ARHGEF1

Gene Summary

Gene:ARHGEF1; Rho guanine nucleotide exchange factor 1
Aliases: LSC, GEF1, IMD62, LBCL2, SUB1.5, P115-RHOGEF
Location:19q13.2
Summary:Rho GTPases play a fundamental role in numerous cellular processes that are initiated by extracellular stimuli that work through G protein coupled receptors. The encoded protein may form complex with G proteins and stimulate Rho-dependent signals. Multiple alternatively spliced transcript variants have been found for this gene, but the full-length nature of some variants has not been defined. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:rho guanine nucleotide exchange factor 1
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ARHGEF1 (cancer-related)

Chu Y, Chen Y, Li M, et al.
Six1 regulates leukemia stem cell maintenance in acute myeloid leukemia.
Cancer Sci. 2019; 110(7):2200-2210 [PubMed] Free Access to Full Article Related Publications
Molecular genetic changes in acute myeloid leukemia (AML) play crucial roles in leukemogenesis, including recurrent chromosome translocations, epigenetic/spliceosome mutations and transcription factor aberrations. Six1, a transcription factor of the Sine oculis homeobox (Six) family, has been shown to transform normal hematopoietic progenitors into leukemia in cooperation with Eya. However, the specific role and the underlying mechanism of Six1 in leukemia maintenance remain unexplored. Here, we showed increased expression of SIX1 in AML patients and murine leukemia stem cells (c-Kit

Li X, Zhu J, Liu Y, et al.
MicroRNA-331-3p inhibits epithelial-mesenchymal transition by targeting ErbB2 and VAV2 through the Rac1/PAK1/β-catenin axis in non-small-cell lung cancer.
Cancer Sci. 2019; 110(6):1883-1896 [PubMed] Free Access to Full Article Related Publications
MicroRNAs have been reported to play critical roles in the regulation of non-small-cell cancer (NSCLC) development, but the role of microRNA (miR)-331-3p in NSCLC is still unclear. In this study, the expression levels of miR-331-3p in NSCLC tumor tissues and adjacent normal tissues were examined by quantitative RT-PCR, and the relationship between miR-331-3p expression and patient clinicopathological characteristics was analyzed. The effects of miR-331-3p on epithelial-mesenchymal transition (EMT), migration, and metastasis of NSCLC cells were determined in vitro and vivo. Direct functional targets of miR-331-3p were identified by luciferase reporter assay, western blot assay, immunohistochemical staining, and rescue assay. The downstream pathway regulated by miR-331-3p was identified by immunofluorescence, immunoprecipitation, and Rac1 activity examination. Our results showed that miR-331-3p was significantly downregulated in NSCLC tumor tissues and was correlated with clinicopathological characteristics, and miR-331-3p could be an independent prognostic marker for NSCLC patients. Furthermore, miR-331-3p significantly suppressed EMT, migration and metastasis of NSCLC cells in vitro and in vivo. Both ErbB2 and VAV2 were direct functional targets of miR-331-3p. The activities of Rac1, PAK1, and β-catenin were regulated by miR-331-3p through ErbB2 and VAV2 targeting. These results indicated that miR-331-3p suppresses EMT, migratory capacity, and metastatic ability by targeting ErbB2 and VAV2 through the Rac1/PAK1/β-catenin axis in NSCLC.

Yang J, Zhou L, Zhang Y, et al.
DIAPH1 Is Upregulated and Inhibits Cell Apoptosis through ATR/p53/Caspase-3 Signaling Pathway in Laryngeal Squamous Cell Carcinoma.
Dis Markers. 2019; 2019:6716472 [PubMed] Free Access to Full Article Related Publications
Cancer bioinformatics has been used to screen possible key cancer genes and pathways. Here, through bioinformatics analysis, we found that high expression of diaphanous related formin 1 (DIAPH1) was associated with poor overall survival in head and neck squamous cell carcinoma and laryngeal squamous cell carcinoma (LSCC). The effect of DIAPH1 in LSCC has not been previously investigated. Therefore, we evaluated the expression, function, and molecular mechanisms of DIAPH1 in LSCC. Immunohistochemistry and western blot analysis confirmed the significant upregulation of DIAPH1 in LSCC. We used DIAPH1 RNA interference to construct two DIAPH1-knockdown LSCC cell lines, AMC-HN-8 and FD-LSC-1, and validated the knockdown efficiency. Flow cytometry data showed that DIAPH1 inhibited apoptosis. Further, western blot analysis revealed that DIAPH1 knockdown increased the protein levels of ATR, p-p53, Bax, and cleaved caspase-3, -8, and -9. Thus, DIAPH1 is upregulated in LSCC and may act as an oncogene by inhibiting apoptosis through the ATR/p53/caspase-3 pathway in LSCC cells.

