Gene Summary

Gene:NBN; nibrin
Aliases: ATV, NBS, P95, NBS1, AT-V1, AT-V2
Summary:Mutations in this gene are associated with Nijmegen breakage syndrome, an autosomal recessive chromosomal instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. The encoded protein is a member of the MRE11/RAD50 double-strand break repair complex which consists of 5 proteins. This gene product is thought to be involved in DNA double-strand break repair and DNA damage-induced checkpoint activation. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 15 March, 2017

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Prostate Cancer
  • Ovarian Cancer
  • Risk Factors
  • Tumor Suppressor Proteins
  • cdc25 Phosphatases
  • beta-Galactosidase
  • Breast Cancer
  • Adolescents
  • Rabbits
  • Genetic Predisposition
  • Sensitivity and Specificity
  • Risk Assessment
  • Chromosome 8
  • Sequence Homology
  • Genotype
  • Telomere
  • Taiwan
  • Mutation
  • Telomere-Binding Proteins
  • Messenger RNA
  • T-Lymphocytes
  • Stomach Cancer
  • Ataxia Telangiectasia Mutated Proteins
  • Protein-Serine-Threonine Kinases
  • DNA Sequence Analysis
  • Case-Control Studies
  • Genetic Recombination
  • Slovakia
  • Sequence Deletion
  • DNA-Binding Proteins
  • BRCA1 Protein
  • DNA Mutational Analysis
  • Cell Cycle Proteins
  • Wilms Tumour
  • DNA Repair Enzymes
  • DNA Damage
  • DNA Repair
  • Cervical Cancer
  • Germ-Line Mutation
  • Protein Structure, Tertiary
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NBN (cancer-related)

Jing H, Cheng W, Li S, et al.
Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy.
Colloids Surf B Biointerfaces. 2016; 146:387-95 [PubMed] Related Publications
The lack of safe and effective gene delivery strategies remains a bottleneck for cancer gene therapy. Here, we describe the synthesis, characterization, and application of cell-penetrating peptide (CPP)-loaded nanobubbles (NBs), which are characterized by their safety, strong penetrating power and high gene loading capability for gene delivery. An epidermal growth factor receptor (EGFR)-targeted small interfering RNA (siEGFR) was transfected into triple negative breast cancer (TNBC) cells via prepared CPP-NBs synergized with ultrasound-targeted microbubble destruction (UTMD) technology. Fluorescence microscopy showed that siEGFR and CPP were loaded on the shells of the NBs. The transfection efficiency and cell proliferation levels were evaluated by FACS and MTT assays, respectively. In addition, in vivo experiments showed that the expression of EGFR mRNA and protein could be efficiently downregulated and that the growth of a xenograft tumor derived from TNBC cells could be inhibited. Our results indicate that CPP-NBs carrying siEGFR could potentially be used as a promising non-viral gene vector that can be synergized with UTMD technology for efficient TNBC therapy.

Sheikh A, Takatori A, Hossain MS, et al.
Unfavorable neuroblastoma prognostic factor NLRR2 inhibits cell differentiation by transcriptional induction through JNK pathway.
Cancer Sci. 2016; 107(9):1223-32 [PubMed] Free Access to Full Article Related Publications
The novel human gene family encoding neuronal leucine rich repeat (NLRR) proteins were identified as prognostic markers from our previous screening of primary neuroblastoma (NB) cDNA libraries. Of the NLRR gene family members, NLRR1 and NLRR3 are associated with the regulation of cellular proliferation and differentiation, respectively. However, the functional regulation and clinical significance of NLRR2 in NB remain unclear. Here, we evaluated the differential expression of NLRR2, where high expressions of NLRR2 were significantly associated with a poor prognosis of NB (P = 0.0009), in 78 NBs. Enforced expression of NLRR2 in NB cells enhanced cellular proliferation and induced resistance to retinoic acid (RA)-mediated cell growth inhibition. In contrast, knockdown of NLRR2 exhibited growth inhibition effects and enhanced RA-induced cell differentiation in NB cells. After RA treatment, NLRR2 expression was increased and correlated with the upregulation of c-Jun, a member of the activator protein-1 (AP-1) family in NB cells. Moreover, the expressions of NLRR2 and c-Jun were suppressed by treatment with a JNK inhibitor, which ameliorated the promoter activity of the NLRR2 gene while knockdown of c-Jun reduced NLRR2 expression. We then searched AP-1 binding consensus in the NLRR2 promoter region and confirmed c-Jun recruitment at a consensus. Conclusively, NLRR2 must be an inducible gene regulated by the JNK pathway to enhance cell survival and inhibit NB cell differentiation. Therefore, NLRR2 should have an important role in NB aggressiveness and be a potential therapeutic target for the treatment of RA resistant and aggressive NB.

Kleibl Z, Kristensen VN
Women at high risk of breast cancer: Molecular characteristics, clinical presentation and management.
Breast. 2016; 28:136-44 [PubMed] Related Publications
The presence of breast cancer in any first-degree female relative in general nearly doubles the risk for a proband and the risk gradually increases with the number of affected relatives. Current advances in molecular oncology and oncogenetics may enable the identification of high-risk individuals with breast-cancer predisposition. The best-known forms of hereditary breast cancer (HBC) are caused by mutations in the high-penetrance genes BRCA1 and BRCA2. Other genes, including PTEN, TP53, STK11/LKB1, CDH1, PALB2, CHEK2, ATM, MRE11, RAD50, NBS1, BRIP1, FANCA, FANCC, FANCM, RAD51, RAD51B, RAD51C, RAD51D, and XRCC2 have been described as high- or moderate-penetrance breast cancer-susceptibility genes. The majority of breast cancer-susceptibility genes code for tumor suppressor proteins that are involved in critical processes of DNA repair pathways. This is of particular importance for those women who, due to their increased risk of breast cancer, may be subjected to more frequent screening but due to their repair deficiency might be at the risk of developing radiation-induced malignancies. It has been proven that cancers arising from the most frequent BRCA1 gene mutation carriers differ significantly from the sporadic disease of age-matched controls in their histopathological appearances and molecular characteristics. The increased depth of mutation detection brought by next-generation sequencing and a better understanding of the mechanisms through which these mutations cause the disease will bring novel insights in terms of oncological prevention, diagnostics, and therapeutic options for HBC patients.

