Gene Summary

Gene:CYP3A5; cytochrome P450 family 3 subfamily A member 5
Aliases: CP35, PCN3, CYPIIIA5, P450PCN3
Summary:This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The encoded protein metabolizes drugs as well as the steroid hormones testosterone and progesterone. This gene is part of a cluster of cytochrome P450 genes on chromosome 7q21.1. Two pseudogenes of this gene have been identified within this cluster on chromosome 7. Expression of this gene is widely variable among populations, and a single nucleotide polymorphism that affects transcript splicing has been associated with susceptibility to hypertensions. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cytochrome P450 3A5
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (16)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Epidermal Growth Factor Receptor
  • Women's Health
  • Testosterone
  • Surveys and Questionnaires
  • Pyrimidines
  • Scotland
  • Chromosome 7
  • Cytochrome P-450 Enzyme System
  • Taxoids
  • Rifampin
  • Siblings
  • Genotype
  • Urban Population
  • Transcription
  • Washington
  • Receptors, Opioid, mu
  • Receptors, Steroid
  • Severity of Illness Index
  • Oligonucleotide Array Sequence Analysis
  • Breast Cancer
  • Restriction Fragment Length Polymorphism
  • Prostate Cancer
  • Steroids
  • Messenger RNA
  • p53 Protein
  • Smoking
  • Case-Control Studies
  • Sex Hormone-Binding Globulin
  • Cytochrome P-450 CYP3A
  • Testicular Cancer
  • Xenobiotics
  • Tamoxifen
  • South Africa
  • Survival Rate
  • Antineoplastic Agents
  • Regression Analysis
  • Soft Tissue Sarcoma
  • Genetic Predisposition
  • Xenograft Models
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CYP3A5 (cancer-related)

Tsuji D, Ikeda M, Yamamoto K, et al.
Drug-related genetic polymorphisms affecting severe chemotherapy-induced neutropenia in breast cancer patients: A hospital-based observational study.
Medicine (Baltimore). 2016; 95(44):e5151 [PubMed] Related Publications
Chemotherapy-induced neutropenia (CIN) is one of the major adverse events that necessitate chemotherapy dose reduction. This study aimed to evaluate the association between grade 4 neutropenia and genetic polymorphisms in breast cancer patients. In this genetic polymorphism association study, peripheral blood samples from 100 consecutive breast cancer outpatients, between August 2012 and September 2014, treated with doxorubicin and cyclophosphamide (AC) combination chemotherapy were genotyped for polymorphisms in adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1), cytochrome P450 (CYP) enzyme-coding genes (CYP2B6 and CYP3A5), glutathione S-transferase (GST), and excision repair cross-complementing 1 (ERCC1). Associations between grade 4 neutropenia and genotypes as well as risk factors were examined using multivariate logistic regression. From 100 patients, 32.0% had grade 4 neutropenia. Multivariate logistic regression analysis revealed that ERCC1 118C > T (odds ratio [OR], 3.43; 95% confidence interval [CI], 1.22-9.69; P = 0.020), CYP2B6*6 (OR, 4.51; 95% CI, 1.21-16.95; P = 0.025), body mass index (BMI) (OR, 6.94; 95% CI, 1.15-41.67; P = 0.035), and baseline white blood cell (WBC) count (OR, 2.99; 95% CI, 1.06-8.40; P = 0.038) were significant predictors of grade 4 neutropenia. ERCC1 and CYP2B6 gene polymorphisms were associated with the extent of grade 4 neutropenia in patients receiving AC chemotherapy. In addition to previously known risk factors, BMI and WBC counts, ERCC1 and CYP2B6 gene polymorphisms were also identified as independent strong predictors of grade 4 neutropenia.

Karakurt S
Modulatory effects of rutin on the expression of cytochrome P450s and antioxidant enzymes in human hepatoma cells.
Acta Pharm. 2016; 66(4):491-502 [PubMed] Related Publications
Expression of a drug and xenobiotic metabolizing enzymes, cytochrome P450s (CYPs), and antioxidant enzymes can be modulated by various factors. The flavonoid rutin was investigated for its anti-carcinogen and protective effects as well as modulatory action on CYPs and phase II enzymes in human hepatocellular carcinoma cells. Rutin inhibited proliferation of HEPG2 cells in a dose-dependent manner with the IC50 value of 52.7 μmol L-1 and invasion of HEPG2 cells (21.6 %, p = 0.0018) and colony formation of those invaded cells (57.4 %, p < 0.0001). Rutin treatment also significantly increased early/late-stage apoptosis in HEPG2 cells (28.9 %, p < 0.001). Treatment by rutin significantly inhibited protein expressions of cytochrome P450-dependent CYP3A4 (75.3 %, p < 0.0001), elevated CYP1A1 enzymes (1.7-fold, p = 0.0084) and increased protein expressions of antioxidant and phase II reaction catalyzing enzymes, NQO1 (2.42-fold, p < 0.0001) and GSTP1 (2.03-fold, p < 0.0001). Besides, rutin treatment significantly inhibited mRNA expression of CYP3A4 (73.2 %, p=0.0014). Also, CYP1A1, NQO1 and GSTP1 mRNA expressions were significantly increased 2.77-fold (p = 0.029), 4.85- fold (p = 0.0051) and 9.84-fold (p < 0.0001), respectively.

Šemeláková M, Jendželovský R, Fedoročko P
Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.
Biomed Pharmacother. 2016; 81:38-47 [PubMed] Related Publications
Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4.