Valiollahi E, Ribera JM, Genescà E, Behravan J
Genome-wide identification of microRNA signatures associated with stem/progenitor cells in Philadelphia chromosome-positive acute lymphoblastic leukemia.
Mol Biol Rep. 2019; 46(1):1295-1306 [PubMed] Related Publications
Acute lymphoblastic leukemia (ALL) is a malignant transformation with uncontrolled proliferation of lymphoid precursor cells within bone marrow including a dismal prognosis after relapse. Survival of a population of quiescent leukemia stem cells (LSCs, also termed leukemia-initiating cells (LICs)) after treatment is one of the relapse reasons in Ph

Liu S, Yin P, Kujawa SA, et al.
Progesterone receptor integrates the effects of mutated MED12 and altered DNA methylation to stimulate RANKL expression and stem cell proliferation in uterine leiomyoma.
Oncogene. 2019; 38(15):2722-2735 [PubMed] Free Access to Full Article Related Publications
Progesterone and its receptor, PR, are essential for uterine leiomyoma (LM, a.k.a., fibroid) tumorigenesis, but the underlying cellular and molecular mechanisms remain unclear. The receptor activator of NF-κB (RANKL) was recently identified as a novel progesterone/PR-responsive gene that plays an important role in promoting LM growth. Here, we used RANKL as a representative gene to investigate how steroid hormone, genetic, and epigenetic signals are integrated to regulate LM stem cell (LSC) function. We demonstrated that RANKL specifically upregulates LSC proliferation through activation of Cyclin D1. RANKL gene transcription was robustly induced by the progesterone agonist R5020, leading to a dramatically higher RANKL expression in LM compared to adjacent myometrial (MM) tissue. MethylCap-Seq revealed a differentially methylated region (DMR) adjacent to the distal PR-binding site (PRBS) 87 kb upstream of the RANKL transcription start site. Hypermethylation of the DMR inhibited recruitment of PR to the adjacent PRBS. Luciferase assays indicated that the DMR and distal PRBS constitute a novel RANKL distal regulatory element that actively regulates RANKL expression. Furthermore, MED12 physically interacts with PR in LM tissue. The interaction between MED12 and PR, binding of PR and MED12 to PRBS, and RANKL gene expression are significantly higher in LM containing a distinct MED12 mutation (G44D) than in LM with wild-type MED12. In summary, our findings suggest that DNA methylation and MED12 mutation together constitute a complex regulatory network that affects progesterone/PR-mediated RANKL gene expression, with an important role in activating stem cell proliferation and fibroid tumor development.

Ye YP, Jiao HL, Wang SY, et al.
Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation.
J Exp Clin Cancer Res. 2018; 37(1):299 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) is one of the most common digestive malignant tumors, and DMTN is a transcriptionally differentially expressed gene that was identified using CRC mRNA sequencing data from The Cancer Genome Atlas (TCGA). Our preliminary work suggested that the expression of DMTN was downregulated in CRC, and the Rac1 signaling pathway was significantly enriched in CRC tissues with low DMTN expression. However, the specific functions and underlying molecular mechanisms of DMTN in the progression of CRC and the upstream factors regulating the downregulation of the gene remain unclear.
METHODS: DMTN expression was analyzed in CRC tissues, and the relationship between DMTN expression and the clinicopathological parameters was analyzed. In vitro and in vivo experimental models were used to detect the effects of DMTN dysregulation on invasion and metastasis of CRC cells. GSEA assay was performed to explore the mechanism of DMTN in invasion and metastasis of CRC. Westernblot, Co-IP and GST-Pull-Down assay were used to detect the interaction between DMTN and ARHGEF2, as well as the activation of the RAC1 signaling. Bisulfite genomic sequence (BSP) assay was used to test the degree of methylation of DMTN gene promoter in CRC tissues.
RESULTS: We found that the expression of DMTN was significantly decreased in CRC tissues, and the downregulation of DMTN was associated with advanced progression and poor survival and was regarded as an independent predictive factor of CRC patient prognosis. The overexpression of DMTN inhibited, while the knockdown of DMTN promoted, invasion and metastasis in CRC cells. Moreover, hypermethylation and the deletion of DMTN relieved binding to the ARHGEF2 protein, activated the Rac1 signaling pathway, regulated actin cytoskeletal rearrangements, and promoted the invasion and metastasis of CRC cells.
CONCLUSION: Our study demonstrated that the downregulation of DMTN promoted the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through RAC1 signaling activation, potentially providing a new therapeutic target to enable cancer precision medicine for CRC patients.

