Gene Summary

Gene:M6PR; mannose-6-phosphate receptor (cation dependent)
Aliases: SMPR, MPR46, CD-MPR, MPR 46, MPR-46
Summary:This gene encodes a member of the P-type lectin family. P-type lectins play a critical role in lysosome function through the specific transport of mannose-6-phosphate-containing acid hydrolases from the Golgi complex to lysosomes. The encoded protein functions as a homodimer and requires divalent cations for ligand binding. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. A pseudogene of this gene is located on the long arm of chromosome X. [provided by RefSeq, May 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:cation-dependent mannose-6-phosphate receptor
Source:NCBIAccessed: 26 February, 2015


What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 26 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA-Binding Proteins
  • TNF
  • Breast Cancer
  • Genetic Predisposition
  • Messenger RNA
  • Trophoblastic Neoplasms
  • Cancer DNA
  • Receptors, Colony-Stimulating Factor
  • Cancer Gene Expression Regulation
  • Structure-Activity Relationship
  • Skin Cancer
  • Tumor Stem Cell Assay
  • Liver Cancer
  • Statistics as Topic
  • Polymerase Chain Reaction
  • Protein-Serine-Threonine Kinases
  • Hepatocellular Carcinoma
  • Transforming Growth Factor beta
  • Tamoxifen
  • Transcription
  • IGF2
  • Microsatellite Repeats
  • IGF1R
  • Frameshift Mutation
  • Transforming Growth Factor beta Receptors
  • Base Sequence
  • Trans-Activators
  • Transcription Factors
  • Loss of Heterozygosity
  • Species Specificity
  • Sulfites
  • BCL2 protein
  • IGF2R
  • Tumor Suppressor Gene
  • Mutation
  • Proto-Oncogene Proteins
  • Neoplasm Proteins
  • Sodium Dodecyl Sulfate
  • Chromosome 12
  • Survival Rate
Tag cloud generated 26 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: M6PR (cancer-related)

Ou JM, Lian WS, Qiu MK, et al.
Knockdown of IGF2R suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in vivo.
Int J Oncol. 2014; 45(3):1241-9 [PubMed] Related Publications
Insulin-like growth factor-II (IGF-II)/IGF2R signaling plays a pivotal role in cell growth, migration and differentiation in many malignancies. An individual with high IGF-II expression levels has a high risk of developing cancer, but IGF2R is often considered to be a tumor suppressor. To date, little has been reported about the role of IGF-II/IGF2R signaling in hemangiomas (HAs). Thus, uncovering the mechanisms of IGF-II/IGF2R signaling is very important to understanding the development of HAs. In the present study, the expression of IGF-II and IGF2R was investigated in 27 cases of HAs of different phases by immunohistochemistry. Through lentivirus-mediated IGF2R siRNA (Lv-siIGF2R) in HA-derived endothelial cells (HDECs), we observed the effects of IGF2R knockdown on the biological behavior of HA cells. We found that the expression of IGF-II and IGF2R was significantly increased in proliferating phase HAs, but decreased in involuting phase HAs. Furthermore, knockdown of IGF2R in vitro significantly diminished the proliferative activity and induced apoptosis and cycle arrest with decreased expression of PCNA, Ki-67, Bcl-2, Cyclin D1 and E and increased the expression of Bax in the proliferative phase HAs (HDEC and CRL-2586 EOMA cells). In addition, the tumor volumes in a subcutaneous HDEC nude mouse model treated with Lv-siIGF2R were significantly smaller than those of the control group. Taken together, our findings indicate that the expression of IGF-II and IGF2R is increased in proliferating phase HAs, and knockdown of IGF2R suppresses proliferation and induces apoptosis in HA cells in vitro and in vivo, suggesting that IGF2R may represent a novel therapeutic target for the treatment of human HAs.

Rashad NM, El-Shal AS, Abd Elbary EH, et al.
Impact of insulin-like growth factor 2, insulin-like growth factor receptor 2, insulin receptor substrate 2 genes polymorphisms on susceptibility and clinicopathological features of hepatocellular carcinoma.
Cytokine. 2014; 68(1):50-8 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. Insulin-like growth factor-2 (IGF-2) is an important autocrine and paracrine growth factor which may induce cell proliferation and inhibit cell apoptosis leading to the transformation of normal cells into malignant cells. This study aimed to evaluate the possible roles of IGF-2, insulin-like growth factor-2 receptor (IGF-2R), and insulin receptor substrate (IRS)-2 genes polymorphisms in susceptibility and clinicopathological features of HCC in Egyptian population.
MATERIALS AND METHODS: Four hundred and twenty-six HCC patients and 334 controls were enrolled in the study. Polymorphisms of IGF-2+3580, IGF-2+3123, IGF-2R 1619, and IRS-2 1057 gene were detected using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Serum IGF-2 were determined using ELISA.
RESULTS: Serum IGF-2 levels were significantly lower in HCC patients than in healthy controls. IGF-2+3580 AA genotype, IGF-2+3123 GG genotype or G allele, IRS-2 1057 DD genotype and D allele were significantly associated with HCC risk. The combination of IGF-2+3580 AA homozygosity and IGF-2R 1619 GG homozygosity presented a significant protective effect against HCC (OR=0.16,95% CI=0. 08-0.34, P=0. 005). Serum IGF-2 concentrations were significantly increased in HCC patients with the IGF-2+3580 AA genotype. We also observed that increased alpha-fetoprotein (AFP), Child-Pugh grade, tumor size, and number of malignant lesions were accompanied by a significant increase of serum IGF-2 mean values of in HCC patients.
CONCLUSION: IGF-2, IGF-2R, and IRS-2 genes polymorphisms and their combinations are associated with risk of HCC.