Qu Z, Li D, Xu H, et al.
 CUL4B, NEDD4, and UGT1As involve in the TGF-β signalling in hepatocellular carcinoma.
Ann Hepatol. 2016 Jul-Aug; 15(4):568-76 [PubMed] Related Publications
UNLABELLED:  Introduction and Aim. TGF-β signalling is involved in pathogenesis and progress of hepatocellular carcinoma (HCC). This bioinformatics study consequently aims to determine the underlying molecular mechanism of TGF- β activation in HCC cells.
MATERIAL AND METHODS: Dataset GSE10393 was downloaded from Gene Expression Omnibus, including 2 Huh-7 (HCC cell line) samples treated by TGF- β (100 pmol/L, 48 h) and 2 untreated samples. Differentially expressed genes (DEGs) were screened using Limma package (false discovery rate < 0.05 and |log2 fold change| > 1.5), and then enrichment analyses of function, pathway, and disease were performed. In addition, protein-protein interaction (PPI) network was constructed based on the PPI data from multiple databases including INACT, MINT, BioGRID, UniProt, BIND, BindingDB, and SPIKE databases. Transcription factor (TF)-DEG pairs (Bonferroni adjusted p-value < 0.01) from ChEA database and DEG-DEG pairs were used to construct TF-DEG regulatory network. Furthermore, TF-pathway-DEG complex network was constructed by integrating DEG-DEG pairs, TF-DEG pairs, and DEG-pathway pairs.
RESULTS: Totally, 209 DEGs and 30 TFs were identified. The DEGs were significantly enriched in adhesion-related functions. PPI network indicted hub genes such as CUL4B and NEDD4. According to the TF-DEG regulatory network, the two hub genes were targeted by SMAD2, SMAD3, and HNF4A. Besides, the 11 pathways in TF-pathway-DEG network were mainly enriched by UGT1A family and CYP3A7, which were predicted to be regulated by SMAD2, SMAD3, SOX2, TP63, and HNF4A.
CONCLUSIONS: TGF- β might influence biological processes of HCC cells via SMAD2/SMAD3-NEDD4, HNF4A-CUL4B/NEDD4, SOX2/TP63/HNF4A-CYP3A7, and SMAD2/SMAD3/SOX2/TP63/HNF4A-UGT1As regulatory pathways.

Karthikeyan C, Malla R, Ashby CR, et al.
Pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolines: Novel compounds that reverse ABCG2-mediated resistance in cancer cells.
Cancer Lett. 2016; 376(1):118-26 [PubMed] Related Publications
Overexpression of ATP-binding cassette transporter (ABC) subfamily G2 in cancer cells is known to elicit a MDR phenotype, ultimately resulting in cancer chemotherapy failure. Here, we report, for the first time, the effect of eight novel pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline (IND) derivatives that inhibit ABCG2 transporter restoring cancer cell chemosensitivity. IND -4, -5, -6, -7, and -8, at 10 µM, and nilotinib at 5 µM, significantly potentiated (8-10 fold) the cytotoxicity of the ABCG2 substrates mitoxantrone (MX) and doxorubicin in HEK293 cells overexpressing ABCG2 transporter, MX (~14 fold) in MX-resistant NCI-H460/MX-20 small cell lung cancer, and of topotecan (~7 fold) in S1-M1-80 colon cancer cells which all stably expressing ABCG2. In contrast, cytotoxicity of cisplatin, which is not an ABCG2 substrate, was not altered. IND-5,-6,-7, and -8 significantly increased the accumulation of rhodamine-123 in multidrug resistant NCI-H460/MX-20 cells overexpressing ABCG2. Both IND-7 and -8, the most potent ABCG2 inhibitors, had the highest affinities for the binding sites of ABCG2 in modeling studies. In conclusion, the beneficial actions of new class of agents warrant further development as potential MDR reversal agents for clinical anticancer agents that suffer from ABCG2-mediated MDR insensitivity.

Johnson N, De Ieso P, Migliorini G, et al.
Cytochrome P450 Allele CYP3A7*1C Associates with Adverse Outcomes in Chronic Lymphocytic Leukemia, Breast, and Lung Cancer.
Cancer Res. 2016; 76(6):1485-93 [PubMed] Free Access to Full Article Related Publications
CYP3A enzymes metabolize endogenous hormones and chemotherapeutic agents used to treat cancer, thereby potentially affecting drug effectiveness. Here, we refined the genetic basis underlying the functional effects of a CYP3A haplotype on urinary estrone glucuronide (E1G) levels and tested for an association between CYP3A genotype and outcome in patients with chronic lymphocytic leukemia (CLL), breast, or lung cancers. The most significantly associated SNP was rs45446698, an SNP that tags the CYP3A7*1C allele; this SNP was associated with a 54% decrease in urinary E1G levels. Genotyping this SNP in 1,008 breast cancer, 1,128 lung cancer, and 347 CLL patients, we found that rs45446698 was associated with breast cancer mortality (HR, 1.74; P = 0.03), all-cause mortality in lung cancer patients (HR, 1.43; P = 0.009), and CLL progression (HR, 1.62; P = 0.03). We also found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment of patients with a cytotoxic agent that is a CYP3A substrate, and clinical outcome (Pinteraction = 0.06). The CYP3A7*1C allele, which results in adult expression of the fetal CYP3A7 gene, is likely to be the functional allele influencing levels of circulating endogenous sex hormones and outcome in these various malignancies. Further studies confirming these associations and determining the mechanism by which CYP3A7*1C influences outcome are required. One possibility is that standard chemotherapy regimens that include CYP3A substrates may not be optimal for the approximately 8% of cancer patients who are CYP3A7*1C carriers.

Hirose T, Fujita K, Kusumoto S, et al.
Association of pharmacokinetics and pharmacogenomics with safety and efficacy of gefitinib in patients with EGFR mutation positive advanced non-small cell lung cancer.
Lung Cancer. 2016; 93:69-76 [PubMed] Related Publications
OBJECTIVES: Gefitinib is a potent epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and is a key drug for patients with EGFR mutation-positive advanced non-small cell lung cancer (NSCLC). The pharmacokinetics of orally administered gefitinib varies greatly among patients. We prospectively evaluated the association of pharmacokinetics and pharmacogenomics with the safety and efficacy of gefitinib in patients with EGFR mutation-positive advanced NSCLC.
PATIENTS AND METHODS: Pharmacokinetics was evaluated with samples of peripheral blood obtained on day 1 before treatment and 1, 3, 5, 8, and 24h after gefitinib (250 mg per day) was administered and on days 8 and 15 as the trough values. The plasma concentration of gefitinib was analyzed with high-performance liquid chromatography. The genotypes of ABCG2, ABCB1, CYP3A4, CYP3A5, and CYP2D6 genes were analyzed with direct sequencing.
RESULTS: The subjects were 35 patients (21 women; median age, 72 years; range, 53 to 90 years) with stage IV adenocarcinoma harboring EGFR mutations. The median peak plasma concentration (Cmax) was 377 (range, 168-781)ng/mL. The median area under the curve (AUC) of the plasma concentration of gefitinib from 0 to 24h was 4893 (range, 698-13991) ng/mL h. The common adverse events were skin toxicity (68% of patients), diarrhea (46%), and liver injury (63%). One patient died of drug-induced interstitial lung disease (ILD). The overall response rate was 82.9% (95% confidence interval, 66.4%-93.4%). The median progression-free survival time was 10 months, and the median survival time was 25 months. The pharmacokinetics and pharmacogenomics were not associated with significantly different toxicities, response rates, or survival times with gefitinib. However, the AUC and Cmax were highest and the trough value on day 8 was the second highest in one patient who died of drug-induced ILD.
CONCLUSION: Elevated gefitinib exposure might be associated with drug-induced ILD.

