous Transplantat
  • Diffuse Large B-Cell Lymphoma
  • Sarcoma, Experimental
  • U937 Cells
  • B-Lymphocytes
  • Transformation, Genetic
  • Nuclear Proteins
  • Molecular Sequence Data
  • Base Sequence
  • Gene Expression
  • Chromosome 16
  • Epigenetics
  • DNA Methylation
  • Interferon-gamma
  • Uvea
  • Neoplasm Proteins
  • Trans-Activators
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CIITA (cancer-related)

Van Roosbroeck K, Ferreiro JF, Tousseyn T, et al.
Genomic alterations of the JAK2 and PDL loci occur in a broad spectrum of lymphoid malignancies.
Genes Chromosomes Cancer. 2016; 55(5):428-41 [PubMed] Related Publications
The recurrent 9p24.1 aberrations in lymphoid malignancies potentially involving four cancer-related and druggable genes (JAK2, CD274/PDL1, PDCD1LG2/PDL2, and KDM4C/JMJD2Cl) are incompletely characterized. To gain more insight into the anatomy of these abnormalities, at first we studied 9p24.1 alterations in 18 leukemia/lymphoma cases using cytogenetic and molecular techniques. The aberrations comprised structural (nine cases) and numerical (nine cases) alterations. The former lesions were heterogeneous but shared a common breakpoint region of 200 kb downstream of JAK2. The rearrangements predominantly targeted the PDL locus. We have identified five potential partner genes of PDL1/2: PHACTR4 (1p34), N4BP2 (4p14), EEF1A1 (6q13), JAK2 (9p24.1), and IGL (22q11). Interestingly, the cryptic JAK2-PDL1 rearrangement was generated by a microdeletion spanning the 3'JAK2-5'PDL1 region. JAK2 was additionally involved in a cytogenetically cryptic IGH-mediated t(9;14)(p24.1;q32) found in two patients. This rare but likely underestimated rearrangement highlights the essential role of JAK2 in B-cell neoplasms. Cases with amplification of 9p24.1 were diagnosed as primary mediastinal B-cell lymphoma (five cases) and T-cell lymphoma (four cases). The smallest amplified 9p24.1 region was restricted to the JAK2-PDL1/2-RANBP6 interval. In the next step, we screened 200 cases of classical Hodgkin lymphoma by interphase FISH and identified PDL1/2 rearrangement (CIITA- and IGH-negative) in four cases (2%), what is a novel finding. Forty (25%) cases revealed high level amplification of 9p24.1, including four cases with a selective amplification of PDL1/2. Altogether, the majority of 9p24.1 rearrangements occurring in lymphoid malignancies seem to target the programmed death-1 ligands, what potentiates the therapeutic activity of PD-1 blockade in these tumors. © 2016 Wiley Periodicals, Inc.

Dai H, Ehrentraut S, Nagel S, et al.
Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines.
PLoS One. 2015; 10(11):e0139663 [PubMed] Free Access to Full Article Related Publications
Primary mediastinal B-Cell lymphoma (PMBL) is a recently defined entity comprising ~2-10% non-Hodgkin lymphomas (NHL). Unlike most NHL subtypes, PMBL lacks recurrent gene rearrangements to serve as biomarkers or betray target genes. While druggable, late chemotherapeutic complications warrant the search for new targets and models. Well characterized tumor cell lines provide unlimited material to serve as preclinical resources for verifiable analyses directed at the discovery of new biomarkers and pathological targets using high throughput microarray technologies. The same cells may then be used to seek intelligent therapies directed at clinically validated targets. Four cell lines have emerged as potential PMBL models: FARAGE, KARPAS-1106P, MEDB-1 and U-2940. Transcriptionally, PMBL cell lines cluster near c(lassical)-HL and B-NHL examples showing they are related but separate entities. Here we document genomic alterations therein, by cytogenetics and high density oligonucleotide/SNP microarrays and parse their impact by integrated global expression profiling. PMBL cell lines were distinguished by moderate chromosome rearrangement levels undercutting cHL, while lacking oncogene translocations seen in B-NHL. In total 61 deletions were shared by two or more cell lines, together with 12 amplifications (≥4x) and 72 homozygous regions. Integrated genomic and transcriptional profiling showed deletions to be the most important class of chromosome rearrangement. Lesions were mapped to several loci associated with PMBL, e.g. 2p15 (REL/COMMD1), 9p24 (JAK2, CD274), 16p13 (SOCS1, LITAF, CIITA); plus new or tenuously associated loci: 2p16 (MSH6), 6q23 (TNFAIP3), 9p22 (CDKN2A/B), 20p12 (PTPN1). Discrete homozygous regions sometimes substituted focal deletions accompanied by gene silencing implying a role for epigenetic or mutational inactivation. Genomic amplifications increasing gene expression or gene-activating rearrangements were respectively rare or absent. Our findings highlight biallelic deletions as a major class of chromosomal lesion in PMBL cell lines, while endorsing the latter as preclinical models for hunting and testing new biomarkers and actionable targets.