Kubisch R, Fröhlich T, Arnold GJ, et al.
V-ATPase inhibition by archazolid leads to lysosomal dysfunction resulting in impaired cathepsin B activation in vivo.
Int J Cancer. 2014; 134(10):2478-88 [PubMed] Related Publications
The myxobacterial agent archazolid inhibits the vacuolar proton pump V-ATPase. V-ATPases are ubiquitously expressed ATP-dependent proton pumps, which are known to regulate the pH in endomembrane systems and thus play a crucial role in endo- and exocytotic processes of the cell. As cancer cells depend on a highly active secretion of proteolytic proteins in order to invade tissue and form metastases, inhibition of V-ATPase is proposed to affect the secretion profile of cancer cells and thus potentially abrogate their metastatic properties. Archazolid is a novel V-ATPase inhibitor. Here, we show that the secretion pattern of archazolid treated cancer cells includes various prometastatic lysosomal proteins like cathepsin A, B, C, D and Z. In particular, archazolid induced the secretion of the proforms of cathepsin B and D. Archazolid treatment abrogates the cathepsin B maturation process leading to reduced intracellular mature cathepsin B protein abundance and finally decreased cathepsin B activity, by inhibiting mannose-6-phoshate receptor-dependent trafficking. Importantly, in vivo reduced cathepsin B protein as well as a decreased proteolytic cathepsin B activity was detected in tumor tissue of archazolid-treated mice. Our results show that inhibition of V-ATPase by archazolid reduces the activity of prometastatic proteases like cathepsin B in vitro and in vivo.

Caixeiro NJ, Martin JL, Scott CD
Silencing the mannose 6-phosphate/IGF-II receptor differentially affects tumorigenic properties of normal breast epithelial cells.
Int J Cancer. 2013; 133(11):2542-50 [PubMed] Related Publications
Although loss of the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR) in breast cancer is believed to play a role in tumorigenesis, it has not been demonstrated that M6P/IGF-IIR loss is sufficient to confer a malignant phenotype in an untransformed cell. We investigated the impact of M6P/IGF-IIR silencing using phenotypically normal (MCF-10A) and oncogenically transformed (MCF-10T, the c-Ha-ras transformed derivative of MCF-10A) human breast epithelial cell lines as model systems. In both cell lines, silencing of M6P/IGF-IIR increased cell proliferation and motility, with the effects being more pronounced in MCF-10A cells. Although anchorage-independent growth was increased by M6P/IGF-IIR silencing in MCF-10T cells, MCF-10A cells did not acquire the ability to grow in soft agar. Conversely, reduced M6P/IGF-IIR expression increased the invasive potential of MCF-10A cells, but did not enhance the already high rate of invasion of MCF-10T cells. M6P/IGF-IIR silencing had no effect on basal or IGF-II-stimulated IGF-I receptor (IGF-IR) or AKT phosphorylation in either cell line, but both were abrogated by IGF-IR kinase inhibition, which also reduced the stimulatory effect of M6P/IGF-IIR silencing on proliferation under basal and IGF-II-stimulated conditions in both cell lines. However, cell motility was neither stimulated by IGF-II nor reduced by IGF-IR inhibition, suggesting that potentiation of specific tumorigenic features in response to M6P/IGF-IIR silencing involves IGF-II- dependent and -independent mechanisms. Collectively, these data suggest that M6P/IGF-IIR silencing alone is insufficient to confer a tumorigenic phenotype, but can enhance tumorigenicity in an already transformed cell.

Mountzios G, Kostopoulos I, Kotoula V, et al.
Insulin-like growth factor 1 receptor (IGF1R) expression and survival in operable squamous-cell laryngeal cancer.
PLoS One. 2013; 8(1):e54048 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Prognosis of patients with operable laryngeal cancer is highly variable and therefore potent prognostic biomarkers are warranted. The insulin-like growth factor receptor (IGFR) signaling pathway plays a critical role in laryngeal carcinogenesis and progression.
PATIENTS AND METHODS: We identified all patients with localized TNM stage I-III laryngeal cancer managed with potentially curative surgery between 1985 and 2008. Immunohistochemical (IHC) expression of IGF1R-alpha, IGF1R-beta and IGF2R was evaluated using the immunoreactive score (IRS) and mRNA levels of important effectors of the IGFR pathway were assessed, including IGF1R, IGF-binding protein 3 (IGFBP3), suppressor of cytokine signaling 2 (SOCS2) and members of the MAP-kinase (MAP2K1, MAPK9) and phosphatidyl-inositol-3 kinase (PIK3CA, PIK3R1) families. Cox-regression models were applied to assess the predictive value of biomarkers on disease-free survival (DFS) and overall survival (OS).
RESULTS: Among 289 eligible patients, 95.2% were current or ex smokers, 75.4% were alcohol abusers, 15.6% had node-positive disease and 32.2% had received post-operative irradiation. After a median follow-up of 74.5 months, median DFS was 94.5 months and median OS was 106.3 months. Using the median IRS as the pre-defined cut-off, patients whose tumors had increased IGF1R-alpha cytoplasm or membrane expression experienced marginally shorter DFS and significantly shorter OS compared to those whose tumors had low IGF1R-alpha expression (91.1 vs 106.2 months, p = 0.0538 and 100.3 vs 118.6 months, p = 0.0157, respectively). Increased mRNA levels of MAPK9 were associated with prolonged DFS (p = 0.0655) and OS (p = 0.0344). In multivariate analysis, IGF1R-alpha overexpression was associated with a 46.6% increase in the probability for relapse (p = 0.0374). Independent predictors for poor OS included node-positive disease (HR = 2.569, p<0.0001), subglottic/transglottic localization (HR = 1.756, p = 0.0438) and IGF1R-alpha protein overexpression (HR = 1.475, p = 0.0504).
CONCLUSION: IGF1R-alpha protein overexpression may serve as an independent predictor of relapse and survival in operable laryngeal cancer. Prospective evaluation of the IGF1R-alpha prognostic utility is warranted.