Noll EM, Eisen C, Stenzinger A, et al.
CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma.
Nat Med. 2016; 22(3):278-87 [PubMed] Free Access to Full Article Related Publications
Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance.

Zhao J, Bai Z, Feng F, et al.
Cross-talk between EPAS-1/HIF-2α and PXR signaling pathway regulates multi-drug resistance of stomach cancer cell.
Int J Biochem Cell Biol. 2016; 72:73-88 [PubMed] Related Publications
EPAS-1/HIF-2α (Endothelial PAS domain-containing protein 1/hypoxia-inducible transcription factors 2α) is a transcription factor expressed in a wide range of human cancers, including stomach cancer. Although EPAS-1 has been studied for years, its function in oncogenic transformation processes needs to be further investigated. In this study, we found that EPAS-1 would promote the growth of stomach cancer cell line BGC-823. Our results revealed that EPAS-1 interacts with Pregnane X Receptor (PXR), a nuclear receptor that regulates multiple genes' transcription involved in multi-drugs resistance (MDR) process. Protein-protein interaction between EPAS-1 and PXR was identified by co-immunoprecipitation and GST-pull down assays. By this interaction, EPAS-1 recruited PXR to its response elements in promoter/enhancer regions of CYP3A4, a PXR target gene. Over-expression of EPAS-1 increased the expression of PXR responsive genes, enhanced the proliferation of BGC-823 cells and boosted the resistance of BGC-823 cells against the cytotoxicity of chemotherapeutic drugs, e.g. Mitomycin C and Paclitaxel. Reduction of EPAS-1 level via its siRNA disrupted the proliferation, and enhanced the susceptibility of BGC-823 cells to those chemotherapeutic drugs. Our findings suggested that EPAS-1 and PXR may cooperatively participate in development and especially MDR process of stomach cancer. These findings may contribute to more effective targeted drugs discovery for the stomach cancer therapy.

Szalai R, Ganczer A, Magyari L, et al.
Interethnic differences of cytochrome P450 gene polymorphisms may influence outcome of taxane therapy in Roma and Hungarian populations.
Drug Metab Pharmacokinet. 2015; 30(6):453-6 [PubMed] Related Publications
Taxanes are widely used microtubule-stabilizing chemotherapeutic agents in the treatment of cancers. Several cytochrome P450 gene variants have been proven to influence taxane metabolism and therapy. The purpose of this work was to determine the distribution of genetic variations of CYP1B1, CYP2C8 and CYP3A5 genes as the first report on taxane metabolizer cytochrome P450 gene polymorphisms in Roma and Hungarian populations. A total of 397 Roma and 412 Hungarian healthy subjects were genotyped for CYP1B1 c.4326C > G, CYP2C8 c.792C > G and CYP3A5 c.6986A > G variant alleles by PCR-RFLP assay and direct sequencing. We found significant differences in the frequencies of homozygous variant genotypes of CYP1B1 4326 GG (p = 0.002) and CYP3A5 6986 GG (p < 0.001) between Roma and Hungarian populations. Regarding minor allele frequencies, for CYP2C8 a significantly increased prevalence was found in 792G allele frequency in the Hungarian population compared to the Roma population (5.83% vs. 2.14%, p = 0.001). Our results can be used as possible predictive factors in population specific treatment algorithms to developing effective programs for a better outcome in patients treated with taxanes.

Agarwal G, Tulsyan S, Lal P, Mittal B
Generalized Multifactor Dimensionality Reduction (GMDR) Analysis of Drug-Metabolizing Enzyme-Encoding Gene Polymorphisms may Predict Treatment Outcomes in Indian Breast Cancer Patients.
World J Surg. 2016; 40(7):1600-10 [PubMed] Related Publications
BACKGROUND: Prediction of response and toxicity of chemotherapy can help personalize the treatment and choose effective yet non-toxic treatment regimen for a breast cancer patient. Interplay of variations in various drug-metabolizing enzyme (DME)-encoding genes results in variable response and toxicity of chemotherapeutic drugs. Generalized multi-analytical (GMDR) approach was used to determine the influence of the combination of variants of genes encoding phase 0 (SLC22A16); phase I (CYP450, NQO1); phase II (GSTs, MTHFR, UGT2B15); and phase III (ABCB1) DMEs along with confounding factors on the response and toxicity of chemotherapeutic drugs in breast cancer patients.
METHODS: In an Indian breast cancer patient cohort (n = 234), response to neo-adjuvant chemotherapy (n = 111) and grade 2-4 toxicity to chemotherapy were recorded. Patients were genotyped for 19 polymorphisms selected in four phases of DMEs by PCR or PCR-RFLP or Taqman allelic discrimination assay. Binary logistic regression and GMDR analysis was performed. Bonferroni test for multiple comparisons was applied, and p value was considered to be significant at <0.025.
RESULTS: For ABCB1 1236C>T polymorphism, CT genotype was found to be significantly associated with response to NACT in uni-variate and multi-variate analysis (p = 0.018; p = 0.013). The TT genotype of NQO1 609C>T had a significant association with (absence of) grade 2-4 toxicity in uni-variate analysis (p = 0.021), but a non-significant correlation in multi-variate analysis. In GMDR analysis, interaction of CYP3A5*3, NQO1 609C>T, and ABCB1 1236C>T polymorphisms yielded the highest testing accuracy for response to NACT (CVT = 0.62). However, for grade 2-4 toxicity, CYP2C19*2 and ABCB1 3435C>T polymorphisms yielded the best interaction model (CVT = 0.57).
CONCLUSION: This pharmacogenetic study suggests a role of higher order gene-gene interaction of DME-encoding genes, along with confounding factors, in determination of treatment outcomes and toxicity in breast cancer patients. This can be used as a potential objective tool for individualizing breast cancer chemotherapy with high efficacy and low toxicity.