Ishaque N, Abba ML, Hauser C, et al.
Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer.
Nat Commun. 2018; 9(1):4782 [PubMed] Free Access to Full Article Related Publications
Incomplete understanding of the metastatic process hinders personalized therapy. Here we report the most comprehensive whole-genome study of colorectal metastases vs. matched primary tumors. 65% of somatic mutations originate from a common progenitor, with 15% being tumor- and 19% metastasis-specific, implicating a higher mutation rate in metastases. Tumor- and metastasis-specific mutations harbor elevated levels of BRCAness. We confirm multistage progression with new components ARHGEF7/ARHGEF33. Recurrently mutated non-coding elements include ncRNAs RP11-594N15.3, AC010091, SNHG14, 3' UTRs of FOXP2, DACH2, TRPM3, XKR4, ANO5, CBL, CBLB, the latter four potentially dual protagonists in metastasis and efferocytosis-/PD-L1 mediated immunosuppression. Actionable metastasis-specific lesions include FAT1, FGF1, BRCA2, KDR, and AKT2-, AKT3-, and PDGFRA-3' UTRs. Metastasis specific mutations are enriched in PI3K-Akt signaling, cell adhesion, ECM and hepatic stellate activation genes, suggesting genetic programs for site-specific colonization. Our results put forward hypotheses on tumor and metastasis evolution, and evidence for metastasis-specific events relevant for personalized therapy.

Huang D, Wang Y, Xu L, et al.
GLI2 promotes cell proliferation and migration through transcriptional activation of ARHGEF16 in human glioma cells.
J Exp Clin Cancer Res. 2018; 37(1):247 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The Hedgehog (Hh) signaling pathway plays critical roles in modulating embryogenesis and maintaining tissue homeostasis, with glioma-associated oncogene (GLI) transcription factors being the main mediators. Aberrant activation of this pathway is associated with various human malignancies including glioblastoma, although the mechanistic details are not well understood.
METHODS: We performed a microarray analysis of genes that are differentially expressed in glioblastoma U87 cells overexpressing GLI2A, the active form of GLI2, relative to the control cells. Chromatin immunoprecipitation and dual-luciferase assays were used to determine whether Rho guanine nucleotide exchange factor 16 (ARHGEF16) is a downstream target of GLI2. Then, transwell migration, EdU and soft-agar colony formation assays were employed to test effects of ARHGEF16 on glioma cancer cell migration and proliferation, and the effects of GLI2/ARHGEF16 signaling on tumor growth were examined in vivo. Finally, we performed yeast two-hybrid assay, Co-IP and GST-pull down to identify factors that mediate effects of ARHGEF16.
RESULTS: We found that ARHGEF16 mRNA level was upregulated in U87 cells overexpressing GLI2A relative to control cells. GLI2 binds to the ARHGEF16 promoter and activates gene transcription. Glioma cells U87 and U118 overexpressing ARHGEF16 showed enhanced migration and proliferation relative to the control cells, while knockdown of ARHGEF16 in H4 cells led to decreased cell proliferation compared to the control H4 cells. In contrast to the promoting effect of GLI2A overexpression on glioma xenograft growth, both GLI2 inhibition and ARHGEF16 knockdown retarded tumor growth. Cytoskeleton-associated protein 5 (CKAP5) was identified as an interaction protein of ARHGEF16, which is important for the stimulatory effects of ARHGEF16 on glioma cell migration and proliferation.
CONCLUSIONS: These results suggest that therapeutic strategies targeting the GLI2/ARHGEF16/CKAP5 signaling axis could inhibit glioma progression and recurrence.

Yan B, Chen Q, Shimada K, et al.
Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia.
Leukemia. 2019; 33(4):931-944 [PubMed] Related Publications
Chemoresistance may be due to the survival of leukemia stem cells (LSCs) that are quiescent and not responsive to chemotherapy or lie on the intrinsic or acquired resistance of the specific pool of AML cells. Here, we found, among well-established LSC markers, only CD123 and CD47 are correlated with AML cell chemosensitivities across cell lines and patient samples. Further study reveals that percentages of CD123

Taniuchi K, Furihata M, Naganuma S, Saibara T
ARHGEF4 predicts poor prognosis and promotes cell invasion by influencing ERK1/2 and GSK-3α/β signaling in pancreatic cancer.
Int J Oncol. 2018; 53(5):2224-2240 [PubMed] Related Publications
Rho guanine nucleotide exchange factor 4 (ARHGEF4) is a guanine nucleotide exchange factor that is specific for Rac1 and Cdc42. The aim of the present study was to investigate the role of ARHGEF4 in the motility and invasiveness of pancreatic cancer cells. Evaluation of an immunohistochemical staining of 102 resected pancreatic cancer samples demonstrated that high ARHGEF4 expression was correlated with an independent predictor of worse overall survival in univariate and multivariate analyses. Immunofluorescence analyses and Matrigel invasion assays demonstrated that suppression of ARHGEF4 inhibited the formation of membrane protrusions, and in turn inhibited cell motility and invasion. A phosphoprotein array analysis demonstrated that knockdown of ARHGEF4 decreased phosphorylated extracellular signal-regulated kinase (ERK)1/2 and glycogen synthase kinase-3 (GSK-3)α/β in pancreatic cancer cells, and ERK1/2 and GSK-3α/β were associated with ARHGEF4-related motility and invasiveness through an increase in cell protrusions. These results suggested that ARHGEF4 stimulates ERK1/2 and GSK-3α/β, and provided evidence that ARHGEF4 promotes cell motility and invasiveness. Inhibition of ARHGEF4 may be a novel approach to a targeted molecular therapy, as any such therapy would limit the motility and invasiveness of pancreatic cancer cells.