Morrione A, Neill T, Iozzo RV
Dichotomy of decorin activity on the insulin-like growth factor-I system.
FEBS J. 2013; 280(10):2138-49 [PubMed] Free Access to Full Article Related Publications
The stromal-specific proteoglycan decorin has emerged in recent years as a critical regulator of tumor initiation and progression. Decorin regulates the biology of various types of cancer by modulating the activity of several receptor tyrosine kinases coordinating growth, survival, migration, and angiogenesis. Decorin binds to surface receptors for epidermal growth factor and hepatocyte growth factor with high affinity, and negatively regulates their activity and signaling via robust internalization and eventual degradation. The insulin-like growth factor (IGF)-I system plays a critical role in the regulation of cell growth both in vivo and in vitro. The IGF-I receptor (IGF-IR) is also essential for cellular transformation, owing to its ability to enhance cell proliferation and protect cancer cells from apoptosis. Recent data have pointed to a role of decorin in regulating the IGF-I system in both nontransformed and transformed cells. Significantly, there is a surprising dichotomy in the mechanism of decorin action on IGF-IR signaling, which differs considerably between physiological and pathological cellular models. In this review, we summarize the current knowledge on decorin regulation of the IGF-I system in normal and transformed cells, and discuss possible decorin-based therapeutic approaches to target IGF-IR-driven tumors.

Bergman D, Halje M, Nordin M, Engström W
Insulin-like growth factor 2 in development and disease: a mini-review.
Gerontology. 2013; 59(3):240-9 [PubMed] Related Publications
BACKGROUND: Insulin-like growth factor 2 (IGF2) is a protein hormone known to regulate cell proliferation, growth, migration, differentiation and survival. The gene is parentally imprinted in the sense that transcripts are almost exclusively derived from the paternal allele. Loss of imprinting of the IGF2 gene is a recurrent observation in growth disorders that combine overgrowth with a variety of malignant tumours. Moreover, IGF2 has been proposed to play a role in the development of a variety of seemingly unrelated cancers that play an important role in geriatric medicine, e.g., breast cancer, colon cancer and lung cancer. Finally, IGF2 has been implicated in cardiovascular disease, since, for example, IGF2 has been shown to influence the size of atherosclerotic lesions.
OBJECTIVE: To summarize current knowledge about IGF2, its interactions with binding proteins and receptors and connections with key diseases.
METHODS: The contents of this paper were based on reviews of existing literature within the field.
RESULTS: There is a substantial amount of research linking IGF2 to growth disorders, cancer and to a much lesser degree cardiovascular disease. Some of the studies on IGF2 and tumour growth have yielded conflicting results, for instance regarding its effect on apoptosis.
CONCLUSION: Today, our knowledge on how IGF2 is composed and interacts with receptors has come a long way. However, there is comparatively little information on how IGF2 affects tumour growth and cardiovascular diseases such as atherosclerosis. Thus, further research will be needed to elucidate the impact of IGF2 on key diseases.

Kreiling JL, Montgomery MA, Wheeler JR, et al.
Dominant-negative effect of truncated mannose 6-phosphate/insulin-like growth factor II receptor species in cancer.
FEBS J. 2012; 279(15):2695-713 [PubMed] Free Access to Full Article Related Publications
Oligomerization of the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.

Takahashi Y, Mimori K, Yamamoto K, et al.
Genomic copy number of a carcinogenic single nucleotide polymorphism at 8q24 in non-risk allele colorectal cancer associated with insulin growth factor 2 receptor expression.
J Gastroenterol Hepatol. 2012; 27 Suppl 3:95-9 [PubMed] Related Publications
BACKGROUND AND AIM: The incidence of both diabetes mellitus and hyperlipidemia is increasing and they are risk factors for colorectal cancer (CRC). On the other hand, the carcinogenic significance of the single nucleotide polymorphism (SNP), rs6983267 at 8q24, in CRC has been reported. The association between the SNP genotype and genes associated with diabetes or hyperlipidemia was investigated in cases of CRC.
METHODS: In 107 cases of CRC diagnosed in eight institutes from 2003 to 2008, array-CGH and cDNA microarray was performed and the data analyzed from two groups subdivided according to SNP genotype.
RESULTS: In the array-CGH data, we selected 38 genes related to diabetes or fat metabolism, and of these 10 had a correlation coefficient between the genome copy number at 8q24 locus and that of each gene. Of the 10 genes, insulin growth factor 2 receptor (IGF2R) was the only one with an expression level significantly associated with the 8q24 genotype. IGF2R expression was significantly lower in non-risk allele than in risk allele cases (P = 0.012). There was neither a diabetes- nor a fat metabolism-related gene that was significantly associated with CRC cases with the risk allele at 8q24.
CONCLUSIONS: SNP at 8q24 makes diabetes a risk factor of CRC via IGF2R, especially in genetically non-risk allele cases. We speculate that the risk allele of 8q24 might be risky enough that diabetes is not necessary to worsen the risk for CRC.