Zhou X, Wang X, Song Q, et al.
Transformation of alkylating regimen of thiotepa into tepa determines the disease progression through GSTP1 gene polymorphism for metastatic breast cancer patients receiving thiotepa containing salvage chemotherapy.
Int J Clin Pharmacol Ther. 2015; 53(11):914-22 [PubMed] Related Publications
BACKGROUND: The shifts to second-line chemotherapy for metastatic breast cancer (MBC) were widely required based on pharmaceutical molecular profiles to reach out precision medicine. The emerging precise treatment of cancer requires the implementation of clarified pharmacogenetic profiles which are capable of elucidating the predictive responses to cancer chemotherapy. Therefore we were interested in the analysis of the roles of single nucleotide polymorphism (SNP) of GSTP1 (glutathione S-transferase pi 1 gene) alleles to identify pharmacological links with predictors of clinical responses and toxicities.
METHODS: 93 MBC patients receiving thiotepa plus docetaxel chemotherapy were enrolled in this study. Optimized CYP3A5, CYP2B6, and GSTP1 were predominantly selected as candidate genes and their three SNPs (CYP2B6 G516T, CYP3A5 A6986G, and GSTP1 A313G) were genotyped by matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) mass spectrometry. Progression-free survival (PFS), disease control rate, and chemo-related toxicities were recorded.
RESULTS: GSTP1 A313G (rs1695) was identified to be related with disease progression. In particular, patients harboring AG/GG genotype demonstrated a statistically longer PFS than those with AA. Multivariate analysis confirmed that AG/GG genotype was associated with both clinical responses and liver-localized metastatic lesions. No correlation was found between these three SNPs and chemotherapy-induced toxicity.
CONCLUSIONS: These results suggest that the GSTP1 polymorphism is a novel prognostic marker for clinical response to thiotepa-containing chemotherapy regimens. Such evidence could provide insight into the role of pharmacogenetics to deprive of biases in shifting regimens solely by empirical choices.

Liu Y, Flynn TJ, Xia M, et al.
Evaluation of CYP3A4 inhibition and hepatotoxicity using DMSO-treated human hepatoma HuH-7 cells.
Cell Biol Toxicol. 2015; 31(4-5):221-30 [PubMed] Free Access to Full Article Related Publications
A human hepatoma cell line (HuH-7) was evaluated as a metabolically competent cell model to investigate cytochrome P450 3A4 (CYP3A4) inhibition, induction, and hepatotoxicity. First, CYP3A4 gene expression and activity were determined in HuH-7 cells under three culture conditions: 1-week culture, 3-week culture, or 1 % dimethyl sulfoxide (DMSO) treatment. HuH-7 cells treated with DMSO for 2 weeks after confluence expressed the highest CYP3A4 gene expression and activity compared to the other two culture conditions. Furthermore, CYP3A4 activity in DMSO-treated HuH-7 cells was compared to that in a human hepatoma cell line (HepG2/C3A) and human bipotent progenitor cell line (HepaRG), which yielded the following ranking: HepaRG > DMSO-treated HuH-7 > HepG2/C3A cells. The effects of three known CYP3A4 inhibitors were evaluated using DMSO-treated HuH-7 cells. CYP3A4 enzyme inhibition in HuH-7 cells was further compared to human recombinant CYP3A4, indicating similar potency for reversible inhibitors (IC 50 within 2.5-fold), but different potency for the irreversible inhibitor. Next, induction of CYP3A4 activity was compared between DMSO-treated HuH-7 and HepaRG cells using two known inducers. DMSO-treated HuH-7 cells yielded minimal CYP3A4 induction compared to that in the HepaRG cells after 48-h treatments. Finally, the cytotoxicity of five known hepatotoxicants was evaluated in DMSO-treated HuH-7, HepG2/C3A, and HepaRG cells, and significant differences in cytotoxic sensitivity were observed. Overall, DMSO-treated HuH-7 cells are a valuable model for medium- or high-throughput screening of chemicals for CYP3A4 inhibition and hepatotoxicity.

Han K, Jin JY, Marchand M, et al.
Population pharmacokinetics and dosing implications for cobimetinib in patients with solid tumors.
Cancer Chemother Pharmacol. 2015; 76(5):917-24 [PubMed] Related Publications
PURPOSE: To characterize cobimetinib pharmacokinetics and evaluate impact of clinically relevant covariates on cobimetinib pharmacokinetics.
METHODS: Plasma samples (N = 4886) were collected from 487 patients with various solid tumors (mainly melanoma) in three clinical studies (MEK4592g, NO25395, GO28141). Cobimetinib was administered orally, once daily on either a 21-day-on/7-day-off, 14-day-on/14-day-off or 28-day-on schedule in a 28-day dosing cycle as single agent or in combination with vemurafenib. Cobimetinib doses ranged from 2.1 to 125 mg. NONMEM was used for pharmacokinetic analysis.
RESULTS: A linear two-compartment model with first-order absorption, lag time and first-order elimination described cobimetinib pharmacokinetics. The typical estimates (inter-individual variability) of apparent clearance (CL/F), central volume of distribution (V2/F) and terminal half-life were 322 L/day (58 %), 511 L (49 %) and 2.2 days, respectively. Inter-occasion variability on relative bioavailability was estimated at 46 %. CL/F decreased with age. V2/F increased with body weight (BWT). However, the impact of age and BWT on cobimetinib steady-state exposure (peak and trough concentrations and AUC following the recommended daily dose of 60 mg 21-day-on/7-day-off) was limited (<25 % changes across the distribution of age and BWT). No significant difference in cobimetinib pharmacokinetics or steady-state exposure was observed between patient subgroups based on sex, renal function, ECOG score, hepatic function tests, race, region, cancer type, and co-administration of moderate and weak CYP3A inducers or inhibitors and vemurafenib.
CONCLUSION: A population pharmacokinetic model was developed for cobimetinib in cancer patients. Covariates had minimal impact on steady-state exposure, suggesting no need for dose adjustments and supporting the recommended dose for all patients.

Vaidya S, Ghosh K, Shanmukhaiah C, Vundinti BR
Genetic variations of hOCT1 gene and CYP3A4/A5 genes and their association with imatinib response in Chronic Myeloid Leukemia.
Eur J Pharmacol. 2015; 765:124-30 [PubMed] Related Publications
There is an increasing body of evidence demonstrating that mechanisms independent of BCR/ABL gene also contribute to imatinib resistance in Chronic Myeloid Leukemia (CML). It has been extensively reported that polymorphisms of the genes associated with imatinib metabolization and imatinib influx/efflux play an important role in the disease resistance. We investigated the impact of 12 genetic variants of the two genes, CYP3A4/A5 and the human cation transporter 1 gene (hOCT1) on the clinical outcome, in a cohort of 106 newly diagnosed CML patients. In the patient cohort investigated, only 6 variant alleles could be detected. The others were not present and could not be investigated. Two polymorphisms, CYP3A5*3 (rs776746)and hOCT1 M408V (rs628031), were significantly associated with the Complete Cytogenetic Response (CCyR) at 6 months and Major Molecular Response (MMR) at 12 months. The presence of favourable alleles at M408V and M420del in combination was associated with a MMR at 12 months. Functional polymorphisms of the genes associated with imatinib influx and metabolization may play a role in predicting primary response to imatinib and treatment outcome.