Ding Z, Dhruv H, Kwiatkowska-Piwowarczyk A, et al.
PDZ-RhoGEF Is a Signaling Effector for TROY-Induced Glioblastoma Cell Invasion and Survival.
Neoplasia. 2018; 20(10):1045-1058 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most common type of malignant brain tumors in adults and has a dismal prognosis. The highly aggressive invasion of malignant cells into the normal brain parenchyma renders complete surgical resection of GBM tumors impossible, increases resistance to therapeutic treatment, and leads to near-universal tumor recurrence. We have previously demonstrated that TROY (TNFRSF19) plays an important role in glioblastoma cell invasion and therapeutic resistance. However, the potential downstream effectors of TROY signaling have not been fully characterized. Here, we identified PDZ-RhoGEF as a binding partner for TROY that potentiated TROY-induced nuclear factor kappa B activation which is necessary for both cell invasion and survival. In addition, PDZ-RhoGEF also interacts with Pyk2, indicating that PDZ-RhoGEF is a component of a signalsome that includes TROY and Pyk2. PDZ-RhoGEF is overexpressed in glioblastoma tumors and stimulates glioma cell invasion via Rho activation. Increased PDZ-RhoGEF expression enhanced TROY-induced glioma cell migration. Conversely, silencing PDZ-RhoGEF expression inhibited TROY-induced glioma cell migration, increased sensitivity to temozolomide treatment, and extended survival of orthotopic xenograft mice. Furthermore, depletion of RhoC or RhoA inhibited TROY- and PDZ-RhoGEF-induced cell migration. Mechanistically, increased TROY expression stimulated Rho activation, and depletion of PDZ-RhoGEF expression reduced this activation. Taken together, these data suggest that PDZ-RhoGEF plays an important role in TROY signaling and provides insights into a potential node of vulnerability to limit GBM cell invasion and decrease therapeutic resistance.

Niu X, Gao Z, Qi S, et al.
Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells.
Int J Nanomedicine. 2018; 13:4895-4911 [PubMed] Free Access to Full Article Related Publications
Background: Successful implementation of gene therapy heavily relies on efficiently delivering genetic materials and specific targeting into cells. Oncogene-driven endocytosis stimulates nutrient uptake and also develops an endocytosis-mediated defense against therapeutic agents. Cell-penetrating peptides, typically HIV-Tat, are well known for efficient delivery of nucleic acid drugs but lack targeting specificity. Various passive targeting strategies were pursued to enhance the tumor targeting efficiency; however, they are still limited by complicated cellular endocytosis routes and the heterogeneity of cancer types.
Methods: Tat/pDNA complexes were noncovalently compacted and their physiochemical properties were determined. The siRNA pool and pLV-RNAi-GFP lentivirus were used to knock down
Results: pGL3 plasmid DNA was noncovalently compacted with the Tat peptide into nano-size complexes at high N/P ratios. Macropinocytosis, a clathrin- and caveolin-independent endocytosis process, was shown to contribute to the uptake of middle-sized (∼600 nm) Tat/pGL3 complexes. Cell-type-specific variation in macropinocytosis was essentially controlled by the action of the
Conclusion: Such an aspect can be exploited to selectively confer targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Our work provides a novel alternative for targeted delivery of cell-penetrating peptide-based nucleic acid drugs into certain tumor types if specific endocytosis pathways are used.

Gao S, Zhou B, Li H, et al.
Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15.
Exp Hematol. 2018; 67:32-40.e3 [PubMed] Related Publications
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic disorder initiated from a small subset of leukemia stem cell (LSC), which presents unrestricted self-renewal and proliferation. Long non-coding RNA HOTAIR is abundantly expressed and plays oncogenic roles in solid cancer and AML. However, whether HOTAIR regulates the self-renewal of LSC is largely unknown. Here, we reported that the expression of HOTAIR was increased in LSC than in normal hematological stem and progenitor cells (HSPCs). HOTAIR inhibition by short hairpin RNAs (shRNAs) decreased colony formation in leukemia cell lines and primary AML blasts. We then investigated the role of HOTAIR in leukemia in vivo. HOTAIR knockdown extends the survival time in U937-transplanted NSG mice. Furthermore, HOTAIR knockdown reduced infiltration of leukemic blasts, decreased frequency of LSC, and prolonged overall survival in MLL-AF9-induced murine leukemia, suggesting that HOTAIR is required for the maintenance of AML. Mechanistically, HOTAIR inhibited p15 expression through zeste homolog 2 (EZH2)-enrolled tri-methylation of Lys 27 of histone H3 (H3K27me3) in p15 promoter. In addition, p15 partially reversed the decrease of colony and proliferation induced by HOTAIR knockdown, suggesting that p15 plays an important role in the leukemogenesis by HOTAIR. In conclusion, our study suggests that HOTAIR facilitates leukemogenesis by enhancing self-renewal of LSC. HOTAIR might be a potential target for anti-LSC therapy.