Mottok A, Woolcock B, Chan FC, et al.
Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression.
Cell Rep. 2015; 13(7):1418-31 [PubMed] Related Publications
Primary mediastinal large B cell lymphoma (PMBCL) is an aggressive non-Hodgkin's lymphoma, predominantly affecting young patients. We analyzed 45 primary PMBCL tumor biopsies and 3 PMBCL-derived cell lines for the presence of genetic alterations involving the major histocompatibility complex (MHC) class II transactivator CIITA and found frequent aberrations consisting of structural genomic rearrangements, missense, nonsense, and frame-shift mutations (53% of primary tumor biopsies and all cell lines). We also detected intron 1 mutations in 47% of the cases, and detailed sequence analysis strongly suggests AID-mediated aberrant somatic hypermutation as the mutational mechanism. Furthermore, we demonstrate that genomic lesions in CIITA result in decreased protein expression and reduction of MHC class II surface expression, creating an immune privilege phenotype in PMBCL. In summary, we establish CIITA alterations as a common mechanism of immune escape through reduction of MHC class II expression in PMBCL, with potential implications for future treatments targeting microenvironment-related biology.

Chen H, Li Y, Lin X, et al.
Functional disruption of human leukocyte antigen II in human embryonic stem cell.
Biol Res. 2015; 48:59 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Theoretically human embryonic stem cells (hESCs) have the capacity to self-renew and differentiate into all human cell types. Therefore, the greatest promise of hESCs-based therapy is to replace the damaged tissues of patients suffering from traumatic or degenerative diseases by the exact same type of cells derived from hESCs. Allograft immune rejection is one of the obstacles for hESCs-based clinical applications. Human leukocyte antigen (HLA) II leads to CD4(+) T cells-mediated allograft rejection. Hence, we focus on optimizing hESCs for clinic application through gene modification.
RESULTS: Transcription activator-like effector nucleases (TALENs) were used to target MHC class II transactivator (CIITA) in hESCs efficiently. CIITA (-/-) hESCs did not show any difference in the differentiation potential and self-renewal capacity. Dendritic cells (DCs) derived from CIITA (-/-) hESCs expressed CD83 and CD86 but without the constitutive HLA II. Fibroblasts derived from CIITA (-/-) hESCs were powerless in IFN-γ inducible expression of HLA II.
CONCLUSION: We generated HLA II defected hESCs via deleting CIITA, a master regulator of constitutive and IFN-γ inducible expression of HLA II genes. CIITA (-/-) hESCs can differentiate into tissue cells with non-HLA II expression. It's promising that CIITA (-/-) hESCs-derived cells could be used in cell therapy (e.g., T cells and DCs) and escape the attack of receptors' CD4(+) T cells, which are the main effector cells of cellular immunity in allograft.

Brown PJ, Wong KK, Felce SL, et al.
FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas.
Leukemia. 2016; 30(3):605-16 [PubMed] Free Access to Full Article Related Publications
The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients.

Belo H, Silva G, Cardoso BA, et al.
Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential.
PLoS One. 2015; 10(10):e0139740 [PubMed] Free Access to Full Article Related Publications
Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.

Novak AJ, Asmann YW, Maurer MJ, et al.
Whole-exome analysis reveals novel somatic genomic alterations associated with outcome in immunochemotherapy-treated diffuse large B-cell lymphoma.
Blood Cancer J. 2015; 5:e346 [PubMed] Free Access to Full Article Related Publications
Lack of remission or early relapse remains a major clinical issue in diffuse large B-cell lymphoma (DLBCL), with 30% of patients failing standard of care. Although clinical factors and molecular signatures can partially predict DLBCL outcome, additional information is needed to identify high-risk patients, particularly biologic factors that might ultimately be amenable to intervention. Using whole-exome sequencing data from 51 newly diagnosed and immunochemotherapy-treated DLBCL patients, we evaluated the association of somatic genomic alterations with patient outcome, defined as failure to achieve event-free survival at 24 months after diagnosis (EFS24). We identified 16 genes with mutations, 374 with copy number gains and 151 with copy number losses that were associated with failure to achieve EFS24 (P<0.05). Except for FOXO1 and CIITA, known driver mutations did not correlate with EFS24. Gene losses were localized to 6q21-6q24.2, and gains to 3q13.12-3q29, 11q23.1-11q23.3 and 19q13.12-19q13.43. Globally, the number of gains was highly associated with poor outcome (P=7.4 × 10(-12)) and when combined with FOXO1 mutations identified 77% of cases that failed to achieve EFS24. One gene (SLC22A16) at 6q21, a doxorubicin transporter, was lost in 54% of EFS24 failures and our findings suggest it functions as a doxorubicin transporter in DLBCL cells.