Shi Y, Liu Y, Wei Z, et al.
Hsa-miR-27a is involved in the regulation of CYP3A4 expression in human livers from Chinese Han population.
Pharmacogenomics. 2015; 16(12):1379-86 [PubMed] Related Publications
AIM: The huge interindividual difference of CYP3A4 expression may contribute to the variability of drug response. Post-transcriptional regulation of CYP3A4 remains elusive although transcriptional regulation has been studied much more clearly. microRNAs (miRNAs) were reported to be one of factors to regulate the expression of CYP3A4 previously.
MATERIALS & METHODS: Based on the in silico prediction of 3'-UTR-bindind site of microRNA-27a (miR-27a), the transcriptional and post-transcriptional regulation of miR-27a were investigated through luciferase reporter assay, real-time PCR and immunoblot.
RESULTS: The significantly decrease of CYP3A4 3'-UTR-luciferase activity in human embryonic kidney 293 and Hep3B cells was detected after transfected with plasmid that expressed miRNA-27a in luciferase reporter assay. Correlation study was conducted in human livers (n = 26) and significant correlation has been discovered between miRNA-27a and CYP3A4 mRNA and protein level.
CONCLUSION: Together, these findings suggest that miR-27a might be involved in the regulation of CYP3A4 gene expression.

Wan YC, Li T, Han YD, et al.
J Biol Regul Homeost Agents. 2015 Apr-Jun; 29(2):401-10 [PubMed] Related Publications
The causes and pathogenesis of Inflammatory Bowel Disease (IBD) are still not clearly understood. This study aims to prove the important role of rifaximin played in inflammatory reaction caused by abnormity of the intestinal mucosal immune system. Intestinal microflora can greatly promote and maintain the inflammatory reaction of IBD, therefore, antibiotics can be used to treat IBD. Rifaximin is a medicine usually used for local intestinal infection. Many clinical and basic studies have shown that both a single application of rifaximin and the joint application with other medicines could achieve a good efficacy. This paper studied the activation of Pregnane Xenobiotic Receptor (PXR) in treating IBD with rifaximin and analyzed its efficacy in IBD when PXR was involved in the transport of medicine and metabolism. The results prove that rifaximin can not only serve as an anti-microbial drug, but can activate PXR and actually weaken the reaction of IBD. Thus it is safe to say that rifaximin has great potential in treating IBD.

Lopes BA, Emerenciano M, Gonçalves BA, et al.
Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 Are Associated with Early Age Acute Leukemia.
PLoS One. 2015; 10(5):e0127308 [PubMed] Free Access to Full Article Related Publications
Based on observational studies, early age leukemia (EAL) was associated with maternal hormone exposure during pregnancy. We studied the association between genetic polymorphisms of estrogen metabolism and EAL. Using data from the Brazilian Collaborative Study Group of Infant Acute Leukemia (2000-2012), 350 cases and 404 age-matched controls and 134 mothers of cases and controls were genotyped to explore polymorphisms in genes of the estrogen metabolism pathway: CYP1B1 (c.1294C>G, rs1056836), CYP3A4 (c.-392A>G, rs2740574), CYP3A5 (c.219-237G>A, rs776746), GSTM1/GSTT1 deletions, and SULT1A1 (c.638G>A, rs9282861; and c.667A>G, rs1801030). Logistic regression was used to calculate the odds ratios (OR) with 95% confidence intervals (CIs), and unconditional logistic regression was used to estimate adjusted odds ratios (aORs) by ethnicity. Because of multiple testing, p values < 0.01 were significant after Bonferroni correction. SULT1A1 (c.638G>A) was associated to infant acute lymphoblastic leukemia and acute myeloid leukemia (AML) risk in males (additive model: aOR = 0.52; 95% CI: 0.29-0.95, p = 0.03; dominant model: aOR = 2.18; 95% CI: 1.17-4.05, p = 0.01, respectively). CYP1B1 polymorphism was associated with a decreased risk of AML either for non-white or female children (additive model: OR = 0.24; 95% CI: 0.08-0.76, p < 0.01; additive model: aOR = 0.27; 95% CI: 0.08-0.89, p = 0.03, respectively). Since polymorphisms of Cytochrome P450 genes presented gender-specific risk associations, we also investigated their expression. CYP1B1 was not expressed in 57.1% of EAL cases, and its expression varied by genotype, gender, and leukemia subtype. Maternal-fetal GSTT1 null genotype was associated with risk of EAL. This study shows that polymorphisms in genes of estrogen metabolism confer genetic susceptibility to EAL, mainly in males, and maternal susceptibility genes modify the risk for developing EAL in newborns.

Chau CH, Price DK, Till C, et al.
Finasteride concentrations and prostate cancer risk: results from the Prostate Cancer Prevention Trial.
PLoS One. 2015; 10(5):e0126672 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: In the Prostate Cancer Prevention Trial (PCPT), finasteride reduced the risk of prostate cancer by 25%, even though high-grade prostate cancer was more common in the finasteride group. However, it remains to be determined whether finasteride concentrations may affect prostate cancer risk. In this study, we examined the association between serum finasteride concentrations and the risk of prostate cancer in the treatment arm of the PCPT and determined factors involved in modifying drug concentrations.
METHODS: Data for this nested case-control study are from the PCPT. Cases were drawn from men with biopsy-proven prostate cancer and matched controls. Finasteride concentrations were measured using a liquid chromatography-mass spectrometry validated assay. The association of serum finasteride concentrations with prostate cancer risk was determined by logistic regression. We also examine whether polymorphisms in the enzyme target and metabolism genes of finasteride are related to drug concentrations using linear regression.
RESULTS AND CONCLUSIONS: Among men with detectable finasteride concentrations, there was no association between finasteride concentrations and prostate cancer risk, low-grade or high-grade, when finasteride concentration was analyzed as a continuous variable or categorized by cutoff points. Since there was no concentration-dependent effect on prostate cancer, any exposure to finasteride intake may reduce prostate cancer risk. Of the twenty-seven SNPs assessed in the enzyme target and metabolism pathway, five SNPs in two genes, CYP3A4 (rs2242480; rs4646437; rs4986910), and CYP3A5 (rs15524; rs776746) were significantly associated with modifying finasteride concentrations. These results suggest that finasteride exposure may reduce prostate cancer risk and finasteride concentrations are affected by genetic variations in genes responsible for altering its metabolism pathway.