Hartmann EM, Beà S, Navarro A, et al.
Increased tumor cell proliferation in mantle cell lymphoma is associated with elevated insulin-like growth factor 2 mRNA-binding protein 3 expression.
Mod Pathol. 2012; 25(9):1227-35 [PubMed] Related Publications
Mantle cell lymphoma is an aggressive, non-curable B-cell lymphoma, characterized by the translocation t(11;14)(q13;q32) involving CCND1 and a high number of additional genetic alterations. Chromosomal gains of 7p are frequent in mantle cell lymphoma, with insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3 aka IMP3) being the most upregulated gene in this region. IGF2BP3 is a member of the IGF II mRNA-BP family, and increased IGF2BP3 expression is associated with an aggressive behavior in many malignant tumors. We here analyze selected genes related to IGF signaling in gene expression and genomic array data of 8 mantle cell lymphoma cell lines and 12 primary mantle cell lymphomas and study IGF2BP3 protein expression in 172 well-characterized primary mantle cell lymphomas by immunohistochemistry. The majority of mantle cell lymphoma cell lines and primary cases showed elevated IGF2BP3 mRNA expression and a subset also expressed the IGF1 and IGF2 receptors. On the protein level, 66 of 172 primary mantle cell lymphomas showed IGF2BP3 expression in >50% of tumor cells, and strong IGF2BP3 protein expression was highly associated with increased proliferation as measured by the Ki-67 index, but not with overall survival of mantle cell lymphoma patients. Only a subset of mantle cell lymphomas with marked IGF2BP3 expression had an underlying chromosomal gain in 7p, suggesting that additional mechanisms are involved in the upregulation of IGF2BP3 in mantle cell lymphoma. In seven paired mantle cell lymphoma samples, IGF2BP3 protein expression remained constant between primary diagnosis and relapse. Increased IGF2BP3 expression and, potentially, enhanced IGF signaling may contribute proproliferative stimuli in the evolution of mantle cell lymphoma tumor cells.

Puxbaum V, Nimmerfall E, Bäuerl C, et al.
M6P/IGF2R modulates the invasiveness of liver cells via its capacity to bind mannose 6-phosphate residues.
J Hepatol. 2012; 57(2):337-43 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R), a multifunctional protein, plays a central role in intracellular targeting of lysosomal enzymes and control of insulin-like growth factor II (IGF-II) bioactivity. Importantly, the gene encoding this receptor is frequently inactivated in a wide range of malignant tumors including hepatocellular carcinomas. Thus, M6P/IGF2R is considered a putative liver tumor suppressor. The aim of this study was to establish the impact of the receptor on the invasive properties of liver cells.
METHODS: Reconstitution experiments were performed by expression of wild type and mutant M6P/IGF2R in receptor-deficient FRL14 fetal rat liver cells. RNA interference was used to induce M6P/IGF2R downregulation in receptor-positive MIM-1-4 mouse hepatocytes.
RESULTS: We show that the M6P/IGF2R status exerts a strong impact on the invasiveness of tumorigenic rodent liver cells. M6P/IGF2R-deficient fetal rat liver cells hypersecrete lysosomal cathepsins and penetrate extracellular matrix barriers in a cathepsin-dependent manner. Forced expression of M6P/IGF2R restores intracellular transport of cathepsins to lysosomes and concomitantly reduces the tumorigenicity and invasive potential of these cells. Conversely, M6P/IGF2R knock-down in receptor-positive mouse hepatocytes causes increased cathepsin secretion as well as enhanced cell motility and invasiveness. We also demonstrate that functional M6P-binding sites are important for the anti-invasive properties of M6P/IGF2R, whereas the capacity to bind IGF-II is dispensable for the anti-invasive activity of the receptor in liver cells.
CONCLUSIONS: M6P/IGF2R restricts liver cell invasion by preventing the pericellular action of M6P-modified proteins.

Kuhlmann JD, Schwarzenbach H, Otterbach F, et al.
Loss of heterozygosity proximal to the M6P/IGF2R locus is predictive for the presence of disseminated tumor cells in the bone marrow of ovarian cancer patients before and after chemotherapy.
Genes Chromosomes Cancer. 2011; 50(8):598-605 [PubMed] Related Publications
Disseminated tumor cells (DTC) in the bone marrow (BM) are present in about 35% of ovarian cancers before surgery and after chemotherapy and are associated with worse prognosis. A molecular biomarker in the primary tumor predicting tumor cell spread would be highly desirable. The purpose of the study was to investigate loss of heterozygosity (LOH) in primary ovarian tumors at four ovarian cancer-relevant chromosomal loci involved in apoptosis, platinum sensitivity, or DNA-repair, to assess the prognostic value of LOH and to correlate LOH with DTC occurrence before surgery and after chemotherapy. Primary tumor DNA of 88 patients was analyzed for LOH at four polymorphic microsatellite markers using PCR-based fluorescence microsatellite analysis. BM aspirates were analyzed for DTC by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. LOH at the entire marker set correlated with tumor grading (P = 0.0001) and histology (P = 0.004). LOH at marker D10S1765 correlated with FIGO stage (P = 0.046) and grading (P = 0.05), whereas LOH at D17S855 significantly associated with grading (P = 0.023) and histology (P = 0.012), respectively. DTC were detected in 49% of patients before surgery and in 50% of patients after chemotherapy. Interestingly, LOH proximal to D6S1581 significantly correlated with DTC presence before surgery (P = 0.05) and after chemotherapy (P = 0.022). Conclusively, our data suggest that allelic loss at D6S1581 (proximal to M6P/IGF2R locus) serves as a molecular biomarker for the presence of DTC in the BM before and after chemotherapy.

Tworkoski K, Singhal G, Szpakowski S, et al.
Phosphoproteomic screen identifies potential therapeutic targets in melanoma.
Mol Cancer Res. 2011; 9(6):801-12 [PubMed] Free Access to Full Article Related Publications
Therapies directed against receptor tyrosine kinases are effective in many cancer subtypes, including lung and breast cancer. We used a phosphoproteomic platform to identify active receptor tyrosine kinases that might represent therapeutic targets in a panel of 25 melanoma cell strains. We detected activated receptors including TYRO3, AXL, MERTK, EPHB2, MET, IGF1R, EGFR, KIT, HER3, and HER4. Statistical analysis of receptor tyrosine kinase activation as well as ligand and receptor expression indicates that some receptors, such as FGFR3, may be activated via autocrine circuits. Short hairpin RNA knockdown targeting three of the active kinases identified in the screen, AXL, HER3, and IGF1R, inhibited the proliferation of melanoma cells and knockdown of active AXL also reduced melanoma cell migration. The changes in cellular phenotype observed on AXL knockdown seem to be modulated via the STAT3 signaling pathway, whereas the IGF1R-dependent alterations seem to be regulated by the AKT signaling pathway. Ultimately, this study identifies several novel targets for therapeutic intervention in melanoma.