Butler SN, Blanck G
Immunoscoring by correlating MHC class II and TCR expression: high level immune functions represented by the KIRP dataset of TCGA.
Cell Tissue Res. 2016; 363(2):491-6 [PubMed] Related Publications
The Cancer Genome Atlas (TCGA) is primarily oriented towards revealing the status of cancer cells but TCGA RNASeq data have the potential of representing gene expression for a variety of cells that are included during RNA preparation, i.e., cells that cannot be removed from the microenvironment during cancer sample isolation. Thus, we seek to determine whether RNASeq data can be used to pioneer greater precision for immunoscoring. We obtained the RNASeq results for HLA class II genes, the class II transactivator (CIITA) and T-cell receptor (TCR) alpha segments. The data indicated strong degrees of correlation of HLA class II expression with TCR expression. Furthermore, biomarkers of professional antigen-presenting cells also correlated with TCR expression, with the kidney renal papillary cell carcinoma (KIRP) dataset indicative of the highest level, immune function microenvironment. These analyses indicate that an immune function signature, with probable internal HLA class II-TCR verifications, can be obtained from individual TCGA samples; this in turn indicates that such signatures might provide a basis for correlations with prognosis or for convenient indications of therapy options, such as tumor-infiltrating lymphocyte availability for ex-vivo amplification. Although tumor immunoscoring has been proposed, the above analysis represents the first immunoscoring approach that correlates antigen presentation capacity with TCR mRNA expression.

Ryan RJ, Drier Y, Whitton H, et al.
Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma.
Cancer Discov. 2015; 5(10):1058-71 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: B-cell lymphomas frequently contain genomic rearrangements that lead to oncogene activation by heterologous distal regulatory elements. We used a novel approach called "pinpointing enhancer-associated rearrangements by chromatin immunoprecipitation," or PEAR-ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype-specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a "pseudo-double-hit" t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activation in lymphoma.
SIGNIFICANCE: We demonstrate a novel approach for simultaneous detection of genomic rearrangements and enhancer activity in tumor biopsies. We identify novel mechanisms of enhancer-driven regulation of the oncogenes MYC and BCL6, and show that the BCL6 locus can serve as an enhancer donor in an "enhancer hijacking" translocation.

Yuan J, Wright G, Rosenwald A, et al.
Identification of Primary Mediastinal Large B-cell Lymphoma at Nonmediastinal Sites by Gene Expression Profiling.
Am J Surg Pathol. 2015; 39(10):1322-30 [PubMed] Related Publications
Mediastinal involvement is considered essential for the diagnosis of primary mediastinal large B-cell lymphoma (PMBL). However, we have observed cases of diffuse large B-cell lymphoma (DLBCL) with features of PMBL but without detectable mediastinal involvement. The goal was to assess our previously established gene expression profiling (GEP) signature for PMBL in classifying these cases. In a large series of DLBCL cases, we identified 24 cases with a GEP signature of PMBL, including 9 cases with a submission diagnosis of DLBCL consistent with PMBL (G-PMBL-P) and 15 cases with a submission diagnosis of DLBCL. The pathology reviewers agreed with the diagnosis in the 9 G-PMBL-P cases. Among the other 15 DLBCL cases, 11 were considered to be PMBL or DLBCL consistent with PMBL, 3 were considered to be DLBCL, and 1 case was a gray-zone lymphoma with features intermediate between DLBCL and classical Hodgkin lymphoma. All 9 G-PMBL-P and 9 of the 15 DLBCL cases (G-PMBL-M) had demonstrated mediastinal involvement at presentation. Interestingly, 6 of the 15 DLBCL cases (G-PMBL-NM) had no clinical or radiologic evidence of mediastinal involvement. The 3 subgroups of PMBL had otherwise similar clinical characteristics, and there were no significant differences in overall survival. Genetic alterations of CIITA and PDL1/2 were detected in 26% and 40% of cases, respectively, including 1 G-PMBL-NM case with gain of PDL1/2. In conclusion, PMBL can present as a nonmediastinal tumor without evidence of mediastinal involvement, and GEP offers a more precise diagnosis of PMBL.

Wu T, Wang X, Li J, et al.
Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis.
PLoS One. 2015; 10(6):e0131183 [PubMed] Free Access to Full Article Related Publications
Breast cancer is a highly heterogeneous disease that is clinically classified into several subtypes. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative breast cancer (TNBC), and these two groups are generally studied together as a single entity. Differences in the molecular makeup of breast cancers can result in different treatment strategies and prognoses for patients with different breast cancer subtypes. Compared with other subtypes, basal-like and other ER+ breast cancer subtypes exhibit marked differences in etiologic factors, clinical characteristics and therapeutic potential. Anthracycline drugs are typically used as the first-line clinical treatment for basal-like breast cancer subtypes. However, certain patients develop drug resistance following chemotherapy, which can lead to disease relapse and death. Even among patients with basal-like breast cancer, there can be significant molecular differences, and it is difficult to identify specific drug resistance proteins in any given patient using conventional variance testing methods. Therefore, we designed a new method for identifying drug resistance genes. Subgroups, personalized biomarkers, and therapy targets were identified using cluster analysis of differentially expressed genes. We found that basal-like breast cancer could be further divided into at least four distinct subgroups, including two groups at risk for drug resistance and two groups characterized by sensitivity to pharmacotherapy. Based on functional differences among these subgroups, we identified nine biomarkers related to drug resistance: SYK, LCK, GAB2, PAWR, PPARG, MDFI, ZAP70, CIITA and ACTA1. Finally, based on the deviation scores of the examined pathways, 16 pathways were shown to exhibit varying degrees of abnormality in the various subgroups, indicating that patients with different subtypes of basal-like breast cancer can be characterized by differences in the functional status of these pathways. Therefore, these nine differentially expressed genes and their associated functional pathways should provide the basis for novel personalized clinical treatments of basal-like breast cancer.