Dong N, Meng F, Wu Y, et al.
Genetic polymorphisms in cytochrome P450 and clinical outcomes of FOLFIRI chemotherapy in patients with metastatic colorectal cancer.
Tumour Biol. 2015; 36(10):7691-8 [PubMed] Related Publications
The purpose of this study is to evaluate the influence of germline polymorphisms of cytochrome P450 (CYP450) on objective response, progression-free survival (PFS) and overall suruvival (OS) in metastatic colorectal cancer (mCRC) receiving the combination chemotherapy of irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI). All SNPs in CYP450, whose minor allele frequency were more than 10 %, were genotyped in 82 patients with mCRC who received first-line FOLFIRI regimen. χ (2) test or Fisher's exact test was used to assess the correlation between SNPs and objective response as appropriate and log-rank test between SNPs and PFS or OS. Cox proportional hazards models were used to analyze the association of CYP450 gene polymorphisms and clinical factors for PFS and OS. No SNP showed predictive or prognostic value for clinical outcomes, except for CYP3A5 rs776746 A>G, which was significantly associated with PFS (P = 0.0002). Multivariate analysis confirmed its prognostic value for PFS (P = 0.002). CYP3A5 rs776746 A>G polymorphisms have a prognostic contribution toward FOLFIRI regimen in mCRC. This could represent a further step toward personalized therapy.

Diekstra MH, Swen JJ, Boven E, et al.
CYP3A5 and ABCB1 polymorphisms as predictors for sunitinib outcome in metastatic renal cell carcinoma.
Eur Urol. 2015; 68(4):621-9 [PubMed] Related Publications
BACKGROUND: In our exploratory studies, we associated single nucleotide polymorphisms (SNPs) in candidate genes with the efficacy and toxicities of sunitinib in metastatic renal cell carcinoma (mRCC).
OBJECTIVE: To see whether previously reported associations of SNPs with sunitinib-induced toxicities and efficacy in mRCC can be confirmed in a large cohort of patients.
DESIGN, SETTING, AND PARTICIPANTS: The mRCC patients treated with sunitinib and a DNA sample available were pooled from three exploratory studies conducted in the United States, Spain, and the Netherlands. A total of 22 SNPs and 6 haplotypes in 10 candidate genes related to the pharmacokinetics and pharmacodynamics of sunitinib were selected for association testing.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: SNPs and haplotypes were tested for associations with toxicity, dose reductions, progression-free survival (PFS), overall survival (OS), and best objective response.
RESULTS AND LIMITATIONS: A total of 333 patients were included. We confirmed 2 of the 22 previously reported SNP associations. The presence of CYP3A5*1 was associated with dose reductions (odds ratio: 2.0; 95% confidence interval [CI], 1.0-4.0, p=0.039). The presence of CGT in the ABCB1 haplotype was associated with an increased PFS (hazard ratio: 1.9; 95% CI, 1.3-2.6; p<0.001) and remained significant after Bonferroni correction. These associations are consistent with prior observations.
CONCLUSIONS: The confirmation of previously reported associations between polymorphisms in CYP3A5 and ABCB1 with sunitinib toxicity and efficacy, respectively, indicates that genotyping of these genetic variants will be useful for guiding sunitinib treatment. A prospective validation study is needed to confirm our findings on ABCB1 and CYP3A5 genetic polymorphisms.
PATIENT SUMMARY: We confirmed that variants in genes involved in processing sunitinib through the body have an effect on sunitinib treatment outcome. These findings confirm the potential of testing for these genetic variants to improve individual patient care for patients with metastatic renal cell carcinoma treated with sunitinib.

Alonso S, Su M, Jones JW, et al.
Human bone marrow niche chemoprotection mediated by cytochrome P450 enzymes.
Oncotarget. 2015; 6(17):14905-12 [PubMed] Free Access to Full Article Related Publications
Substantial evidence now demonstrates that interactions between the tumor microenvironment and malignant cells are a critical component of clinical drug resistance. However, the mechanisms responsible for microenvironment-mediated chemoprotection remain unclear. We showed that bone marrow (BM) stromal cytochrome P450 (CYP)26 enzymes protect normal hematopoietic stem cells (HSCs) from the pro-differentiation effects of retinoic acid. Here, we investigated if stromal expression of CYPs is a general mechanism of chemoprotection. We found that similar to human hepatocytes, human BM-derived stromal cells expressed a variety of drug-metabolizing enzymes. CYP3A4, the liver's major drug-metabolizing enzyme, was at least partially responsible for BM stroma's ability to protect multiple myeloma (MM) and leukemia cells from bortezomib and etoposide, respectively, both in vitro and in vivo. Moreover, clarithromycin overcame stromal-mediated MM resistance to dexamethasone, suggesting that CYP3A4 inhibition plays a role in its ability to augment the activity of lenalidomide and dexamethasone as part of the BiRd regimen. We uncovered a novel mechanism of microenvironment-mediated drug resistance, whereby the BM niche creates a sanctuary site from drugs. Targeting these sanctuaries holds promise for eliminating minimal residual tumor and improving cancer outcomes.

Hagleitner MM, Coenen MJ, Gelderblom H, et al.
A First Step toward Personalized Medicine in Osteosarcoma: Pharmacogenetics as Predictive Marker of Outcome after Chemotherapy-Based Treatment.
Clin Cancer Res. 2015; 21(15):3436-41 [PubMed] Related Publications
PURPOSE: Overall survival in patients with osteosarcoma is only 60%. Poor response to chemotherapy is the dominant risk factor for poor survival. Pharmacogenetic research can offer possibilities to optimize treatment and improve outcome. We applied a pathway-based approach to evaluate the cumulative effect of genes involved in the metabolism of cisplatin and doxorubicin in relationship to clinical outcome.
EXPERIMENTAL DESIGN: We included 126 patients with osteosarcoma. To comprehensively assess common genetic variation in the 54 genes selected, linkage disequilibrium (LD; r(2) = 0.8)-based tag-single nucleotide polymorphisms (SNP) strategy was used. A final set of 384 SNPs was typed using Illumina Beadarray platform. SNPs significantly associated with 5-year progression-free survival (PFS) were replicated in another 64 patients with osteosarcoma.
RESULTS: We identified five variants in FasL, MSH2, ABCC5, CASP3, and CYP3A4 that were associated with 5-year PFS. Risk stratification based on the combined effects of the risk alleles showed a significant improvement of 5-year PFS. Patients that carried no or only one risk allele had a 5-year PFS of 100% compared with a 5-year PFS of 84.4% for carriers of two or three risk alleles, 66.7% PFS if a patient carried four to five alleles, and a 5-year PFS of 41.8% for patients with >5 risk alleles (P < 0.001).
CONCLUSIONS: We identified several genes that showed association with PFS in patients with osteosarcoma. These pharmacogenetic risk factors might be useful to predict treatment outcome and to stratify patients immediately after diagnosis and offer the possibility to improve treatment and outcome.