Lei X, Deng L, Liu D, et al.
ARHGEF7 promotes metastasis of colorectal adenocarcinoma by regulating the motility of cancer cells.
Int J Oncol. 2018; 53(5):1980-1996 [PubMed] Free Access to Full Article Related Publications
Previous studies have shown that Rho guanine nucleotide exchange factor 7 (ARHGEF7) is implicated in cytoskeleton remodelling, which is important for cell motility and invasiveness, and exhibits frequent high-level genetic amplification in metastatic lesions of colorectal adenocarcinoma. Therefore, it was hypothesized that ARHGEF7 may be involved in the metastasis of colorectal adenocarcinoma. In the present study, it was demonstrated that the expression level of ARHGEF7 was significantly upregulated in colorectal adenocarcinoma tumor tissues compared with matched nontumorous tissues, and its expression level correlated with colorectal adenocarcinoma metastasis. In vitro assays showed that the overexpression of ARHGEF7 in CRC cells significantly enhanced cell migration and invasion, whereas the knockdown of ARHGEF7 in colorectal adenocarcinoma cells significantly decreased cell migration and invasion. In vivo assays showed that the overexpression of ARHGEF7 in CRC cells facilitated tumor metastasis, whereas the knockdown of ARHGEF7 in CRC cells significantly inhibited tumor metastasis. Furthermore, it was demonstrated that ARHGEF7 promoted cell motility by regulating the actin cytoskeleton. Finally, according to ReMARK guidelines for reporting prognostic biomarkers in cancer, it was found that a high expression of ARHGEF7 was significantly correlated with lymph node, mesenteric and distant metastasis. Patients with colorectal adenocarcinoma with a high expression of ARHGEF7 had shorter disease-free survival (DFS) and shorter overall survival (OS) rates, compared with those with a low expression of ARHGEF7, as determined by the Kaplan-Meier method with a log-rank test. Cox regression analysis showed that a high expression of ARHGEF7 was an independent risk factor for DFS and OS rates in colorectal adenocarcinoma.

Duployez N, Marceau-Renaut A, Villenet C, et al.
The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia.
Leukemia. 2019; 33(2):348-357 [PubMed] Related Publications
Despite constant progress in prognostic risk stratification, children with acute myeloid leukemia (AML) still relapse. Treatment failure and subsequent relapse have been attributed to acute myeloid leukemia-initiating cells (LSC), which harbor stem cell properties and are inherently chemoresistant. Although pediatric and adult AML represent two genetically very distinct diseases, we reasoned that common LSC gene expression programs are shared and consequently, the highly prognostic LSC17 signature score recently developed in adults may also be of clinical interest in childhood AML. Here, we demonstrated prognostic relevance of the LSC17 score in pediatric non-core-binding factor AML using Nanostring technology (ELAM02) and RNA-seq data from the NCI (TARGET-AML). AML were stratified by LSC17 quartile groups (lowest 25%, intermediate 50% and highest 25%) and children with low LSC17 score had significantly better event-free survival (EFS: HR = 3.35 (95%CI = 1.64-6.82), P < 0.001) and overall survival (OS: HR = 3.51 (95%CI = 1.38-8.92), P = 0.008) compared with patients with high LSC17 scores. More importantly, the high LSC17 score was an independent negative EFS and OS prognosticator determined by multivariate Cox model analysis (EFS: HR = 3.42 (95% CI = 1.63-7.16), P = 0.001; OS HR = 3.02 (95%CI = 1.16-7.85), P = 0.026). In conclusion, we have demonstrated the broad applicability of the LSC17 score in the clinical management of AML by extending its prognostic relevance to pediatric AML.

Lorenzo-Martín LF, Citterio C, Menacho-Márquez M, et al.
Vav proteins maintain epithelial traits in breast cancer cells using miR-200c-dependent and independent mechanisms.
Oncogene. 2019; 38(2):209-227 [PubMed] Free Access to Full Article Related Publications
The bidirectional regulation of epithelial-mesenchymal transitions (EMT) is key in tumorigenesis. Rho GTPases regulate this process via canonical pathways that impinge on the stability of cell-to-cell contacts, cytoskeletal dynamics, and cell invasiveness. Here, we report that the Rho GTPase activators Vav2 and Vav3 utilize a new Rac1-dependent and miR-200c-dependent mechanism that maintains the epithelial state by limiting the abundance of the Zeb2 transcriptional repressor in breast cancer cells. In parallel, Vav proteins engage a mir-200c-independent expression prometastatic program that maintains epithelial cell traits only under 3D culture conditions. Consistent with this, the depletion of endogenous Vav proteins triggers mesenchymal features in epithelioid breast cancer cells. Conversely, the ectopic expression of an active version of Vav2 promotes mesenchymal-epithelial transitions using E-cadherin-dependent and independent mechanisms depending on the mesenchymal breast cancer cell line used. In silico analyses suggest that the negative Vav anti-EMT pathway is operative in luminal breast tumors. Gene signatures from the Vav-associated proepithelial and prometastatic programs have prognostic value in breast cancer patients.