Pisapia L, Barba P, Cortese A, et al.
EBP1 protein modulates the expression of human MHC class II molecules in non-hematopoietic cancer cells.
Int J Oncol. 2015; 47(2):481-9 [PubMed] Free Access to Full Article Related Publications
Many solid tumours including melanoma, glioblastoma, and breast carcinomas express MHC class II molecules (MHC II). The surface expression of these molecules confers to non-hematopoietic tumour cells the role of non-professional antigen presenting cells and the ability to potentially stimulate tumour-specific CD4+ T cell response. We studied EBP1, an ErbB3 binding protein, and the effects of p48 and p42 isoforms on the MHC II expression in U87 glioblastoma, M14 melanoma and MCF7 mammary carcinoma cell lines. We found that overexpression of p48 increases MHC II transcription in U87 and M14, through upregulation of CIITA transactivator and STAT1 phosphorylation. In addition, p48 protein influences MHC II expression by increasing mRNA stability. In melanoma and glioblastoma cell lines, p48 isoform functions as oncogene promoting tumour growth, while p42 isoform, that does not affect MHC II expression, acts as a tumour suppressor by blocking cell growth and inducing apoptosis. In contrast, p48 seems to act as tumour suppressor in breast carcinoma inhibiting proliferation, favouring apoptosis, and inducing a slight increase of MHC II expression similar to p42. Our data highlight the tissue specificity function of EBP1 isoforms and demonstrate that only the oncogene p48 activates MHC II expression in human solid tumours, via STAT1 phosphorylation, in order to affect tumour progression by triggering specific immune response.

Mottok A, Steidl C
Genomic alterations underlying immune privilege in malignant lymphomas.
Curr Opin Hematol. 2015; 22(4):343-54 [PubMed] Related Publications
PURPOSE OF REVIEW: Malignant lymphomas represent a remarkably heterogeneous group of cancers with respect to their oncogenome, phenotype and clinical presentation. Lymphoma cells benefit from limited immune surveillance and have developed various mechanisms to alter antitumor immune responses. This article summarizes our current knowledge about genomic alterations underlying acquired immune privilege in lymphoid cancers.
RECENT FINDINGS: The implementation and broad application of next-generation sequencing techniques have significantly expanded our knowledge about genetic alterations and perturbed cellular pathways underlying lymphomagenesis. Based on key discoveries in the past decade, the purview of subsequent studies expanded beyond the biology of the lymphoma cells to include the pathogenic contribution of immune cells, stromal components and associated crosstalk between malignant and nonmalignant cells in the tumor microenvironment. A number of genetic mechanisms have been described that elucidate how lymphoma cells are selected for evading immune recognition and reprogramming immune responses. These prominently include structural genomic changes of the CIITA and programmed death ligand (CD274/PDCD1LG2) loci, alterations affecting antigen presentation and mutations in JAK-STAT and NFκB signaling pathways.
SUMMARY: Further investigations will foster our understanding about synergy of immune escape mechanisms, and lay the foundation for the development of predictive biomarkers in the context of conceptually novel therapies targeting microenvironment-related biology, such as immunological checkpoint inhibition.

Abou El Hassan M, Yu T, Song L, Bremner R
Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus.
J Immunol. 2015; 194(10):5007-13 [PubMed] Related Publications
CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers.

Brabrand S, Johannessen B, Axcrona U, et al.
Exome sequencing of bilateral testicular germ cell tumors suggests independent development lineages.
Neoplasia. 2015; 17(2):167-74 [PubMed] Free Access to Full Article Related Publications
Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs), is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs) or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors), of these three patients in whom both tumors were available (six tumors) and two patients each with only one available tumor (two tumors). Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21), some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA), and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients.

Green MR, Kihira S, Liu CL, et al.
Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation.
Proc Natl Acad Sci U S A. 2015; 112(10):E1116-25 [PubMed] Free Access to Full Article Related Publications
Follicular lymphoma (FL) is incurable with conventional therapies and has a clinical course typified by multiple relapses after therapy. These tumors are genetically characterized by B-cell leukemia/lymphoma 2 (BCL2) translocation and mutation of genes involved in chromatin modification. By analyzing purified tumor cells, we identified additional novel recurrently mutated genes and confirmed mutations of one or more chromatin modifier genes within 96% of FL tumors and two or more in 76% of tumors. We defined the hierarchy of somatic mutations arising during tumor evolution by analyzing the phylogenetic relationship of somatic mutations across the coding genomes of 59 sequentially acquired biopsies from 22 patients. Among all somatically mutated genes, CREBBP mutations were most significantly enriched within the earliest inferable progenitor. These mutations were associated with a signature of decreased antigen presentation characterized by reduced transcript and protein abundance of MHC class II on tumor B cells, in line with the role of CREBBP in promoting class II transactivator (CIITA)-dependent transcriptional activation of these genes. CREBBP mutant B cells stimulated less proliferation of T cells in vitro compared with wild-type B cells from the same tumor. Transcriptional signatures of tumor-infiltrating T cells were indicative of reduced proliferation, and this corresponded to decreased frequencies of tumor-infiltrating CD4 helper T cells and CD8 memory cytotoxic T cells. These observations therefore implicate CREBBP mutation as an early event in FL evolution that contributes to immune evasion via decreased antigen presentation.