Malaguarnera R, Frasca F, Garozzo A, et al.
Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid.
J Clin Endocrinol Metab. 2011; 96(3):766-74 [PubMed] Related Publications
CONTEXT: Factors involved in the biology of normal and cancer stem/precursor cells from the thyroid are unknown. Thyroid cancer cells are responsive to insulin and IGF-I and IGF-II and often overexpress the insulin receptor (IR) and the IGF-I receptor (IGF-IR).
OBJECTIVE: We investigated the role of IR isoforms (IR-A and IR-B), IGF-IR, and their ligands in thyroid follicular cell precursors both normal and malignant.
DESIGN: We established cultures of follicular cell precursors as thyrospheres from three papillary thyroid cancers and the corresponding nonaffected tissues. The expression of IR, IGF-IR, and their ligands was evaluated by quantitative RT-PCR and, in one case, also by Western blot. The effects of insulin and IGFs on thyrosphere growth and self-renewal were evaluated.
RESULTS: Thyrospheres were characterized by the expression of stem cell markers and low/absent thyroid specific markers. Thyrospheres from normal tissue, but not from cancer tissue, could be induced to differentiate. Both IR isoforms, IGF-IR, IGF-I and IGF-II, were expressed at high levels in thyrospheres and markedly decreased in differentiating cells. IR-A was the predominant isoform in thyrospheres, especially from cancer, while IR-B was predominant in differentiating cells. Cancer thyrosphere growth was stimulated by insulin and IGFs.
CONCLUSIONS: Our data suggest that IR isoforms and IGF-IR play a role in the biology of follicular thyroid precursors. Cell differentiation is associated with marked changes in the expression of these receptors and cognate ligands. These data may provide insight for future differentiation therapies in thyroid cancer.

Yashiro M, Hirakawa K, Boland CR
Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability.
BMC Cancer. 2010; 10:303 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines.
METHODS: We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing.
RESULTS: Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage.
CONCLUSIONS: TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition.

Bidosee M, Karry R, Weiss-Messer E, Barkey RJ
Growth hormone affects gene expression and proliferation in human prostate cancer cells.
Int J Androl. 2011; 34(2):124-37 [PubMed] Related Publications
We previously showed that growth hormone (GH) receptors (GHR) are expressed in the most commonly studied human prostate cancer (PCa) cell lines and that GHR isoforms undergo differential, cell-type-specific hormonal regulation. We now report that human GH (hGH) can stimulate/modulate insulin-like growth factor (IGF) and β-oestradiol (E(2) ) receptor (ER(β) ) gene expressions in these cells and interact with IGF-I and E(2) to stimulate androgen-dependent LNCaP cell proliferation. We observed a cell type-dependent, differential regulation of IGF axis gene expression by GH: IGF-I was stimulated in the androgen-dependent LNCaP cells; IGF-II was stimulated in androgen-insensitive (AI) PC3 cells; the IGF-I cognate receptor, IGF-IR, was stimulated in LNCaP cells, but inhibited in PC3 cells; IGF-IIR was stimulated in both LNCaP and PC3 cells. GH also stimulated ER(β) gene expression in LNCaP and PC3 cells, but had little or no effect on any of those genes in AI DU145 cells. The potent androgen analogue, mibolerone, also stimulated IGF-I, IGF-IR and ER(β) , but reduced IGF-IIR mRNAs in LNCaP cells. Furthermore, triiodothyronine (T(3) ) and E(2) also stimulated the expression of those four genes in LNCaP cells, but co-administration of GH had almost no effect. Finally, we also studied the effects of GH, IGF-I and E(2) , alone or in combination, on LNCaP cell proliferation. Importantly, we demonstrated, for the first time, that although GH and IGF-I alone had no effect on LNCaP cell proliferation, concomitant administration for 96 h revealed a permissive role of GH on IGF-I-induced proliferation. GH also appeared to exert a synergistic effect on E(2) -stimulated LNCaP cell proliferation. Taken together, these findings indicate that GH via GHRs, most likely in concert with gonadal steroids, T(3) , IGF system axis and probably other hormones and growth factors, potentially plays an important role in the mechanisms underlying tumour cell growth in PCa.

Ulanet DB, Ludwig DL, Kahn CR, Hanahan D
Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy.
Proc Natl Acad Sci U S A. 2010; 107(24):10791-8 [PubMed] Free Access to Full Article Related Publications
The type 1 insulin-like growth factor receptor (IGF-1R) tyrosine kinase is an important mediator of the protumorigenic effects of IGF-I/II, and inhibitors of IGF-1R signaling are currently being tested in clinical cancer trials aiming to assess the utility of this receptor as a therapeutic target. Despite mounting evidence that the highly homologous insulin receptor (IR) can also convey protumorigenic signals, its direct role in cancer progression has not been genetically defined in vivo, and it remains unclear whether such a role for IR signaling could compromise the efficacy of selective IGF-1R targeting strategies. A transgenic mouse model of pancreatic neuroendocrine carcinogenesis engages the IGF signaling pathway, as revealed by its dependence on IGF-II and by accelerated malignant progression upon IGF-1R overexpression. Surprisingly, preclinical trials with an inhibitory monoclonal antibody to IGF-1R did not significantly impact tumor growth, prompting us to investigate the involvement of IR. The levels of IR were found to be significantly up-regulated during multistep progression from hyperplastic lesions to islet tumors. Its functional involvement was revealed by genetic disruption of the IR gene in the oncogene-expressing pancreatic beta cells, which resulted in reduced tumor burden accompanied by increased apoptosis. Notably, the IR knockout tumors now exhibited sensitivity to anti-IGF-1R therapy; similarly, high IR to IGF-1R ratios demonstrably conveyed resistance to IGF-1R inhibition in human breast cancer cells. The results predict that elevated IR signaling before and after treatment will respectively manifest intrinsic and adaptive resistance to anti-IGF-1R therapies.