Borecka M, Zemankova P, Lhota F, et al.
The c.657del5 variant in the NBN gene predisposes to pancreatic cancer.
Gene. 2016; 587(2):169-72 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is the sixth most frequent cancer type in the Czech Republic with a poor prognosis that could be improved by an early detection and subsequent surgical treatment combined with chemotherapy. Genetic factors play an important role in PDAC risk. We previously identified one PDAC patient harboring the Slavic founder deleterious mutation c.657del5 in the NBN gene, using a panel next-generation sequencing (NGS). A subsequent analysis of 241 unselected PDAC patients revealed other mutation carriers. The overall frequency of c.657del5 in unselected PDAC patients (5/241; 2.07%) significantly differed from that in non-cancer controls (2/915; 0.2%; P=0.006). The result indicates that the NBN c.657del5 variant represents a novel PDAC-susceptibility allele increasing PDAC risk (OR=9.7; 95% CI: 1.9 to 50.2). The increased risk of PDAC in follow-up recommendations for NBN mutation carriers should be considered if other studies also confirm an increased frequency of c.657del5 carriers in PDAC patients from other populations.

Zhang L, Jia Z, Mao F, et al.
Whole-exome sequencing identifies a somatic missense mutation of NBN in clear cell sarcoma of the salivary gland.
Oncol Rep. 2016; 35(6):3349-56 [PubMed] Related Publications
Clear cell sarcoma (CCS) is a rare, low-grade carcinoma commonly located in the distal extremities of young adults involving tendons and aponeuroses. CCS is characterized by its poor prognosis due to late diagnosis, multiple local recurrence, propensity to late metastases, and a high rate of tumor-related mortality. The genetic cause for CCS is thought to be EWSR1 gene translocation. However, CCS lacking a translocation may have other, as yet uncharacterized, genetic mutations that can cause the same pathological effect. A combination of whole‑exome sequencing and Sanger sequencing of cancer tissue and venous blood from a patient diagnosed with CCS of the salivary gland revealed a somatic missense mutation, c.1061C>T (p.P354L), in exon 9 of the Nibrin gene (NBN). This somatic missense mutation led to the conversion of proline to leucine (p.P354L), resulting in deleterious effects for the NBN protein. Multiple-sequence alignments showed that codon 354, where the mutation (c.1061C>T) occurs, is located within a phylogenetically conserved region. In conclusion, we here report a somatic missense mutation c.1061C>T (p.P354L) in the NBN gene in a patient with CCS lacking an EWSR1-ATF1 fusion. Our findings broaden the genotypic spectrum of CCS and provide new molecular insight that should prove useful in the future clinical genetic diagnosis of CCS.

Frimer M, Levano KS, Rodriguez-Gabin A, et al.
Germline mutations of the DNA repair pathways in uterine serous carcinoma.
Gynecol Oncol. 2016; 141(1):101-7 [PubMed] Related Publications
OBJECTIVE: Treatment options are limited for patients with uterine serous carcinoma (USC). Knowledge of USC's somatic mutation landscape is rapidly increasing, but its role in hereditary cancers remains unclear. We aim to evaluate the frequency and characteristics of germline mutations in genes commonly implicated in carcinogenesis, including those within homologous recombination (HR) and mismatch repair (MMR) pathways in patients with pure USC.
METHODS: By using targeted capture exome sequencing, 43 genes were analyzed in a cohort of 7 consecutive patients with paired tumor and non-tumor USC samples in our institutional tumor repository. Mutations predicted to have damaging effects on protein function are validated by Sanger Sequencing.
RESULTS: We found 21 germline mutations in 11 genes in our USC cohort. Five patients harbored 7 germline mutations (33.3%) within genes involved in the HR pathway, RAD51D being the most common. Four patients had 9 (42.8%) germline mutations in hereditary colon cancer genes, most commonly MLH. All patients (42.7%) who are platinum-sensitive had HR germline mutations (RAD50, NBN, ATM). Patients with HER2 overexpression (2/7, 28.6%) had germline HR mutations and were platinum-sensitive. Three patients in our cohort reported a personal history of breast cancer, one with HR germline mutation, and 2 in patients with germline mutations in HCC genes. In addition, 5 out of 7 patients had germline mutations in genes associated with growth factor signaling pathway.
CONCLUSIONS: A significant proportion of our cohort harbor germline mutations in DNA repair genes. This may be associated with the high rate of breast cancer in our patients and their family, and suggests a targeted cohort for genetic counseling. If validated in a larger cohort, our findings may allow clinicians to expand therapeutic options to include targeted therapies and inclusion of USC patient in preventative and genetic counseling.