Twa DD, Mottok A, Chan FC, et al.
Recurrent genomic rearrangements in primary testicular lymphoma.
J Pathol. 2015; 236(2):136-41 [PubMed] Related Publications
Primary testicular diffuse large B cell lymphoma (PTL) is an aggressive malignancy that occurs in the immune-privileged anatomical site of the testis. We have previously shown that structural genomic rearrangements involving the MHC class II transactivator CIITA and programmed death ligands (PDLs) 1 and 2 are frequent across multiple B cell lymphoma entities. Specifically in PTL, we found rearrangements in the PDL locus by fluorescence in situ hybridization (FISH). However, breakpoint anatomy and rearrangement partners were undetermined, while CIITA rearrangements had not been reported previously in PTL. Here, we performed bacterial artificial chromosome capture sequencing on three archival, formalin-fixed, paraffin-embedded tissue biopsies, interrogating 20 known rearrangement hotspots in B cell lymphomas. We report novel CIITA, FOXP1 and PDL rearrangements involving IGHG4, FLJ45248, RFX3, SMARCA2 and SNX29. Moreover, we present immunohistochemistry data supporting the association between PDL rearrangements and increased protein expression. Finally, using FISH, we show that CIITA (8/82; 10%) and FOXP1 (5/74; 7%) rearrangements are recurrent in PTL. In summary, we describe rearrangement frequencies and novel rearrangement partners of the CIITA, FOXP1 and PDL loci at base-pair resolution in a rare, aggressive lymphoma. Our data suggest immune-checkpoint inhibitor therapy as a promising intervention for PTL patients harbouring PDL rearrangements.

Lin JH, Lin JY, Chou YC, et al.
Epstein-Barr virus LMP2A suppresses MHC class II expression by regulating the B-cell transcription factors E47 and PU.1.
Blood. 2015; 125(14):2228-38 [PubMed] Related Publications
Oncogenic Epstein-Barr virus (EBV) uses various approaches to escape host immune responses and persist in B cells. Such persistent infections may provide the opportunity for this virus to initiate tumor formation. Using EBV-immortalized lymphoblastoid cell lines (LCLs) as a model, we found that the expression of major histocompatibility complex (MHC) class II and CD74 in B cells is repressed after EBV infection. Class II transactivator (CIITA) is the master regulator of MHC class II-related genes. As expected, CIITA was downregulated in LCLs. We showed that downregulation of CIITA is caused by EBV latent membrane protein 2A (LMP2A) and driven by the CIITA-PIII promoter. Furthermore, we demonstrated that LMP2A-mediated E47 and PU.1 reduction resulted in CIITA suppression. Mechanistically, the LMP2A immunoreceptor tyrosine-based activation motif was critical for the repression of E47 and PU.1 promoter activity via Syk, Src, and the phosphatidylinositol 3-kinase/Akt pathway. Elimination of LMP2A in LCLs using a shLMP2A approach showed that the expression levels of E47, PU.1, CIITA, MHC class II, and CD74 are reversed. These data indicated that the LMP2A may reduce MHC class II expression through interference with the E47/PU.1-CIITA pathway. Finally, we demonstrated that MHC class II may be detected in tonsils and EBV-negative Hodgkin disease but not in EBV-associated posttransplant lymphoproliferative disease and Hodgkin disease.

Lloyd MC, Szekeres K, Brown JS, Blanck G
Class II transactivator expression in melanoma cells facilitates T-cell engulfment.
Anticancer Res. 2015; 35(1):25-9 [PubMed] Related Publications
BACKGROUND/AIM: Melanoma cells express high levels of HLA class II, cell surface antigen-presenting proteins, which is an anomalous phenotype among solid tumors. There has never been a satisfying explanation for how this HLA class II-positive phenotype is related to tumor development. Lugini and colleagues demonstrated that melanoma cells have the capacity to engulf T-cells. We considered the possibility that this capacity could be dependent on HLA class II expression.
MATERIALS AND METHODS: We co-cultured melanoma and CD4-positive, labeled, Jurkat-C T-cells. The melanoma cells were transformed with an expression vector for CIITA, the obligate HLA class II gene transactivator. We then assayed for the transfer of label to the melanoma cells.
RESULTS: CIITA expression facilitated engulfment of the T-cell material but not material from B-cells.
CONCLUSION: The results suggest a possible mechanism for HLA class II-positive melanoma cells in blunting an anti-tumor response and suggest a possible target for melanoma therapy.