Kalla Singh S, Tan QW, Brito C, et al.
Insulin-like growth factors I and II receptors in the breast cancer survival disparity among African-American women.
Growth Horm IGF Res. 2010; 20(3):245-54 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: African-American (AA) women with breast cancer are more likely to have advanced disease at diagnosis, higher risk of recurrence and poorer prognosis than Caucasian (CA) women. We have recently shown higher insulin-like growth factor II (IGF-II) expression in paired breast tissue samples from AA women as compared to CA women. IGF-II is a potent mitogen that induces cell proliferation and survival signals through activation of the IGF-I and Insulin receptors (IGF-IR, IR) while IGF-II circulating levels are regulated by cellular uptake through the IGF2 receptor. We hypothesize that differential expression of the IGF1R and IGF2R among AA and CA women potentiates IGF-II mitogenic effects, thus contributing to the health disparity observed between these ethnic groups.
DESIGN: We examined IGF-IR and IGF2R mRNA, protein expression and IGF1R phosphorylation in paired breast tissue samples from AA and CA women by Real Time-PCR, Western blot analysis, immunohistochemistry and ELISA techniques.
RESULTS: Our results showed significantly increased expression of IGF1R in AA normal tissues as compared to CA normal tissues. IGF1R expression was similar between AA normal and malignant tissues, while IGF1R, IRS-1 and Shc phosphorylation was significantly higher in AA tumor samples. Significantly higher levels of IGF2R were found in CA tumor samples as compared to AA tumor samples.
CONCLUSIONS: We conclude that IGF1R and IGF2R differential expression may contribute to the increased risk of malignant transformation in young AA women and to the more aggressive breast cancer phenotype observed among AA breast cancer patients and represent, along with IGF-II, potential therapeutic targets in breast cancer.

Biong M, Gram IT, Brill I, et al.
Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density.
BMC Med Genomics. 2010; 3:9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Increased mammographic density is one of the strongest independent risk factors for breast cancer. It is believed that one third of breast cancers are derived from breasts with more than 50% density. Mammographic density is affected by age, BMI, parity, and genetic predisposition. It is also greatly influenced by hormonal and growth factor changes in a woman's life cycle, spanning from puberty through adult to menopause. Genetic variations in genes coding for hormones and growth factors involved in development of the breast are therefore of great interest. The associations between genetic polymorphisms in genes from the IGF pathway on mammographic density and circulating levels of IGF1, its binding protein IGFBP3, and their ratio in postmenopausal women are reported here.
METHODS: Samples from 964 postmenopausal Norwegian women aged 55-71 years were collected as a part of the Tromsø Mammography and Breast Cancer Study. All samples were genotyped for 25 SNPs in IGF1, IGF2, IGF1R, IGF2R, IGFALS and IGFBP3 using Taqman (ABI). The main statistical analyses were conducted with the PROC HAPLOTYPE procedure within SAS/GENETICS (SAS 9.1.3).
RESULTS: The haplotype analysis revealed six haploblocks within the studied genes. Of those, four had significant associations with circulating levels of IGF1 or IGFBP3 and/or mammographic density. One haplotype variant in the IGF1 gene was found to be associated with mammographic density. Within the IGF2 gene one haplotype variant was associated with levels of both IGF1 and IGFBP3. Two haplotype variants in the IGF2R were associated with the level of IGF1. Both variants of the IGFBP3 haplotype were associated with the IGFBP3 level and indicate regulation in cis.
CONCLUSION: Polymorphisms within the IGF1 gene and related genes were associated with plasma levels of IGF1, IGFBP3 and mammographic density in this study of postmenopausal women.

Tovar V, Alsinet C, Villanueva A, et al.
IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage.
J Hepatol. 2010; 52(4):550-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: IGF signaling has a relevant role in a variety of human malignancies. We analyzed the underlying molecular mechanisms of IGF signaling activation in early hepatocellular carcinoma (HCC; BCLC class 0 or A) and assessed novel targeted therapies blocking this pathway.
METHODS: An integrative molecular dissection of the axis was conducted in a cohort of 104 HCCs analyzing gene and miRNA expression, structural aberrations, and protein activation. The therapeutic potential of a selective IGF-1R inhibitor, the monoclonal antibody A12, was assessed in vitro and in a xenograft model of HCC.
RESULTS: Activation of the IGF axis was observed in 21% of early HCCs. Several molecular aberrations were identified, such as overexpression of IGF2 -resulting from reactivation of fetal promoters P3 and P4-, IGFBP3 downregulation and allelic losses of IGF2R (25% of cases). A gene signature defining IGF-1R activation was developed. Overall, activation of IGF signaling in HCC was significantly associated with mTOR signaling (p=0.035) and was clearly enriched in the Proliferation subclass of the molecular classification of HCC (p=0.001). We also found an inverse correlation between IGF activation and miR-100/miR-216 levels (FDR<0.05). In vitro studies showed that A12-induced abrogation of IGF-1R activation and downstream signaling significantly decreased cell viability and proliferation. In vivo, A12 delayed tumor growth and prolonged survival, reducing proliferation rates and inducing apoptosis.
CONCLUSIONS: Integrative genomic analysis showed enrichment of activation of IGF signaling in the Proliferation subclass of HCC. Effective blockage of IGF signaling with A12 provides the rationale for testing this therapy in clinical trials.