Jiang F, Chen L, Yang YC, et al.
CYP3A5 Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Regulating mTORC2/Akt Signaling.
Cancer Res. 2015; 75(7):1470-81 [PubMed] Related Publications
CYP3A5 is a cytochrome P450 protein that functions in the liver metabolism of many carcinogens and cancer drugs. However, it has not been thought to directly affect cancer progression. In this study, we challenge this perspective by demonstrating that CYP3A5 is downregulated in many hepatocellular carcinomas (HCC), where it has an important role as a tumor suppressor that antagonizes the malignant phenotype. CYP3A5 was downregulated in multiple cohorts of human HCC examined. Lower CYP3A5 levels were associated with more aggressive vascular invasion, poor differentiation, shorter time to disease recurrence after treatment, and worse overall patient survival. Mechanistic investigations showed that CYP3A5 overexpression limited MMP2/9 function and suppressed HCC migration and invasion in vitro and in vivo by inhibiting AKT signaling. Notably, AKT phosphorylation at Ser473 was inhibited in CYP3A5-overexpressing HCC cells, an event requiring mTORC2 but not Rictor/mTOR complex formation. CYP3A5-induced ROS accumulation was found to be a critical upstream regulator of mTORC2 activity, consistent with evidence of reduced GSH redox activity in most clinical HCC specimens with reduced metastatic capacity. Taken together, our results defined CYP3A5 as a suppressor of HCC pathogenesis and metastasis with potential utility a prognostic biomarker.

Pondugula SR, Flannery PC, Apte U, et al.
Mg2+/Mn2+-dependent phosphatase 1A is involved in regulating pregnane X receptor-mediated cytochrome p450 3A4 gene expression.
Drug Metab Dispos. 2015; 43(3):385-91 [PubMed] Related Publications
Variations in the expression of human pregnane X receptor (hPXR)-mediated cytochrome p450 3A4 (CYP3A4) in liver can alter therapeutic response to a variety of drugs and may lead to potential adverse drug interactions. We sought to determine whether Mg(2+)/Mn(2+)-dependent phosphatase 1A (PPM1A) regulates hPXR-mediated CYP3A4 expression. PPM1A was found to be coimmunoprecipitated with hPXR. Genetic or pharmacologic activation of PPM1A led to a significant increase in hPXR transactivation of CYP3A4 promoter activity. In contrast, knockdown of endogenous PPM1A not only attenuated hPXR transactivation, but also increased proliferation of HepG2 human liver carcinoma cells, suggesting that PPM1A expression levels regulate hPXR, and that PPM1A expression is regulated in a proliferation-dependent manner. Indeed, PPM1A expression and hPXR transactivation were found to be significantly reduced in subconfluent HepG2 cells compared with confluent HepG2 cells, suggesting that both PPM1A expression and hPXR-mediated CYP3A4 expression may be downregulated in proliferating livers. Elevated PPM1A levels led to attenuation of hPXR inhibition by tumor necrosis factor-α and cyclin-dependent kinase-2, which are known to be upregulated and essential during liver regeneration. In mouse regenerating livers, similar to subconfluent HepG2 cells, expression of both PPM1A and the mouse PXR target gene cyp3a11 was found to be downregulated. Our results show that PPM1A can positively regulate PXR activity by counteracting PXR inhibitory signaling pathways that play a major role in liver regeneration. These results implicate a novel role for PPM1A in regulating hPXR-mediated CYP3A4 expression in hepatocytes and may explain a mechanism for CYP3A repression in regenerating livers.

Zak M, Liederer BM, Sampath D, et al.
Identification of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with no evidence of CYP3A4 time-dependent inhibition and improved aqueous solubility.
Bioorg Med Chem Lett. 2015; 25(3):529-41 [PubMed] Related Publications
Herein we report the optimization efforts to ameliorate the potent CYP3A4 time-dependent inhibition (TDI) and low aqueous solubility exhibited by a previously identified lead compound from our NAMPT inhibitor program (1, GNE-617). Metabolite identification studies pinpointed the imidazopyridine moiety present in 1 as the likely source of the TDI signal, and replacement with other bicyclic systems was found to reduce or eliminate the TDI finding. A strategy of reducing the number of aromatic rings and/or lowering cLogD7.4 was then employed to significantly improve aqueous solubility. These efforts culminated in the discovery of 42, a compound with no evidence of TDI, improved aqueous solubility, and robust efficacy in tumor xenograft studies.

Kobayashi H, Sato K, Niioka T, et al.
Relationship Among Gefitinib Exposure, Polymorphisms of Its Metabolizing Enzymes and Transporters, and Side Effects in Japanese Patients With Non-Small-Cell Lung Cancer.
Clin Lung Cancer. 2015; 16(4):274-81 [PubMed] Related Publications
INTRODUCTION: The present study investigated the effects of patients' genetic variations in the pharmacokinetics of gefitinib at steady-state. We analyzed 31 Japanese patients with non-small-cell lung cancer (NSCLC) who had been treated with gefitinib. We focused on common polymorphisms within important gefitinib exposure genes, including cytochromes P450 (CYPs) CYP3A4*1G, CYP3A5 (*3), and CYP2D6 (*5 and *10) and ATP-binding cassette (ABC) ABCG2 (421C>A) and ABCB1 (1236C>T, 2677G>T/A, and 3435C>T).
MATERIALS AND METHODS: Fourteen days after beginning 250 mg of gefitinib therapy, when the patients were in steady-state, blood samples were collected just before and 1, 2, 4, 6, 8, 12, and 24 hours after oral gefitinib administration. The plasma concentrations of gefitinib were measured using high-performance liquid chromatography.
RESULTS: The median area under the concentration-time curve from 0 to 24 hours (AUC0-24) and trough plasma concentration (C0) of gefitinib was 10,086 ng · h/mL (range, 3247-24,726 ng · h/mL) and 334 ng/mL (range, 77.9-813 ng/mL), respectively. No significant differences were found in the AUC0-24 or C0 for gefitinib or in the frequency of diarrhea, skin rash or hepatotoxicity among the CYP3A4, CYP3A5, CYP2D6, ABCG2 (421C>A), and ABCB1 (1236C>T, 2677G>T/A, and 3435C>T) genotype groups. However, the AUC0-24 and C0 levels of gefitinib in the patients with diarrhea or hepatotoxicity were significantly greater than in those without (diarrhea: AUC0-24, 14,246 vs. 8918 ng · h/mL, P = .006; C0: 421 vs. 261 ng/mL, P = .002; hepatotoxicity: AUC0-24, 12,967 vs. 8473 ng · h/mL, P = .024; C0: 420 vs. 248 ng/mL, P = .002).
CONCLUSION: The side effects from gefitinib were related to exposure but not genetic polymorphism. Therefore, therapeutic drug monitoring after beginning gefitinib therapy rather than the analysis of polymorphism before initiating therapy might be beneficial.