Surmann EM, Voigt AY, Michel S, et al.
Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer.
Cancer Immunol Immunother. 2015; 64(3):357-66 [PubMed] Related Publications
Besides being expressed on professional antigen-presenting cells, HLA class II antigens are expressed on various tumors of non-lymphoid origin, including a subset of colorectal cancers (CRC). Information about the regulation of HLA class II antigen expression is important for a better understanding of their role in the interactions between tumor and immune cells. Whether lack of HLA class II antigen expression in tumors reflects the selective immune destruction of HLA class II antigen-expressing tumor cells is unknown. To address this question, we tested whether lack of HLA class II antigen expression in CRC was associated with immune cell infiltration. We selected microsatellite-unstable (MSI-H) CRC, because they show pronounced tumor antigen-specific immune responses and, in a subset of tumors, lack of HLA class II antigen expression due to mutations inactivating HLA class II-regulatory genes. We examined HLA class II antigen expression, mutations in regulatory genes, and CD4-positive T cell infiltration in 69 MSI-H CRC lesions. Mutations in RFX5, CIITA, and RFXAP were found in 13 (28.9%), 3 (6.7%), and 1 (2.2%) out of 45 HLA class II antigen-negative tumors. CD4-positive tumor-infiltrating lymphocyte counts were significantly higher in HLA class II antigen-negative tumors harboring mutations in HLA class II-regulatory genes (107.4 T cells per 0.25 mm(2)) compared to tumors without mutations (55.5 T cells per 0.25 mm(2), p = 0.008). Our results suggest that the outgrowth of tumor cells lacking HLA class II antigen expression due to mutations of regulatory genes is favored in an environment of dense CD4-positive T cell infiltration.

Hu JM, Li L, Chen YZ, et al.
HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC.
Epigenetics. 2014; 9(10):1366-73 [PubMed] Free Access to Full Article Related Publications
Human leukocyte antigen II (HLA-II) plays an important role in host immune responses to cancer cells. Changes in gene methylation may result in aberrant expression of HLA-II, serving a key role in the pathogenesis of Kazakh esophageal squamous cell carcinoma (ESCC). We analyzed the expression level of HLA-II (HLA-DP, -DQ, and -DR) by immunohistochemistry, as well as the methylation status of HLA-DRB1 and HLA-DQB1 by MassARRAY spectrometry in Xinjiang Kazakh ESCC. Expression of HLA-II in ESCC was significantly higher than that in cancer adjacent normal (ACN) samples (P < 0.05). Decreased HLA-II expression was closely associated with later clinical stages of ESCC (P < 0.05). Hypomethylation of HLA-DRB1 and hypermethylation of HLA-DQB1 was significantly correlated with occurrence of Kazakh ESCC (P < 0.01), and mainly manifested as hypomethylation of CpG9, CpG10-11, and CpG16 in HLA-DRB1 and hypermethylation of CpG6-7 and CpG16-17 in HLA-DQB1 (P < 0.01). Moreover, hypomethylation of HLA-DQB1 CpG6-7 correlated with poor differentiation in ESCCs, whereas hypermethylation of HLA-DRB1 CpG16 and hypomethylation of HLA-DQB1 CpG16-17 were significantly associated with later stages of ESCC (P < 0.05). A significant inverse association between HLA-DRB1 CpG9 methylation and HLA-II expression was found in ESCC (P < 0.05). These findings suggest aberrant HLA-DRB1 and HLA-DQB1 methylation contributes to the aberrant expression of HLA-II. These molecular changes may influence the immune response to specific tumor epitopes, promoting the occurrence and progression of Kazakh ESCC.

Neerincx A, Jakobshagen K, Utermöhlen O, et al.
The N-terminal domain of NLRC5 confers transcriptional activity for MHC class I and II gene expression.
J Immunol. 2014; 193(6):3090-100 [PubMed] Related Publications
Ag presentation to CD4(+) and CD8(+) T cells depends on MHC class II and MHC class I molecules, respectively. One important regulatory factor of this process is the transcriptional regulation of MHC gene expression. It is well established that MHC class II transcription relies on the NLR protein CIITA. Recently, another NLR protein, NLRC5, was shown to drive MHC class I expression. The molecular mechanisms of the function of NLRC5 however remain largely elusive. In this study, we present a detailed functional study of the domains of NLRC5 revealing that the N-terminal domain of human NLRC5 has intrinsic transcriptional activity. Domain swapping experiments between NLRC5 and CIITA showed that this domain contributes to MHC class I and MHC class II gene expression with a bias for activation of MHC class I promoters. Delivery of this construct by adeno-associated viral vectors upregulated MHC class I and MHC class II expression in human cells and enhanced lysis of melanoma cells by CD8(+) cytotoxic T cells in vitro. Taken together, this work provides novel insight into the function of NLRC5 and CIITA in MHC gene regulation.