Tung N, Lin NU, Kidd J, et al.
Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer.
J Clin Oncol. 2016; 34(13):1460-8 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PURPOSE: Testing for germline mutations in BRCA1/2 is standard for select patients with breast cancer to guide clinical management. Next-generation sequencing (NGS) allows testing for mutations in additional breast cancer predisposition genes. The frequency of germline mutations detected by using NGS has been reported in patients with breast cancer who were referred for BRCA1/2 testing or with triple-negative breast cancer. We assessed the frequency and predictors of mutations in 25 cancer predisposition genes, including BRCA1/2, in a sequential series of patients with breast cancer at an academic institution to examine the utility of genetic testing in this population.
METHODS: Patients with stages I to III breast cancer who were seen at a single cancer center between 2010 and 2012, and who agreed to participate in research DNA banking, were included (N = 488). Personal and family cancer histories were collected and germline DNA was sequenced with NGS to identify mutations.
RESULTS: Deleterious mutations were identified in 10.7% of women, including 6.1% in BRCA1/2 (5.1% in non-Ashkenazi Jewish patients) and 4.6% in other breast/ovarian cancer predisposition genes including CHEK2 (n = 10), ATM (n = 4), BRIP1 (n = 4), and one each in PALB2, PTEN, NBN, RAD51C, RAD51D, MSH6, and PMS2. Whereas young age (P < .01), Ashkenazi Jewish ancestry (P < .01), triple-negative breast cancer (P = .01), and family history of breast/ovarian cancer (P = .01) predicted for BRCA1/2 mutations, no factors predicted for mutations in other breast cancer predisposition genes.
CONCLUSION: Among sequential patients with breast cancer, 10.7% were found to have a germline mutation in a gene that predisposes women to breast or ovarian cancer, using a panel of 25 predisposition genes. Factors that predict for BRCA1/2 mutations do not predict for mutations in other breast/ovarian cancer susceptibility genes when these genes are analyzed as a single group. Additional cohorts will be helpful to define individuals at higher risk of carrying mutations in genes other than BRCA1/2.

Chang L, Huang J, Wang K, et al.
Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy.
BMC Cancer. 2016; 16:190 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR.
METHODS: A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo.
RESULTS: Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo.
CONCLUSION: Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption.

Di Lascio S, Saba E, Belperio D, et al.
PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line.
Exp Cell Res. 2016; 342(1):62-71 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PHOX2B and its paralogue gene PHOX2A are two homeodomain proteins in the network regulating the development of autonomic ganglia that have been associated with the pathogenesis of neuroblastoma (NB), because of their over-expression in different NB cell lines and tumour samples. We used the SK-N-BE(2)C cell line to show that all-trans retinoic acid (ATRA), a drug that is widely used to inhibit growth and induce differentiation in NBs, regulates both PHOX2A and PHOX2B expression, albeit by means of different mechanisms: it up-regulates PHOX2A and down-regulates PHOX2B. Both mechanisms act at transcriptional level, but prolonged ATRA treatment selectively degrades the PHOX2A protein, whereas the corresponding mRNA remains up-regulated. Further, we show that PHOX2A is capable of modulating PHOX2B expression, but this mechanism is not involved in the PHOX2B down-regulation induced by retinoic acid. Our findings demonstrate that PHOX2A expression is finely controlled during retinoic acid differentiation and this, together with PHOX2B down-regulation, reinforces the idea that they may be useful biomarkers for NB staging, prognosis and treatment decision making.

Pastorczak A, Szczepanski T, Mlynarski W,
Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome.
Eur J Med Genet. 2016; 59(3):126-32 [PubMed] Related Publications
Nijmegen breakage syndrome (NBS, MIM #251260) is an autosomal recessive chromosomal instability disorder. Majority of patients affected are of Slavic origin and share the same founder mutation of 657del5 within the NBN gene encoding protein involved in DNA double-strand breaks repair. Clinically, this is characterized by a microcephaly, immunodeficiency and a high incidence of pediatric malignancies, mostly lymphomas and leukemias. Anticancer treatment among patients with NBS is challenging because of a high risk of life threatening therapy-related toxicity including severe infections, bone marrow failure, cardio- and nephrotoxicity and occurrence of secondary cancer. Based on systemic review of available literature and the Polish acute lymphoblastic leukemia database we concluded that among patients with NBS, these who suffered from clinically proven severe immunodeficiency are at risk of the complications associated with oncological treatment. Thus, in this group it reasonable to reduce chemotherapy up to 50% especially concerning anthracyclines methotrexate, alkylating agents and epipodophyllotoxines, bleomycin and radiotherapy should be omitted. Moreover, infection prophylaxis using intravenous immunoglobulin supplementation together with antifungal and antibacterial agent is recommended. To replace radiotherapy or some toxic anticancer agents targeted therapy using monoclonal antibodies and kinase inhibitors or bone marrow transplantation with reduced-intensity conditioning should be considered in some cases, however, this statement needs further studies.

Tumer S, Altungoz O, Bagci O, Olgun HN
The Detection of Genetic Parameters for Prognostic Stratification of Neuroblastoma Using Multiplex Ligation-Dependent Probe Amplification Technique.
Genet Test Mol Biomarkers. 2016; 20(2):74-80 [PubMed] Related Publications
BACKGROUND: Neuroblastoma (NB) is a neoplasm of the sympathetic nervous system and the most frequent extra cranial solid tumor of early childhood. These tumors display a wide range of clinical behavior and are characterized by complex chromosomal changes, some of which are associated with distinct clinical phenotypes. We investigated the contribution of genetic variables to staging and histology by logistic regression analyses.
METHODS: We used multiplex ligation-dependent probe amplification (MLPA) to detect segmental genomic imbalances and gene copy number changes in 202 primary NBs.
RESULTS: Cases with NB were categorized into four distinct groups based on the genomic changes. Group 1 (48 cases, 23.7%) contained tumors with a 1p deletion and/or MYCN gene amplification (MNA). Group 2 included 46 cases (22.8%) with 3p and/or 11q deletions without 1p deletion and MYCN gene amplification. Tumors harboring at least two commonly observed deletions with or without MNA were classified as Group 3 (25 cases, 12.4%). Tumors with chromosomal imbalance other than MYCN gene amplification and 1p, 3p, and 11q deletions were in Group 4 (83 cases, 41.1%). MYCN gene amplification and 17q gain were significant predisposing factors for unfavorable histology. Significant correlations were detected between 1p deletion and MYCN gene amplification; 3p and 11q deletions; and 11q deletion and 17q gain.
CONCLUSION: MLPA can be used effectively to simultaneously detect multiple genomic imbalances and these changes can be utilized to classify neuroblastomas by prognostic subtypes. The genetic changes detected in NB in this study and their associations with clinical characteristics are in line with previously published reports.