Theile D, Haefeli WE, Weiss J
Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro.
Endocrine. 2015; 49(3):842-53 [PubMed] Related Publications
Mitotane (1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane, o,p'-DDD) represents one of the most active drugs for the treatment of adrenocortical carcinoma. Its metabolites 1,1-(o,p'-dichlorodiphenyl) acetic acid (=o,p'-DDA) and 1,1-(o,p'-dichlorodiphenyl)-2,2 dichloroethene (=o,p'-DDE) partly contribute to its pharmacological effects. Because mitotane has a narrow therapeutic index and causes pharmacokinetic drug-drug interactions, knowledge about these compounds' effects on drug metabolizing and transporting proteins is crucial. Using quantitative real-time polymerase chain reaction, our study confirmed the strong inducing effects of o,p'-DDD on mRNA expression of cytochrome P450 3A4 (CYP3A4, 30-fold) and demonstrated that other enzymes and transporters are also induced (e.g., CYP1A2, 8.4-fold; ABCG2 (encoding breast resistance cancer protein, BCRP), 4.2-fold; ABCB1 (encoding P-glycoprotein, P-gp) 3.4-fold). P-gp induction was confirmed at the protein level. o,p'-DDE revealed a similar induction profile, however, with less potency and o,p'-DDA had only minor effects. Reporter gene assays clearly confirmed o,p'-DDD to be a PXR activator and for the first time demonstrated that o,p'-DDE and o,p'-DDA also activate PXR albeit with lower potency. Using isolated, recombinant CYP enzymes, o,p'-DDD and o,p'-DDE were shown to strongly inhibit CYP2C19 (IC50 = 0.05 and 0.09 µM). o,p'-DDA exhibited only minor inhibitory effects. In addition, o,p'-DDD, o,p'-DDE, and o,p'-DDA are demonstrated to be neither substrates nor inhibitors of BCRP or P-gp function. In summary, o,p'-DDD and o,p'-DDE might be potential perpetrators in pharmacokinetic drug-drug interactions through induction of drug-metabolizing enzymes or drug transporters and by potent inhibition of CYP2C19. In tumors over-expressing BCRP or P-gp, o,p'-DDD and its metabolites should retain their efficacy due to a lack of substrate characteristics.

Hlaváč V, Brynychová V, Václavíková R, et al.
The role of cytochromes p450 and aldo-keto reductases in prognosis of breast carcinoma patients.
Medicine (Baltimore). 2014; 93(28):e255 [PubMed] Free Access to Full Article Related Publications
Metabolism of anticancer drugs affects their antitumor effects. This study has investigated the associations of gene expression of enzymes metabolizing anticancer drugs with therapy response and survival of breast carcinoma patients. Gene expression of 13 aldo-keto reductases (AKRs), carbonyl reductase 1, and 10 cytochromes P450 (CYPs) was assessed using quantitative real-time polymerase chain reaction in tumors and paired adjacent nonneoplastic tissues from 68 posttreatment breast carcinoma patients. Eleven candidate genes were then evaluated in an independent series of 50 pretreatment patients. Protein expression of the most significant genes was confirmed by immunoblotting. AKR1A1 was significantly overexpressed and AKR1C1-4, KCNAB1, CYP2C19, CYP3A4, and CYP3A5 downregulated in tumors compared with control nonneoplastic tissues after correction for multiple testing. Significant association of CYP2B6 transcript levels in tumors with expression of hormonal receptors was found in the posttreatment set and replicated in the pretreatment set of patients. Significantly higher intratumoral levels of AKR1C1, AKR1C2, or CYP2W1 were found in responders to neoadjuvant chemotherapy compared with nonresponders. Patients with high AKR7A3 or CYP2B6 levels in the pretreatment set had significantly longer disease-free survival than patients with low levels. Protein products of AKR1C1, AKR1C2, AKR7A3, CYP3A4, and carbonyl reductase (CBR1) were found in tumors and those of AKR1C1, AKR7A3, and CBR1 correlated with their transcript levels. Small interfering RNA-directed knockdown of AKR1C2 or vector-mediated upregulation of CYP3A4 in MDA-MB-231 model cell line had no effect on cell proliferation after paclitaxel treatment in vitro. Prognostic and predictive roles of drug-metabolizing enzymes strikingly differ between posttreatment and pretreatment breast carcinoma patients. Mechanisms of action of AKR1C2, AKR7A3, CYP2B6, CYP3A4, and CBR1 should continue to be further followed in breast carcinoma patients and models.

Bosó V, Herrero MJ, Santaballa A, et al.
SNPs and taxane toxicity in breast cancer patients.
Pharmacogenomics. 2014; 15(15):1845-58 [PubMed] Related Publications
AIM: In order to identify genetic variants associated with taxanes toxicity, a panel with 47 SNPs in 20 genes involved in taxane pathways was designed.
PATIENTS & METHODS: Genomic DNA of 113 breast cancer patients was analyzed (70 taking docetaxel, 43 taking paclitaxel).
RESULTS: Two SNPs associated with docetaxel toxicity were identified: CYP3A4*1B with infusion-related reactions; and ERCC1 Gln504Lys with mucositis (p≤0.01). Regarding paclitaxel toxicity: CYP2C8 HapC and CYP2C8 rs1934951 were associated with anemia; and ERCC1 Gln504Lys with neuropathy (p≤0.01).
CONCLUSION: Genes involved in DNA repair mechanisms and reactive oxygen species levels influence taxane toxicity in cancer patients treated with chemotherapy schemes not containing platinum. These findings could lead to better treatment selection for breast cancer patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CYP3A5, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999