Cao W, Zhou G, Qiu J, et al.
Research on the epigenetic modification of pancreatic cancer vaccine.
Hepatogastroenterology. 2014 Mar-Apr; 61(130):272-7 [PubMed] Related Publications
Pancreatic cancer is characterized as a type of gastrointestinal tumor with a poor prognosis and high degree of malignancy. CIITA gene was found highly methylated in pancreatic carcinoma cell line PANC-1 and responsible for the low expression of MHC-II that may lead to immune evasion. Here, we tried to prepare pancreatic cancer vaccine with PANC-1 cells via epigenetic modification to enhance the MHC-II expression. Then the vaccine was injected into C57BL/6J mice and the effect was examined. Our study found that the vaccine could promote the proliferation of antigen-specific T cells, enhance the killing activity of cytotoxic lymphocytes (CTL), promote Th1-type cells mediated secretion of cytokines IFN-gamma and IL-2 while inhibiting Th2-type cells mediated secretion of IL-4, and inhibit the secretion of TGF-beta. Generally, the epigenetically modified vaccine could enhance the body's anti-tumor immune response, providing feasibility research on cancer vaccine for therapy of pancreatic cancer.

Mostafa AA, Codner D, Hirasawa K, et al.
Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells.
PLoS One. 2014; 9(1):e87377 [PubMed] Free Access to Full Article Related Publications
The coordinate regulation of HLA class II (HLA-II) is controlled by the class II transactivator, CIITA, and is crucial for the development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-γ levels, reduced expression of the estrogen receptor (ER) and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E₂) and ERα signaling contribute to the regulation of IFN-γ inducible HLA-II in breast cancer cells. Using a panel of established ER⁻ and ER⁺ breast cancer cell lines, we showed that E₂ attenuated HLA-DR in two ER⁺ lines (MCF-7 and BT-474), but not in T47D, while it augmented expression in ER⁻ lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s), we used paired transfectants: ERα⁺ MC2 (MDA-MB-231 c10A transfected with the wild type ERα gene) and ERα⁻ VC5 (MDA-MB-231 c10A transfected with the empty vector), treated or not with E₂ and IFN-γ. HLA-II and CIITA were severely reduced in MC2 compared to VC5 and were further exacerbated by E₂ treatment. Reduced expression occurred at the level of the IFN-γ inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory effects, signifying an antagonistic role for activated ERα on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA pIV activation, and selected STAT1 regulated genes were variably downregulated by E₂ in transfected and endogenous ERα positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERα⁻ breast cancer cells. Collectively, these results imply immune escape mechanisms in ERα⁺ breast cancer may be facilitated through an ERα suppressive mechanism on IFN-γ signaling.

Mauro JA, Blanck G
Functionally distinct gene classes as bigger or smaller transcription factor traps: a possible stochastic component to sequential gene expression programs in cancer.
Gene. 2014; 536(2):398-406 [PubMed] Related Publications
In cancer biology, most molecular regulatory mechanisms are casually treated as on/off switches for specific cancer hallmarks, despite the lack of compelling evidence that cancer hallmarks can be exclusively attributed to specific regulatory proteins. To consider a novel paradigm for the basis of regulating a set of effector genes for proliferation, versus apoptosis-effector genes, we used a bioinformatics approach to ascertain differences between the transcription factor binding site occurrences in the two sets of genes. Results indicated that there are more binding sites per gene, for transcription factors that regulate both proliferation and apoptosis, among the proliferation-effector genes than among the apoptosis-effector genes. Proliferation-effector genes also had more open chromatin regions. We also applied this paradigm to the question of why p53 and interferon regulatory factor-1 (IRF-1) first activate cell cycle arrest genes followed by apoptosis genes, with results indicating the cycle arrest genes are bigger p53 and IRF-1 traps. These data support the idea that, as a set of transcription factors becomes active, there is a stochastic component leading to the accumulation of these transcription factors on genes that effect an initial phenotype before their accumulation on genes that effect a subsequent phenotype.

Chiu BL, Li CH, Chang CC
Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells.
Biochem Biophys Res Commun. 2013; 440(1):190-5 [PubMed] Related Publications
Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

Cycon KA, Mulvaney K, Rimsza LM, et al.
Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma.
Immunology. 2013; 140(2):259-72 [PubMed] Free Access to Full Article Related Publications
Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin's lymphoma (NHL) diagnosed in the USA, consists of at least two distinct subtypes: germinal centre B (GCB) and activated B-cell (ABC). Decreased MHC class II (MHCII) expression on the tumours in both DLBCL subtypes directly correlates with significant decreases in patient survival. One common mechanism accounting for MHCII down-regulation in DLBCL is reduced expression of the MHC class II transactivator (CIITA), the master regulator of MHCII transcription. Furthermore, reduced CIITA expression in ABC DLBCL correlates with the presence of the transcriptional repressor positive regulatory domain-I-binding factor-1 (PRDI-BF1). However, the mechanisms underlying down-regulation of CIITA in GCB DLBCL are currently unclear. In this study, we demonstrate that neither PRDI-BF1 nor CpG hypermethylation at the CIITA promoters are responsible for decreased CIITA in GCB DLBCL. In contrast, histone modifications associated with an open chromatin conformation and active transcription were significantly lower at the CIITA promoters in CIITA(-) GCB cells compared with CIITA(+) B cells, which suggests that epigenetic mechanisms contribute to repression of CIITA transcription. Treatment of CIITA(-) or CIITA(low) GCB cells with several different histone deacetylase inhibitors (HDACi) activated modest CIITA and MHCII expression. However, CIITA and MHCII levels were significantly higher in these cells after exposure to the HDAC-1-specific inhibitor MS-275. These results suggest that CIITA transcription is repressed in GCB DLBCL cells through epigenetic mechanisms involving HDACs, and that HDACi treatment can alleviate repression. These observations may have important implications for patient therapy.