Bernards SS, Norquist BM, Harrell MI, et al.
Genetic characterization of early onset ovarian carcinoma.
Gynecol Oncol. 2016; 140(2):221-5 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
OBJECTIVE: Ovarian carcinoma (OC) is rare in young women and the fraction of early onset OC attributable to inherited mutations in known OC genes is uncertain. We sought to characterize the fraction of OC that is heritable in women diagnosed with ovarian, fallopian tube, or peritoneal carcinoma at forty years of age or younger.
METHODS: We sequenced germline DNA from forty-seven women diagnosed with OC at age 40 or younger ascertained through a gynecologic oncology tissue bank or referred from outside providers using BROCA, a targeted capture and massively parallel sequencing platform that can detect all mutation classes. We evaluated 11 genes associated with ovarian carcinoma (BARD1, BRCA1, BRCA2, BRIP1, MLH1, MSH2, MSH6, PALB2, PMS2, RAD51D, and RAD51C) and additional candidate genes in DNA repair (ATM, BAP1, CHEK2, MRE11A, NBN, PTEN, TP53). We counted only clearly damaging mutations.
RESULTS: Damaging mutations in OC genes were identified in 13 of 47 (28%) subjects, of which 10 (77%) occurred in BRCA1 and one each occurred in BRCA2, MSH2, and RAD51D. Women with a strong family history were no more likely to have an OC gene mutation (8/17, 47%) than those without a strong family history (9/30, 30%, P=0.35). Additionally, damaging mutations in non-OC genes were identified, one in NBN and one in CHEK2.
CONCLUSIONS: A high proportion of young women with invasive OC have mutations in BRCA1, and a smaller fraction have mutations in other known OC genes. Family history was not associated with mutation status in these early onset cases.

Imoto N, Hayakawa F, Kurahashi S, et al.
B Cell Linker Protein (BLNK) Is a Selective Target of Repression by PAX5-PML Protein in the Differentiation Block That Leads to the Development of Acute Lymphoblastic Leukemia.
J Biol Chem. 2016; 291(9):4723-31 [PubMed] Free Access to Full Article Related Publications
PAX5 is a transcription factor that is required for the development and maintenance of B cells. Promyelocytic leukemia (PML) is a tumor suppressor and proapoptotic factor. The fusion gene PAX5-PML has been identified in acute lymphoblastic leukemia with chromosomal translocation t(9;15)(p13;q24). We have reported previously that PAX5-PML dominant-negatively inhibited PAX5 transcriptional activity and impaired PML function by disrupting PML nuclear bodies (NBs). Here we demonstrated the leukemogenicity of PAX5-PML by introducing it into normal mouse pro-B cells. Arrest of differentiation was observed in PAX5-PML-introduced pro-B cells, resulting in the development of acute lymphoblastic leukemia after a long latency in mice. Among the transactivation targets of PAX5, B cell linker protein (BLNK) was repressed selectively in leukemia cells, and enforced BLNK expression abrogated the differentiation block and survival induced by PAX5-PML, indicating the importance of BLNK repression for the formation of preleukemic state. We also showed that PML NBs were intact in leukemia cells and attributed this to the low expression of PAX5-PML, indicating that the disruption of PML NBs was not required for the PAX5-PML-induced onset of leukemia. These results provide novel insights into the molecular mechanisms underlying the onset of leukemia by PAX5 mutations.

Hu HH, Kannengiesser C, Lesage S, et al.
PARKIN Inactivation Links Parkinson's Disease to Melanoma.
J Natl Cancer Inst. 2016; 108(3) [PubMed] Related Publications
BACKGROUND: Melanoma incidence is higher in patients affected by Parkinson's disease (PD) and vice versa, but the genetic link shared by both diseases is unknown. As PARK2 is both a tumor suppressor gene and frequently mutated in young onset PD, we evaluated the role of PARK2 in melanoma predisposition and progression.
METHODS: An in-depth PARK2 gene dosage analysis and sequencing was performed on 512 French case patients and 562 healthy control patients, as well as sporadic tumors and melanoma cell lines. The frequency of genetic alterations was compared between case patients and control patients using two-sided Fisher's exact tests and odds ratio (OR) calculations. We used western blotting to determine PARKIN expression in melanocytes and melanoma cell lines and transfection followed by clonogenic assays to evaluate the effect of PARKIN expression on cellular proliferation. All statistical tests were two-sided.
RESULTS: Germline PARK2 mutations (including copy number variations, splicing, and putative deleterious missense mutations) were present in 25 case patients but only four control patients (OR = 3.95, 95% confidence interval = 1.34 to 15.75). Copy number variations (CNVs) and loss of heterozygosity were present in 60% and 74%, respectively, of primary tumors. PARKIN protein was expressed in melanocytes but not in most melanoma cell lines, and its expression decreased following melanocyte transformation by oncogenic NRAS. Re-expression of PARKIN in melanoma cell lines resulted in a drastic reduction of cell proliferation and inhibition of PARKIN in melanocytes stimulated their proliferation.
CONCLUSION: Our results show an important role for PARK2 as a tumor suppressor both in melanoma predisposition and progression, which could explain the epidemiological association of these diseases.

Shire K, Wong AI, Tatham MH, et al.
Identification of RNF168 as a PML nuclear body regulator.
J Cell Sci. 2016; 129(3):580-91 [PubMed] Free Access to Full Article Related Publications
Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML. In addition, RNF168 was found to associate with proteins modified by SUMO2 and/or SUMO3 in a manner dependent on its ubiquitin-binding sequences, suggesting that hybrid SUMO-ubiquitin chains can be bound. In vitro assays confirmed that RNF168, preferentially, binds hybrid SUMO2-K63 ubiquitin chains compared with K63-ubiquitin chains or individual SUMO2. Our study identified previously unrecognized roles for RNF8 and RNF168 in the regulation of PML, and a so far unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.