Weng CJ, Hsieh YH, Tsai CM, et al.
Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma.
Ann Surg Oncol. 2010; 17(7):1808-15 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. The insulin-like growth factors (IGFs) system consists of a group of proteins which may induce cell proliferation and inhibit cell apoptosis through several signal pathways, leading to transformation of normal cells into cancer cells. However, the impact of genetic polymorphisms of the IGFs system on HCC has not been clarified.
METHODS: In this case-control study, a total of 102 HCC patients and 306 age- and gender-matched controls were recruited. The genetic polymorphisms of the IGFs system genes, including IGF-1, IGF-2, IGF-1receptor (IGF-1R), IGF-2R, IGF binding protein (IGFBP-3), and insulin (INS) genes, were analyzed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and real-time PCR genotyping analysis.
RESULTS: A significant difference (p = 0.02) between case and control group in the distribution frequency of IGF-2 +3580 polymorphism was observed. Multiple regression model analysis showed that the presence of AA or AG at IGF-2R may exhibit a potential protective effect against hepatitis C [odds ratio (OR) = 0.35, 95% confidence interval (CI) = 0.15-0.82]. The combination of IGF-2 +3580 AA genotype and IGF-2R GG genotype may present a significantly lower risk of HCC (OR = 0.20, 95% CI = 0.05-0.87). Additionally, no polymorphisms of any IGFs system genes were associated with liver-related clinicopathological markers in serum.
CONCLUSIONS: Among IGFs system genes, IGF-2 and IGF-2R gene polymorphisms and combination could be considered as the most important factors contributing to increased susceptibility and pathological development of HCC.

Kishnani PS, Chuang TP, Bali D, et al.
Chromosomal and genetic alterations in human hepatocellular adenomas associated with type Ia glycogen storage disease.
Hum Mol Genet. 2009; 18(24):4781-90 [PubMed] Related Publications
Hepatocellular adenoma (HCA) is a frequent long-term complication of glycogen storage disease type I (GSD I) and malignant transformation to hepatocellular carcinoma (HCC) is known to occur in some cases. However, the molecular pathogenesis of tumor development in GSD I is unclear. This study was conducted to systematically investigate chromosomal and genetic alterations in HCA associated with GSD I. Genome-wide SNP analysis and mutation detection of target genes was performed in ten GSD Ia-associated HCA and seven general population HCA cases for comparison. Chromosomal aberrations were detected in 60% of the GSD Ia HCA and 57% of general population HCA. Intriguingly, simultaneous gain of chromosome 6p and loss of 6q were only seen in GSD Ia HCA (three cases) with one additional GSD I patient showing submicroscopic 6q14.1 deletion. The sizes of GSD Ia adenomas with chromosome 6 aberrations were larger than the sizes of adenomas without the changes (P = 0.012). Expression of IGF2R and LATS1 candidate tumor suppressor genes at 6q was reduced in more than 50% of GSD Ia HCA that were examined (n = 7). None of the GSD Ia HCA had biallelic mutations in the HNF1A gene. These findings give the first insight into the distinct genomic and genetic characteristics of HCA associated with GSD Ia. These results strongly suggest that chromosome 6 alterations could be an early event in the liver tumorigenesis in GSD I, and may be in general population. These results also suggest an interesting relationship between GSD Ia HCA and steps to HCC transformation.

Martin-Kleiner I, Gall Troselj K
Mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) in carcinogenesis.
Cancer Lett. 2010; 289(1):11-22 [PubMed] Related Publications
The cation-independent mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is a multifunctional receptor. It is involved in a variety of cellular processes which become dysregulated in cancer. Its tumor suppressor role was recognized a long time ago. However, due to its multifunctionality, it is not easy to understand the extent of its relevance to normal cellular physiology. Accordingly, it is even more difficult understanding its role in carcinogenesis. This review presents critical and focused highlights of data relating to M6P/IGF2R, obtained during more than 25 years of cancer research.

Cheng I, Stram DO, Burtt NP, et al.
IGF2R missense single-nucleotide polymorphisms and breast cancer risk: the multiethnic cohort study.
Cancer Epidemiol Biomarkers Prev. 2009; 18(6):1922-4 [PubMed] Free Access to Full Article Related Publications
IGF2R has been proposed to be a tumor suppressor gene given its antagonist role on cellular growth and evidence of loss of heterozygosity in several cancers, including breast cancer. To investigate whether inherited differences in potentially functional IGF2R variants influence the risk of breast cancer, we sequenced 46 exons of IGF2R to identify novel missense single-nucleotide polymorphisms (SNP) and tested 12 missense SNPs for their associations with breast cancer risk among 1,614 breast cancer cases and 1,960 controls from the Multiethnic Cohort. None of these missense SNPs were significantly associated with breast cancer risk. Our findings provide no evidence that missense SNPs in IGF2R influence breast cancer susceptibility

Probst OC, Puxbaum V, Svoboda B, et al.
The mannose 6-phosphate/insulin-like growth factor II receptor restricts the tumourigenicity and invasiveness of squamous cell carcinoma cells.
Int J Cancer. 2009; 124(11):2559-67 [PubMed] Related Publications
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) mediates biosynthetic sorting and endocytosis of various factors that impinge on the proliferation, migration and invasiveness of tumour cells. The gene encoding M6P/IGF2R is frequently lost or mutated in a wide range of malignant tumours including squamous cell carcinomas. We have previously shown that M6P/IGF2R-deficient SCC-VII murine squamous cell carcinoma cells secrete large amounts of pro-invasive lysosomal proteinases. Furthermore, the formation of mature lysosomes is impaired in SCC-VII cells. To assess the link between M6P/IGF2R status and tumour invasion, we have now generated SCC-VII lines stably transfected with human M6P/IGF2R cDNA. Reconstitution of functional M6P/IGF2R expression in SCC-VII cells strongly improves the intracellular retention of lysosomal proteinases and restores the formation of mature lysosomes. In addition, the presence of heterologous M6P/IGF2R compromises the growth of SCC-VII cells both in vitro and in vivo. Remarkably, M6P/IGF2R expression also reduces the invasive capacity of SCC-VII cells in response to various chemoattractants. These results indicate that the M6P/IGF2R status influences the metastatic propensity of squamous cell carcinomas.