Boesch M, Sopper S, Marth C, et al.
Evaluation of Vav3.1 as prognostic marker in endometrial cancer.
J Cancer Res Clin Oncol. 2018; 144(10):2067-2076 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Vav3 is a guanine nucleotide exchange factor that regulates the activity of Rho/Rac family GTPases. In a study on ovarian cancer, we recently demonstrated pronounced prognostic and predictive value of Vav3.1, a specific truncation variant of the parental Vav3 gene. Here, we sought to investigate the role of Vav3.1 in the most prevalent gynecological tumor entity, endometrial cancer.
METHODS: Vav3.1 transcript levels were determined in a large cohort of endometrial cancer patients using variant-specific PCR (n = 239), and non-malignant endometrial tissue served as control (n = 26). Expression levels of Vav3.1 were stratified according to established clinicopathological characteristics and correlated to long-term patient survival (average follow-up of > 7.5 years). Type 1 and type 2 cancers were separately investigated.
RESULTS: While Vav3.1 was markedly overexpressed in endometrial cancer tissue, we could not detect associations with clinical parameters related to prognosis, such as FIGO stage and tumor grade. Kaplan-Meier estimators of different measures of survival failed to show prognostic significance of Vav3.1 in endometrial cancer. Lack of prognostic value was observed for both type 1 and type 2 cancers.
CONCLUSIONS: Our study shows that Vav3.1 is not suited as a marker of cancer progression and/or treatment response in endometrial cancer. Feasibility and potential benefit of targeting Vav3.1 in endometrial cancer needs to be evaluated in future studies, proceeding from its clear, roughly ten-fold, induction in the malignant endometrium.

Onodera K, Sakurada A, Notsuda H, et al.
Growth inhibition of KRAS‑ and EGFR‑mutant lung adenocarcinoma by cosuppression of STAT3 and the SRC/ARHGAP35 axis.
Oncol Rep. 2018; 40(3):1761-1768 [PubMed] Related Publications
The need for effective treatment of KRAS‑mutant lung cancer is an emerging issue. Rho GTPase‑activating protein 35 (ARHGAP35) is reported to be a possible molecular target for lung adenocarcinoma. We investigated the effect of long‑term ARHGAP35 suppression on the proliferation, migration and molecular dynamics of lung adenocarcinomas harboring KRAS and EGFR gene mutations. Lung adenocarcinoma cell lines A549 (KRAS‑mutant) and PC9 and H1975 (EGFR‑mutants) were used, and ARHGAP35 knockdown was carried out using puromycin. Cell viability, migration and molecular dynamics were assayed 1 month after introducing small hairpin RNA. The compensatory upregulated mechanism was screened by western blotting and confirmed by a specific inhibitor. Finally, we tested the effects of cosuppression of the SRC/ARHGAP35 axis and the identified pathway in vitro. ARHGAP35 suppression was attenuated by long‑term knockdown of the target genes. Compensatory mechanisms by SRC and STAT3 caused attenuation in A549 cells. After long‑term ARHGAP35 knockdown, both A549 and PC9 cells were more sensitive to treatment with a STAT3 inhibitor. The suppressive effect of ARHGAP35 knockdown on migration was sustained, but only modest, in all cell lines. Synergistic and strong growth inhibition was observed with concomitant use of an SRC inhibitor and a STAT3 inhibitor in A549 cells. STAT3 activation compensated for ARHGAP35 knockdown in lung adenocarcinoma with the KRAS mutation. Moreover, cosuppression of the STAT3 pathway and SRC/ARHGAP35 axis may be an effective strategy for treating lung adenocarcinoma, especially in the presence of a KRAS mutation.

Meyer SE, Muench DE, Rogers AM, et al.
miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential.
J Exp Med. 2018; 215(8):2115-2136 [PubMed] Free Access to Full Article Related Publications
We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found

Earp M, Tyrer JP, Winham SJ, et al.
Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility.
PLoS One. 2018; 13(7):e0197561 [PubMed] Free Access to Full Article Related Publications
Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.