Jia D, Yang H, Tao Z, et al.
Preparation and characterization of a novel variant of human tumor necrosis factor-related apoptosis-inducing ligand from the rhesus monkey, Macaca mulatta.
Appl Microbiol Biotechnol. 2016; 100(7):3035-47 [PubMed] Related Publications
Human tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL) and its variants are attractive antitumor drug candidates. The predicted amino acid sequence of the functional extracellular domain of Macaca mulatta TRAIL (mmTRAIL) was found to differ from that of hTRAIL at four positions. In this study, the gene encoding mmTRAIL was cloned and recombinantly expressed in Escherichia coli at a yield of approximately 20-30 mg/L, which was two times higher than that of hTRAIL. SDS-PAGE showed that denatured mmTRAIL and hTRAIL had similar molecular weights. However, size-exclusion chromatography and dynamic light scattering (DLS) analysis demonstrated that the molecular size of native mmTRAIL was smaller than that of native hTRAIL. Cooling solutions of these proteins from room temperature to 0 °C induced considerable precipitation of hTRAIL but not of mmTRAIL, indicating that mmTRAIL was more soluble than hTRAIL at low temperatures. Additionally, mmTRAIL was more resistant than hTRAIL to N-bromosuccinimide (NBS)-induced precipitation. Although mmTRAIL and hTRAIL showed comparable nanomolar affinities for human death receptors, the dissociation rate of the mmTRAIL-receptor complex was slower than that of the hTRAIL-receptor complex, suggesting that the mmTRAIL-receptor complex was more stable. Moreover, mmTRAIL induced caspase-dependent apoptosis in human tumor cells with an IC50 that was two to three times lower than that of hTRAIL. However, in vivo evaluation demonstrated that mmTRAIL or hTRAIL led to a similar level of tumor suppression in mice bearing COLO205 xenografts. Nevertheless, the advantage of its better solubility should promote the production and further use of mmTRAIL in cancer biotherapy.

Lee YK, Park NH, Lee H
Clinicopathological values of NBS1 and DNA damage response genes in epithelial ovarian cancers.
Exp Mol Med. 2015; 47:e195 [PubMed] Free Access to Full Article Related Publications
Epithelial ovarian cancers (EOCs) are highly lethal gynecological malignancies with a high recurrence rate. Therefore, developing prognostic markers for recurrence after chemotherapy is crucial for the treatment of ovarian cancers. As ovarian cancers frequently respond to DNA-damaging agents, we assessed the clinicopathological significance of key double-strand DNA break (DSB) repair genes, including BRCA1, BRCA2, BARD1, ATM, RAD51 and NBS1 in EOC cell lines and paraffin-embedded tissue sections from 140 EOC patients treated with cytoreductive surgery, followed by platinum-based chemotherapy. These samples were analyzed for the clinicopathological impact of DSB genes by western blot analysis, immunohistochemistry and quantitative real-time PCR. Of the DSB repair genes, BRCA1, ATM and NBS1, which are involved in the homologous recombination-mediated repair pathway, were related to aggressive parameters in EOC. When survival analysis was performed, NBS1 expression exhibited an association with EOC recurrence. Specifically, increased NBS1 expression was found in 107 out of 140 cases (76.0%) and correlated with advanced stage (P=0.001), high grade (P=0.001) and serous histology (P=0.008). The median recurrence-free survival in patients with positive and negative expression of NBS1 was 30 and 78 months, respectively (P=0.0068). In multivariate analysis, NBS1 was an independent prognostic factor for the recurrence of EOC. Together, these results suggest that NBS1 is a marker of poor prognosis for the recurrence of EOC and is associated with aggressive clinicopathological parameters.

Li J, Meeks H, Feng BJ, et al.
Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families.
J Med Genet. 2016; 53(1):34-42 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Gene panel testing for breast cancer susceptibility has become relatively cheap and accessible. However, the breast cancer risks associated with mutations in many genes included in these panels are unknown.
METHODS: We performed custom-designed targeted sequencing covering the coding exons of 17 known and putative breast cancer susceptibility genes in 660 non-BRCA1/2 women with familial breast cancer. Putative deleterious mutations were genotyped in relevant family members to assess co-segregation of each variant with disease. We used maximum likelihood models to estimate the breast cancer risks associated with mutations in each of the genes.
RESULTS: We found 31 putative deleterious mutations in 7 known breast cancer susceptibility genes (TP53, PALB2, ATM, CHEK2, CDH1, PTEN and STK11) in 45 cases, and 22 potential deleterious mutations in 31 cases in 8 other genes (BARD1, BRIP1, MRE11, NBN, RAD50, RAD51C, RAD51D and CDK4). The relevant variants were then genotyped in 558 family members. Assuming a constant relative risk of breast cancer across age groups, only variants in CDH1, CHEK2, PALB2 and TP53 showed evidence of a significantly increased risk of breast cancer, with some supportive evidence that mutations in ATM confer moderate risk.
CONCLUSIONS: Panel testing for these breast cancer families provided additional relevant clinical information for <2% of families. We demonstrated that segregation analysis has some potential to help estimate the breast cancer risks associated with mutations in breast cancer susceptibility genes, but very large case-control sequencing studies and/or larger family-based studies will be needed to define the risks more accurately.