Yotova IY, Vlatkovic IM, Pauler FM, et al.
Identification of the human homolog of the imprinted mouse Air non-coding RNA.
Genomics. 2008; 92(6):464-73 [PubMed] Free Access to Full Article Related Publications
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16-40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.

Almeida MQ, Fragoso MC, Lotfi CF, et al.
Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors.
J Clin Endocrinol Metab. 2008; 93(9):3524-31 [PubMed] Related Publications
BACKGROUND: Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas.
OBJECTIVES: The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells.
PATIENTS: Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied.
METHODS: Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma.
RESULTS: IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28-2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose- and time-dependent manner in both cell lines through a significant increase of apoptosis.
CONCLUSION: IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.

Grbesa I, Marinkovic M, Ivkic M, et al.
Loss of imprinting of IGF2 and H19, loss of heterozygosity of IGF2R and CTCF, and Helicobacter pylori infection in laryngeal squamous cell carcinoma.
J Mol Med (Berl). 2008; 86(9):1057-66 [PubMed] Related Publications
Imprinting analyses of IGF2 and H19, loss of heterozygosity (LOH) analyses of IGF2R and CTCF and Helicobacter pylori detection, were performed on 35 human laryngeal squamous cell carcinomas (LSCC). Forty-six percent of the tumors were heterozygous for IGF2, and 54% were informative for the H19. Biallelic expression of IGF2 was observed in 33% (5 out of 15) of the tumors and in 27% (4 out of 15) of adjacent non-tumorous laryngeal tissues. H19 loss of imprinting (LOI) was observed in 24% (4 out of 17) of the tumors. For IGF2R and CTCF, 71% (25 out of 35) and 50% (17/34), respectively, of the samples were heterozygous, and LOH was detected in 12% (3 out of 25) and 6% (1 out of 17), respectively, of the tumors. H. pylori was found in 26% (9/35) of these tumors. Among them, four were informative for the imprinting analysis. The presence of H. pylori had no effect on IGF2/H19 imprinting. Only the H. pylori detection was further broadened with an additional 47 laryngeal tumors, resulting in a total final positivity of close to 16% (13 out of 82). This study represents the largest comprehensive IGF2/H19 imprinting study done to date on well-defined samples of human laryngeal carcinomas and corresponding non-tumorous tissue. For the first time, the analyses of IGF2/H19 imprinting have been broadened with LOH analyses of IGF2R and CTCF, with both of these genes acting as modulators of IGF2 and H19 activity. Although there were indications that H. pylori may be present in LSCC, we are the first to show its presence in LSCC by two direct techniques: Giemsa staining and nested-PCR.

Lemamy GJ, Sahla ME, Berthe ML, Roger P
Is the mannose-6-phosphate/insulin-like growth factor 2 receptor coded by a breast cancer suppressor gene?
Adv Exp Med Biol. 2008; 617:305-10 [PubMed] Related Publications
The multifunctional growth factor mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2-R) binds proteins sharing M6P signals, including cathepsins and IGF2. It is involved in targeting newly synthesized mannose-6-phosphorylated lysosomal enzymes, activating transforming growth factor beta (TGFbeta), and neutralising the mitogen IGF2 by transporting it to lysosomes. The M6P/IGF2-R was proposed as being coded by a tumor suppressor gene. We measured gene expression at the protein level by quantitative immunohistochemistry, using chicken high affinity IgY antibodies directed against human M6P/IGF2-R. Chicken immunization was performed with human purified M6P/IGF2-R, and IgY antibodies were extracted from egg yolk by polyethylene glycol precipitation method. The biosensor analysis showed that IgY antibodies bind M6P/IGF2-R with high affinity (Kd = 7.5 nM). Quantitative immunohistochemical studies in sections from invasive breast carcinoma and ductal carcinoma in situ (DCIS) indicated various levels (from 5 to 400 units) of the M6P/IGF2-R protein, which did not correlate with tumor size, histological grade, estrogen and progesterone receptors. Moreover, the M6P/IGF2-R level was increased in DCIS relative to adjacent normal tissue (p < 0.005) and then decreased in invasive carcinoma compared with DCIS (p < 0.02). The hypothesis of tumor suppressor gene is not supported by these studies. However, it is not excluded for a small proportion of the tumors. Its assay might help to complement the cathepsin D assay to predict breast cancer prognosis and physiopathology.

Jang HS, Kang KM, Choi BO, et al.
Clinical significance of loss of heterozygosity for M6P/IGF2R in patients with primary hepatocellular carcinoma.
World J Gastroenterol. 2008; 14(9):1394-8 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the relationship between loss of heterozygosity (LOH) for mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) and the outcomes for primary HCC patients treated with partial hepatectomy.
METHODS: The LOH for M6P/IGF2R in primary HCC patients was assessed using six different gene-specific nucleotide polymorphisms. The patients studied were enrolled to undergo partial hepatectomy.
RESULTS: M6P/IGF2R was found to be polymorphic in 73.3% (22/30) of the patients, and of these patients, 50.0% (11/22) had tumors showing LOH in M6P/IGF2R. Loss of heterozygosity in M6P/IGF2R was associated with significant reductions in the two year overall survival rate (24.9% vs 65.5%; P=0.04) and the disease-free survival rate (17.8% vs 59.3%; P=0.03).
CONCLUSION: These results show M6P/IGF2R LOH predicts poor clinical outcomes in surgically resected primary HCC patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. M6PR, Cancer Genetics Web: http://www.cancer-genetics.org/M6PR.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 26 February, 2015     Cancer Genetics Web, Established 1999