Zuo J, Hislop AD, Leung CS, et al.
Kaposi's sarcoma-associated herpesvirus-encoded viral IRF3 modulates major histocompatibility complex class II (MHC-II) antigen presentation through MHC-II transactivator-dependent and -independent mechanisms: implications for oncogenesis.
J Virol. 2013; 87(10):5340-50 [PubMed] Free Access to Full Article Related Publications
Evasion of immune T cell responses is crucial for persistent viruses to establish a normal carrier state. Most studies on active immune modulation mechanisms have focused on the stage of virus production in infected cells, when large numbers of viral antigens and potential immune modulators are expressed. For oncogenic viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV), which is carried as a lifelong infection, usually with little harmful effect, but can cause various tumors, the immune evasion strategies can also be relevant in the context of tumorigenesis. Here we report that the virus-encoded interferon regulatory factor 3 (vIRF3) latent viral gene expressed in KSHV-related tumors functions as a potent immunevasin. Expression of vIRF3 downregulates surface major histocompatibility complex class II (MHC-II) DR expression with slow kinetics but, more importantly, can substantially inhibit recognition by KSHV-specific CD4 T cells prior to its effects on MHC-II DR downregulation in model cell systems. This property of vIRF3 is only partly due to its ability to inhibit the transcription of CIITA and, thus, MHC-II expression; CIITA-independent inhibition of MHC-II transcripts and another as yet unidentified posttranscriptional mechanism are also involved in qualitatively modulating the availability of specific peptide/MHC-II complexes at the cell surface. Consistent with these observations, the vIRF3-expressing KSHV-associated primary effusion lymphoma (PEL) lines are generally resistant to recognition by KSHV-specific CD4 T cells. Interestingly, some PEL lines exhibit small subpopulations with lower vIRF3 expression that can be recognized. These data implicate vIRF3 as a critical determinant of the MHC-II antigen presentation function in KSHV-associated PELs that is likely to be important in the pathogenesis of these tumors.

Tao Y, Lin F, Li T, et al.
Epigenetically modified pancreatic carcinoma PANC-1 cells can act as cancer vaccine to enhance antitumor immune response in mice.
Oncol Res. 2013; 21(6):307-16 [PubMed] Related Publications
Pancreatic cancer is characterized as a type of gastrointestinal tumor with a poor prognosis and high degree of malignancy. CIITA gene was found highly methylated in pancreatic carcinoma cell line PANC-1 and responsible for the low expression of major histocompatability complex II (MHC-II) that may lead to immune evasion. Here, we prepared pancreatic cancer vaccine with PANC-1 cells via epigenetic modification to enhance the MHC-II expression. Then the vaccine was injected into C57BL/6J mice and the effect was examined. Our study found that the vaccine could promote the proliferation of antigen-specific T cells, enhance the killing activity of cytotoxic T lymphocytes (CTLs), promote Th1-type cell-mediated secretion of cytokines IFN-γ and IL-2 while inhibiting Th2-type cell-mediated secretion of IL-4, and inhibit the secretion of TGF-β. Generally, the epigenetically modified vaccine could enhance the body's antitumor immune response, providing feasibility research on cancer vaccine for therapy of pancreatic cancer.

Wen H, Li Y, Malek SN, et al.
New fusion transcripts identified in normal karyotype acute myeloid leukemia.
PLoS One. 2012; 7(12):e51203 [PubMed] Free Access to Full Article Related Publications
Genetic aberrations contribute to acute myeloid leukemia (AML). However, half of AML cases do not contain the well-known aberrations detectable mostly by cytogenetic analysis, and these cases are classified as normal karyotype AML. Different outcomes of normal karyotype AML suggest that this subgroup of AML could be genetically heterogeneous. But lack of genetic markers makes it difficult to further study this subgroup of AML. Using paired-end RNAseq method, we performed a transcriptome analysis in 45 AML cases including 29 normal karyotype AML, 8 abnormal karyotype AML and 8 AML without karyotype informaiton. Our study identified 134 fusion transcripts, all of which were formed between the partner genes adjacent in the same chromosome and distributed at different frequencies in the AML cases. Seven fusions are exclusively present in normal karyotype AML, and the rest fusions are shared between the normal karyotype AML and abnormal karyotype AML. CIITA, a master regulator of MHC class II gene expression and truncated in B-cell lymphoma and Hodgkin disease, is found to fuse with DEXI in 48% of normal karyotype AML cases. The fusion transcripts formed between adjacent genes highlight the possibility that certain such fusions could be involved in oncological process in AML, and provide a new source to identify genetic markers for normal karyotype AML.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CIITA, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999