Zhang H, Liu Y, Zhou K, et al.
Genetic variations in the homologous recombination repair pathway genes modify risk of glioma.
J Neurooncol. 2016; 126(1):11-7 [PubMed] Related Publications
Accumulative epidemiological evidence suggests that single nucleotide polymorphisms (SNPs) in genes involved in homologous recombination (HR) DNA repair pathway play an important role in glioma susceptibility. However, the effects of such SNPs on glioma risk remain unclear. We used a used a candidate pathway-based approach to elucidate the relationship between glioma risk and 12 putative functional SNPs in genes involved in the HR pathway. Genotyping was conducted on 771 histologically-confirmed glioma patients and 752 cancer-free controls from the Chinese Han population. Odds ratios (OR) were calculated both for each SNP individually and for grouped analyses, examining the effects of the numbers of adverse alleles on glioma risk, and evaluated their potential gene-gene interactions using the multifactor dimensionality reduction (MDR). In the single-locus analysis, two variants, the NBS1 rs1805794 (OR 1.42, 95% CI 1.15-1.76, P = 0.001), and RAD54L rs1048771 (OR 1.61, 95% CI 1.17-2.22, P = 0.002) were significantly associated with glioma risk. When we examined the joint effects of the risk-conferring alleles of these three SNPs, we found a significant trend indicating that the risk increases as the number of adverse alleles increase (P = 0.005). Moreover, the MDR analysis suggested a significant three-locus interaction model involving NBS1 rs1805794, MRE11 rs10831234, and ATM rs227062. These results suggested that these variants of the genes involved in the HR pathway may contribute to glioma susceptibility.

Yang H, Deng L, Li T, et al.
Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.
J Biomed Nanotechnol. 2015; 11(12):2124-36 [PubMed] Related Publications
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated that the developed DOX-PLGA/PEI/P-gp shRNA NBs is a potential, safe and efficient theranotic agent for cancer therapy and diagnostics.

Hu C, Hart SN, Bamlet WR, et al.
Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients.
Cancer Epidemiol Biomarkers Prev. 2016; 25(1):207-11 [PubMed] Free Access to Full Article Related Publications
The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well-defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12-month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first-degree relative with PDAC, and 10 mutations were found in patients with first- or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancers. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of patients with pancreatic cancer.

Beumer JH, Fu KY, Anyang BN, et al.
Functional analyses of ATM, ATR and Fanconi anemia proteins in lung carcinoma : ATM, ATR and FA in lung carcinoma.
BMC Cancer. 2015; 15:649 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: ATM and ATR are kinases implicated in a myriad of DNA-damage responses. ATM kinase inhibition radiosensitizes cells and selectively kills cells with Fanconi anemia (FA) gene mutations. ATR kinase inhibition sensitizes cells to agents that induce replication stress and selectively kills cells with ATM and TP53 mutations. ATM mutations and FANCF promoter-methylation are reported in lung carcinomas.
METHODS: We undertook functional analyses of ATM, ATR, Chk1 and FA proteins in lung cancer cell lines. We included Calu6 that is reported to be FANCL-deficient. In addition, the cancer genome atlas (TCGA) database was interrogated for alterations in: 1) ATM, MRE11A, RAD50 and NBN; 2) ATR, ATRIP and TOPBP1; and 3) 15 FA genes.
RESULTS: No defects in ATM, ATR or Chk1 kinase activation, or FANCD2 monoubiquitination were identified in the lung cancer cell lines examined, including Calu6, and major alterations in these pathways were not identified in the TCGA database. Cell lines were radiosensitized by ATM kinase inhibitor KU60019, but no cell killing by ATM kinase inhibitor alone was observed. While no synergy between gemcitabine or carboplatin and ATR kinase inhibitor ETP-46464 was observed, synergy between gemcitabine and Chk1 kinase inhibitor UCN-01 was observed in 54 T, 201 T and H460, and synergy between carboplatin and Chk1 kinase inhibitor was identified in 201 T and 239 T. No interactions between ATM, ATR and FA activation were observed by either ATM or ATR kinase inhibition in the lung cancer cell lines.
CONCLUSIONS: Analyses of ATM serine 1981 and Chk1 serine 345 phosphorylation, and FANCD2 monoubiquitination revealed that ATM and ATR kinase activation and FA pathway signaling are intact in the lung cancer cell lines examined. As such, these posttranslational modifications may have utility as biomarkers for the integrity of DNA damage signaling pathways in lung cancer. Different sensitization profiles between gemcitabine and carboplatin and ATR kinase inhibitor ETP-46464 and Chk1 kinase inhibitor UCN-01 were observed and this should be considered in the rationale for Phase I clinical trial design with ATR kinase inhibitors.

Sun P, Du J, Zhu X, et al.
Genetic Variation in the 3'-Untranslated Region of NBN Gene Is Associated with Gastric Cancer Risk in a Chinese Population.
PLoS One. 2015; 10(9):e0139059 [PubMed] Free Access to Full Article Related Publications
NBN plays a crucial role in carcinogenesis as a core component for both homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA double-strand breaks (DSBs) repair pathways. Genetic variants in the NBN gene have been associated with multiple cancers risk, suggesting pleiotropic effect on cancer. We hypothesized that genetic variants in the NBN gene may modify the risk of gastric cancer. To test this hypothesis, we evaluated the association between four potentially functional single nucleotide polymorphisms in NBN and gastric cancer risk in a case-control study of 1,140 gastric cancer cases and 1,547 controls in a Chinese population. We found that the A allele of rs10464867 (G>A) was significantly associated with a decreased risk of gastric cancer (odds ratio [OR] = 0.81, 95% confidence interval [95% CI] = 0.71-0.94; P = 4.71×10-3). Furthermore, the association between A allele of rs10464867 and decreased risk of gastric cancer was more significantly in elder individuals (per-allele OR = 0.72[0.59-0.88], P = 1.07×10-3), and male individuals (per-allele OR = 0.73[0.62-0.87], P = 3.68×10-4). We further conducted a haplotype analysis and identified that the NBN Ars10464867Grs14448Grs1063053 haplotype conferred stronger protective effect on gastric cancer (OR = 0.76[0.65-0.89], P = 6.39×10-4). In summary, these findings indicate that genetic variants at NBN gene may contribute to gastric cancer susceptibility and may further advance our understanding of NBN gene in cancer development.