Laverdière I, Boileau M, Neumann AL, et al.
Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia.
Blood Cancer J. 2018; 8(6):52 [PubMed] Related Publications
Therapy for acute myeloid leukemia (AML) involves intense cytotoxic treatment and yet approximately 70% of AML are refractory to initial therapy or eventually relapse. This is at least partially driven by the chemo-resistant nature of the leukemic stem cells (LSCs) that sustain the disease, and therefore novel anti-LSC therapies could decrease relapses and improve survival. We performed in silico analysis of highly prognostic human AML LSC gene expression signatures using existing datasets of drug-gene interactions to identify compounds predicted to target LSC gene programs. Filtering against compounds that would inhibit a hematopoietic stem cell (HSC) gene signature resulted in a list of 151 anti-LSC candidates. Using a novel in vitro LSC assay, we screened 84 candidate compounds at multiple doses and confirmed 14 drugs that effectively eliminate human AML LSCs. Three drug families presenting with multiple hits, namely antihistamines (astemizole and terfenadine), cardiac glycosides (strophanthidin, digoxin and ouabain) and glucocorticoids (budesonide, halcinonide and mometasone), were validated for their activity against human primary AML samples. Our study demonstrates the efficacy of combining computational analysis of stem cell gene expression signatures with in vitro screening to identify novel compounds that target the therapy-resistant LSC at the root of relapse in AML.

Kim SB, Zhang L, Yoon J, et al.
Truncated Adenomatous Polyposis Coli Mutation Induces Asef-Activated Golgi Fragmentation.
Mol Cell Biol. 2018; 38(17) [PubMed] Free Access to Full Article Related Publications
Adenomatous polyposis coli (APC) is a key molecule to maintain cellular homeostasis in colonic epithelium by regulating cell-cell adhesion, cell polarity, and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (Asef). The APC-activated Asef stimulates the small GTPase, which leads to decreased cell-cell adherence and cell polarity, and enhanced cell migration. In colorectal cancers, while truncated APC constitutively activates Asef and promotes cancer initiation and progression, regulation of Asef by full-length APC is still unclear. Here, we report the autoinhibition mechanism of full-length APC. We found that the armadillo repeats in full-length APC interact with the APC residues 1362 to 1540 (APC-2,3 repeats), and this interaction competes off and inhibits Asef. Deletion of APC-2,3 repeats permits Asef interactions leading to downstream signaling events, including the induction of Golgi fragmentation through the activation of the Asef-ROCK-MLC2. Truncated APC also disrupts protein trafficking and cholesterol homeostasis by inhibition of SREBP2 activity in a Golgi fragmentation-dependent manner. Our study thus uncovers the autoinhibition mechanism of full-length APC and a novel gain of function of truncated APC in regulating Golgi structure, as well as cholesterol homeostasis, which provides a potential target for pharmaceutical intervention against colon cancers.

Wu C, Li J, Tian C, et al.
Epigenetic dysregulation of ZEB1 is involved in LMO2-promoted T-cell acute lymphoblastic leukaemia leukaemogenesis.
Biochim Biophys Acta Mol Basis Dis. 2018; 1864(8):2511-2525 [PubMed] Related Publications
T-cell acute lymphoblastic leukaemia (T-ALL) is a hematological malignancy caused by the accumulation of genomic lesions that affect the development of T-cells. ZEB1, a member of zinc finger-homeodomain family transcription factor, exhibits crucial function in promoting T-cell differentiation and potentially acts as a tumor suppressor in T-ALL. However, the molecular mechanism by which ZEB1 regulates T-ALL leukaemogenesis remains obscure. Here, we showed that oncogenic LIM only 2 (LMO2) could recruit Sap18 and HDAC1 to assemble an epigenetic regulatory complex, thus inducing histone deacetylation in ZEB1 promoter and chromatin remodeling to achieve transcriptional repression. Furthermore, downregulation of ZEB1 by LMO2 complex results in an increased leukaemia stem cell (LSC) phenotype as well as unsensitivity in response to methotrexate (MTX) chemotherapy in T-ALL cells. Importantly, we demonstrated that Trichostatin A (TSA, a HDAC inhibitor) addition significantly attenuates MTX unsensitivity caused by dysfunction of LMO2/ZEB1 signaling. In conclusion, these findings have identified a molecular mechanism underlying LMO2/ZEB1-mediated leukaemogenesis, paving a way for treating T-ALL with a new strategy of epigenetic inhibitors.

Blatt K, Menzl I, Eisenwort G, et al.
Phenotyping and Target Expression Profiling of CD34
Neoplasia. 2018; 20(6):632-642 [PubMed] Free Access to Full Article Related Publications
Leukemic stem cells (LSCs) are an emerging target of curative anti-leukemia therapy. In acute lymphoblastic leukemia (ALL), LSCs frequently express CD34 and often lack CD38. However, little is known about markers and targets expressed in ALL LSCs. We have examined marker- and target expression profiles in CD34

Yang H, Chennamaneni LR, Ho MWT, et al.
Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia.
J Med Chem. 2018; 61(10):4348-4369 [PubMed] Related Publications
Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. In vivo, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure-activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal in vitro and enhances dasatinib antitumor activity in vivo.