Hsu KS, Guan BJ, Cheng X, et al.
Translational control of PML contributes to TNFα-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs.
Cell Death Differ. 2016; 23(3):469-83 [PubMed] Free Access to Full Article Related Publications
The tumor suppressor protein promyelocytic leukemia (PML) is a key regulator of inflammatory responses and tumorigenesis and functions through the assembly of subnuclear structures known as PML nuclear bodies (NBs). The inflammation-related cytokine tumor necrosis factor-α (TNFα) is known to induce PML protein accumulation and PML NB formation that mediate TNFα-induced cell death in cancer cells and inhibition of migration and capillary tube formation in endothelial cells (ECs). In this study, we uncover a novel mechanism of PML gene regulation in which the p38 MAPK and its downstream kinase MAP kinase-activated protein kinase 1 (MNK1) mediate TNFα-induced PML protein accumulation and PML NB formation. The mechanism includes the presence of an internal ribosome entry site (IRES) found within the well-conserved 100 nucleotides upstream of the PML initiation codon. The activity of the PML IRES is induced by TNFα in a manner that involves MNK1 activation. It is proposed that the p38-MNK1-PML network regulates TNFα-induced apoptosis in breast cancer cells and TNFα-mediated inhibition of migration and capillary tube formation in ECs.

Panero J, Stella F, Schutz N, et al.
Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders.
PLoS One. 2015; 10(9):e0137972 [PubMed] Free Access to Full Article Related Publications
Telomerase, shelterin proteins and various interacting factors, named non-shelterin proteins, are involved in the regulation of telomere length (TL). Altered expression of any of these telomere-associated genes can lead to telomere dysfunction, causing genomic instability and disease development. In this study, we investigated the expression profile of a set of non-shelterin genes involved in essential processes such as replication (RPA1), DNA damage repair pathways (MRE11-RAD50-NBS1) and stabilization of telomerase complex (DKC1), in 35 patients with monoclonal gammopathy of undetermined significance (MGUS) and 40 cases with multiple myeloma (MM). Results were correlated with hTERT expression, TL and clinical parameters. Overall, a significant increase in DKC1, RAD50, MRE11, NBS1 and RPA1 expression along with an upregulation of hTERT in MM compared with MGUS was observed (p≤0.032). Interestingly, in both entities high mRNA levels of non-shelterin genes were associated with short TLs and increased hTERT expression. Significant differences were observed for DKC1 in MM (p ≤0.026), suggesting an important role for this gene in the maintenance of short telomeres by telomerase in myeloma plasma cells. With regard to clinical associations, we observed a significant increase in DKC1, RAD50, MRE11 and RPA1 expression in MM cases with high bone marrow infiltration (p≤0.03) and a tendency towards cases with advanced ISS stage, providing the first evidence of non-shelterin genes associated to risk factors in MM. Taken together, our findings bring new insights into the intricate mechanisms by which telomere-associated proteins collaborate in the maintenance of plasma cells immortalization and suggest a role for the upregulation of these genes in the progression of the disease.

Ramus SJ, Song H, Dicks E, et al.
Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer.
J Natl Cancer Inst. 2015; 107(11) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, responsible for 13 000 deaths per year in the United States. Risk prediction based on identifying germline mutations in ovarian cancer susceptibility genes could have a clinically significant impact on reducing disease mortality.
METHODS: Next generation sequencing was used to identify germline mutations in the coding regions of four candidate susceptibility genes-BRIP1, BARD1, PALB2 and NBN-in 3236 invasive EOC case patients and 3431 control patients of European origin, and in 2000 unaffected high-risk women from a clinical screening trial of ovarian cancer (UKFOCSS). For each gene, we estimated the prevalence and EOC risks and evaluated associations between germline variant status and clinical and epidemiological risk factor information. All statistical tests were two-sided.
RESULTS: We found an increased frequency of deleterious mutations in BRIP1 in case patients (0.9%) and in the UKFOCSS participants (0.6%) compared with control patients (0.09%) (P = 1 x 10(-4) and 8 x 10(-4), respectively), but no differences for BARD1 (P = .39), NBN1 ( P = .61), or PALB2 (P = .08). There was also a difference in the frequency of rare missense variants in BRIP1 between case patients and control patients (P = 5.5 x 10(-4)). The relative risks associated with BRIP1 mutations were 11.22 for invasive EOC (95% confidence interval [CI] = 3.22 to 34.10, P = 1 x 10(-4)) and 14.09 for high-grade serous disease (95% CI = 4.04 to 45.02, P = 2 x 10(-5)). Segregation analysis in families estimated the average relative risks in BRIP1 mutation carriers compared with the general population to be 3.41 (95% CI = 2.12 to 5.54, P = 7×10(-7)).
CONCLUSIONS: Deleterious germline mutations in BRIP1 are associated with a moderate increase in EOC risk. These data have clinical implications for risk prediction and prevention approaches for ovarian cancer and emphasize the critical need for risk estimates based on very large sample sizes before genes of moderate penetrance have clinical utility in cancer prevention.

Aloraifi F, McCartan D, McDevitt T, et al.
Protein-truncating variants in moderate-risk breast cancer susceptibility genes: a meta-analysis of high-risk case-control screening studies.
Cancer Genet. 2015; 208(9):455-63 [PubMed] Related Publications
Several "moderate-risk breast cancer susceptibility genes" have been conclusively identified. Pathogenic mutations in these genes are thought to cause a two to fivefold increased risk of breast cancer. In light of the current development and use of multigene panel testing, the authors wanted to systematically obtain robust estimates of the cancer risk associated with loss-of-function mutations within these genes. An electronic search was conducted to identify studies that sequenced the full coding regions of ATM, CHEK2, BRIP1, PALB2, NBS1, and RAD50 in a general and gene-targeted approach. Inclusion was restricted to studies that sequenced the germline DNA in both high-risk cases and geographically matched controls. A meta-analysis was then performed on protein-truncating variants (PTVs) identified in the studies for an association with breast cancer risk. A total of 10,209 publications were identified, of which 64 studies comprising a total of 25,418 cases and 52,322 controls in the 6 interrogated genes were eligible under our selection criteria. The pooled odds ratios for PTVs in the susceptibility genes were at least >2.6. Additionally, mutations in these genes have shown geographic and ethnic variation. This comprehensive study emphasizes the fact that caution should be taken when identifying certain genes as moderate susceptibility with the lack of sufficient data, especially with regard to the NBS1, RAD50, and BRIP1 genes. Further data from case-control sequencing studies, and especially family studies, are warranted.

Guarneri V, Dieci MV, Frassoldati A, et al.
Prospective Biomarker Analysis of the Randomized CHER-LOB Study Evaluating the Dual Anti-HER2 Treatment With Trastuzumab and Lapatinib Plus Chemotherapy as Neoadjuvant Therapy for HER2-Positive Breast Cancer.
Oncologist. 2015; 20(9):1001-10 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The CHER-LOB randomized phase II study showed that the combination of lapatinib and trastuzumab plus chemotherapy increases the pathologic complete remission (pCR) rate compared with chemotherapy plus either trastuzumab or lapatinib. A biomarker program was prospectively planned to identify potential predictors of sensitivity to different treatments and to evaluate treatment effect on tumor biomarkers.
MATERIALS AND METHODS: Overall, 121 breast cancer patients positive for human epidermal growth factor 2 (HER2) were randomly assigned to neoadjuvant chemotherapy plus trastuzumab, lapatinib, or both trastuzumab and lapatinib. Pre- and post-treatment samples were centrally evaluated for HER2, p95-HER2, phosphorylated AKT (pAKT), phosphatase and tensin homolog, Ki67, apoptosis, and PIK3CA mutations. Fresh-frozen tissue samples were collected for genomic analyses.
RESULTS: A mutation in PIK3CA exon 20 or 9 was documented in 20% of cases. Overall, the pCR rates were similar in PIK3CA wild-type and PIK3CA-mutated patients (33.3% vs. 22.7%; p = .323). For patients receiving trastuzumab plus lapatinib, the probability of pCR was higher in PIK3CA wild-type tumors (48.4% vs. 12.5%; p = .06). Ki67, pAKT, and apoptosis measured on the residual disease were significantly reduced from baseline. The degree of Ki67 inhibition was significantly higher in patients receiving the dual anti-HER2 blockade. The integrated analysis of gene expression and copy number data demonstrated that a 50-gene signature specifically predicted the lapatinib-induced pCR.
CONCLUSION: PIK3CA mutations seem to identify patients who are less likely to benefit from dual anti-HER2 inhibition. p95-HER2 and markers of phosphoinositide 3-kinase pathway deregulation are not confirmed as markers of different sensitivity to trastuzumab or lapatinib.
IMPLICATIONS FOR PRACTICE: HER2 is currently the only validated marker to select breast cancer patients for anti-HER2 treatment; however, it is becoming evident that HER2-positive breast cancer is a heterogeneous disease. In addition, more and more new anti-HER2 treatments are becoming available. There is a need to identify markers of sensitivity to different treatments to move in the direction of treatment personalization. This study identified PIK3CA mutations as a potential predictive marker of resistance to dual anti-HER2 treatment that should be further studied in breast cancer.

Higashi M, Kolla V, Iyer R, et al.
Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma.
Mol Cancer. 2015; 14:150 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines.
METHODS: NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1-10 μM 13-cis-retinoic acid (13cRA) for 3-12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies.
RESULTS: Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 μM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 μM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor.
CONCLUSIONS: Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling.

Wagner W, Ciszewski WM, Kania KD
L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation.
Cell Commun Signal. 2015; 13:36 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The consideration of lactate as an active metabolite is a newly emerging and attractive concept. Recently, lactate has been reported to regulate gene transcription via the inhibition of histone deacetylases (HDACs) and survival of cancer cells via hydroxycarboxylic acid receptor 1 (HCAR1). This study examined the role of L- and D-lactate in the DNA damage response in cervical cancer cells.
METHODS: Three cervical cancer cell lines were examined: HeLa, Ca Ski and C33A. The inhibitory activity of lactate on HDACs was analysed using Western blot and biochemical methods. The lactate-mediated stimulation of DNA repair and cellular resistance to neocarzinostatin, doxorubicin and cisplatin were studied using γ-H2AX, comet and clonogenic assays. HCAR1 and DNA repair gene expression was quantified by real-time PCR. DNA-PKcs activity and HCAR1 protein expression were evaluated via immunocytochemistry and Western blot, respectively. HCAR1 activation was investigated by measuring intracellular cAMP accumulation and Erk phosphorylation. HCAR1 expression was silenced using shRNA.
RESULTS: L- and D-lactate inhibited HDACs, induced histone H3 and H4 hyperacetylation, and decreased chromatin compactness in HeLa cells. Treating cells with lactate increased LIG4, NBS1, and APTX expression by nearly 2-fold and enhanced DNA-PKcs activity. Based on γ-H2AX and comet assays, incubation of cells in lactate-containing medium increased the DNA repair rate. Furthermore, clonogenic assays demonstrated that lactate mediates cellular resistance to clinically used chemotherapeutics. Western blot and immunocytochemistry showed that all studied cell lines express HCAR1 on the cellular surface. Inhibiting HCAR1 function via pertussis toxin pretreatment partially abolished the effects of lactate on DNA repair. Down-regulating HCAR1 decreased the efficiency of DNA repair, abolished the cellular response to L-lactate and decreased the effect of D-lactate. Moreover, HCAR1 shRNA-expressing cells produced significantly lower mRNA levels of monocarboxylate transporter 4. Finally, the enhancement of DNA repair and cell survival by lactate was suppressed by pharmacologically inhibiting monocarboxylate transporters using the inhibitor α-cyano-4-hydroxycinnamic acid (α-CHCA).
CONCLUSIONS: Our data indicate that L- and D-lactate present in the uterine cervix may participate in the modulation of cellular DNA damage repair processes and in the resistance of cervical carcinoma cells to anticancer therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NBS1, Cancer Genetics Web: http://www.cancer-genetics.org/NBS1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999