Grassilli S, Brugnoli F, Lattanzio R, et al.
Vav1 downmodulates Akt in different breast cancer subtypes: a new promising chance to improve breast cancer outcome.
Mol Oncol. 2018; 12(7):1012-1025 [PubMed] Free Access to Full Article Related Publications
Targeting different members of the Akt pathways is a promising therapeutic chance in solid tumors including breast cancer. The variable expression levels of Akt isoforms with opposite effects on tumor growth and metastasis, however, make it difficult to select the inhibitors to be used for specific breast tumor subtypes. Using in vitro and in vivo models, we demonstrated here that Vav1, ectopically expressed in invasive breast tumors derived cells, downmodulates Akt acting at expression and/or activation levels depending on tumor subtype. The decreased p-Akt1 (Ser473) levels are a common effect of Vav1 upmodulation, suggesting that, in breast tumor-derived cells and independently of their phenotype, Vav1 interferes with signaling pathways ended to specifically recruit Akt1. Only in ER-negative cell lines, the silencing of Vav1 induced the expression but not the activation of Akt2. A retrospective analysis of early invasive breast tumors allowed to establish the prognostic significance of the p-Akt/Vav1 relationship. In particular, low Vav1 levels negatively influence the follow-up of patients with low p-Akt in their primary tumors and subjected to adjuvant chemotherapy. As the use of specific or pan Akt inhibitors may not be sufficient or may even be detrimental, increasing the levels of Vav1 could be a new approach to improve breast cancer outcomes. This might be particularly relevant for tumors with a triple-negative phenotype, for which target-based therapies are not currently available.

Harun SNA, Israf DA, Tham CL, et al.
The Molecular Targets and Anti-Invasive Effects of 2,6-bis-(4-hydroxyl-3methoxybenzylidine) cyclohexanone or BHMC in MDA-MB-231 Human Breast Cancer Cells.
Molecules. 2018; 23(4) [PubMed] Free Access to Full Article Related Publications
In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.

Li X, Jiang M, Chen D, et al.
miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis.
J Exp Clin Cancer Res. 2018; 37(1):71 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Our previous work showed that some Rho GTPases, including Rho, Rac1 and Cdc42, play critical roles in gastric cancer (GC); however, how they are regulated in GC remains largely unknown. In this study, we aimed to investigate the roles and molecular mechanisms of Dock6, an atypical Rho guanine nucleotide exchange factor (GEF), in GC metastasis.
METHODS: The expression levels of Dock6 and miR-148b-3p in GC tissues and paired nontumor tissues were determined by immunohistochemistry (IHC) and in situ hybridization (ISH), respectively. The correlation between Dock6/miR-148b-3p expression and the overall survival of GC patients was calculated by the Kaplan-Meier method and log-rank test. The roles of Dock6 and miR-148b-3p in GC were investigated by in vitro and in vivo functional studies. Rac1 and Cdc42 activation was investigated by GST pull-down assays. The inhibition of Dock6 transcription by miR-148b-3p was determined by luciferase reporter assays.
RESULTS: A significant increase in Dock6 expression was found in GC tissues compared with nontumor tissues, and its positive expression was associated with lymph node metastasis and a higher TNM stage. Patients with positive Dock6 expression exhibited shorter overall survival periods than patients with negative Dock6 expression. Dock6 promoted GC migration and invasion by increasing the activation of Rac1 and Cdc42. miR-148b-3p expression was negatively correlated with Dock6 expression in GC, and it decreased the motility of GC cells by inhibiting the Dock6/Rac1/Cdc42 axis.
CONCLUSIONS: Dock6 was over-expressed in GC tissues, and its positive expression was associated with GC metastasis and indicated poor prognosis of GC patients. Targeting of Dock6 by miR-148b-3p could activate Rac1 and Cdc42, directly affecting the motility of GC cells. Targeting the Dock6-Rac1/Cdc42 axis could serve as a new therapeutic strategy for GC treatment.

Li X, Xu W, Kang W, et al.
Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features.
Theranostics. 2018; 8(6):1740-1751 [PubMed] Free Access to Full Article Related Publications

Dunleavy K, Erdmann T, Lenz G
Targeting the B-cell receptor pathway in diffuse large B-cell lymphoma.
Cancer Treat Rev. 2018; 65:41-46 [PubMed] Related Publications
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category with different molecular subtypes defined by distinct gene expression patterns and divergent mechanisms of oncogenic activation. Several studies have suggested an inferior survival for patients of the activated B-cell-like (ABC) versus the germinal center B-cell-like (GCB) DLBCL subtype which has led to increasing interest in investigating pharmacological inhibition of signaling pathways which contribute to lymphomagenesis and that are specifically utilized by ABC DLBCL cells. One of these signaling cascades is the B-cell receptor (BCR) pathway and several approaches in clinical trials to target this cascade have demonstrated promising therapeutic activity. This review discusses our current understanding of the role of BCR signaling in different DLBCL subtypes, including primary central nervous system lymphoma (PCNSL), a subgroup of DLBCL that is particularly dependent on BCR signaling. One specific aim of this review is to highlight novel approaches to therapeutically target BCR signaling in DLBCL.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ARHGEF1, Cancer Genetics Web: http://www.cancer-genetics.org/ARHGEF1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999