Gene Summary

Gene:IL4R; interleukin 4 receptor
Aliases: CD124, IL4RA, IL-4RA
Summary:This gene encodes the alpha chain of the interleukin-4 receptor, a type I transmembrane protein that can bind interleukin 4 and interleukin 13 to regulate IgE production. The encoded protein also can bind interleukin 4 to promote differentiation of Th2 cells. A soluble form of the encoded protein can be produced by proteolysis of the membrane-bound protein, and this soluble form can inhibit IL4-mediated cell proliferation and IL5 upregulation by T-cells. Allelic variations in this gene have been associated with atopy, a condition that can manifest itself as allergic rhinitis, sinusitus, asthma, or eczema. Polymorphisms in this gene are also associated with resistance to human immunodeficiency virus type-1 infection. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Apr 2012]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:interleukin-4 receptor subunit alpha
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (20)
Pathways:What pathways are this gene/protein implicaed in?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IL4R (cancer-related)

Lin Y, Yuan Q, Qian F, et al.
Polymorphism rs4787951 in IL-4R contributes to the increased risk of renal cell carcinoma in a Chinese population.
Gene. 2019; 685:242-247 [PubMed] Related Publications
OBJECTIVE: Interleukins are important molecules involved in tumor formation. In this study, the association between renal cell carcinoma (RCC) risk and single nucleotide polymorphisms (SNPs) on IL-4/IL-13/IL-4R was assessed.
METHODS: We recruited 620/623 cases/controls and conducted a case-control study. Five tagSNPs (i.e., IL-4R rs8832, IL-4R rs4787951, IL-13 rs1881457, IL-13 rs2066960 and IL-13 rs2069744) were selected. Odds ratios (ORs) with their 95% confidence intervals (CIs) were obtained to appraise the association between SNPs and RCC susceptibility. Luciferase report assay and EMSA were conducted to investigate whether SNPs could affect binding affinity of transcription factors to target genes.
RESULTS: IL-4R rs4787951T>C was significantly associated with RCC susceptibility. Individuals carrying CC genotypes had a significant increment in RCC risk compared with TT genotype carriers (adjusted OR = 1.57, 95% CI = 1.07-2.28, P = 0.020). By stratified analyses, more pronounced association was found in the female, diabetic or without smoking, drinking and hypertension group. Besides, SNP rs4787951 could influence the binding affinity of IL-4R to transcription factors. Sequence surrounding allele T was prone to bind transcription factor NFATc.
CONCLUSIONS: This study revealed that IL-4R rs4787951T>C was associated with susceptibility of RCC and could be a predictive biomarker for RCC risk.

Gohar MK, Ammar MG, Alnagar AA, Abd-ElAziz HA
Serum IgE and Allergy Related Genotypes of IL-4R α and IL-13 Genes: Association with Glioma Susceptibility and Glioblastoma Prognosis.
Egypt J Immunol. 2018; 25(1):19-33 [PubMed] Related Publications
Gliomas are the commonest type of primary brain tumor in adult. Glioblastoma maltiforms (GBM) is the malignant form with poor prognosis. Certain genotypes of inflammatory gene which associated with asthma and allergic conditions (IL-4R α and IL- 13) are inversely associated with glioma risk. We studied the relation between allergic conditions and serum level of IgE and glioma risk. We also examined the role of SNP of inflammatory genes IL-4 R α (rs 1801275) and IL-13 (rs 1800925) in development of glioma and to find out factors which can modify the prognosis of glioblastoma. This study included 98 Egyptian glioma cases and 98 healthy controls. Full history and clinical data were taken; total serum IgE were assayed, genotyping of IL-4 R α (rs 1801275) and IL-13 (rs 1800925) genes was carried out by restriction digestion after genes amplification. In cases group histopathological examination and tumor grading were done. Past history of allergic condition and elevated serum levels of IgE were more frequent in controls than in cases group (P< 0.05). Genotypes AA and AG of IL- 4R α were significantly frequent in cases and A allele were considered risk factor for glioma OR 2.31(1.53- 3.48), P < 0.001. We also found that C allele of IL-13 is risk factor for glioma susceptibility with p value = 0.006. Longer median survival period in glioblastoma were associated with elevated serum IgE level and who were AA genotypes of IL-4 R α. We conclude an inverse relation between glioma risk, and allergy biomarker IgE and allergy related (IL-4R α; rs 1801275) gene polymorphisms. GBM patients with IL-4Rα AA genotype, have longest survival. Chemotherapy and gross total resection improve GBM prognosis.

Shamoun L, Skarstedt M, Andersson RE, et al.
Association study on IL-4, IL-4Rα and IL-13 genetic polymorphisms in Swedish patients with colorectal cancer.
Clin Chim Acta. 2018; 487:101-106 [PubMed] Related Publications
BACKGROUND: Interleukin 4 (IL-4) and interleukin 13 (IL-13) are anti-inflammatory and immunomodulatory cytokines which share a common cellular receptor IL4Rα and are involved in the same signaling pathways. Our purpose was to assess whether genetic variants within IL-4, IL-13 and IL-4Rα are associated with the risk or clinical outcome of colorectal cancer (CRC).
METHODS: Three single nucleotide polymorphisms (SNPs) were screened in 466 patients with CRC and 445 healthy controls. The selected SNPs were IL-4 SNP rs2243250, IL-4Rα SNP rs1801275 and IL-13 SNP rs1800925.
RESULTS: We found that the genotype variant T/T in IL-13 gene was associated with a higher risk of CRC. Kaplan-Meier analysis showed that the cancer specific survival differed between C/C and CT + TT for IL-4 SNP. Moreover, the carriers of the T allele were associated with the highest risk of CRC death with a hazard ratio (HR) of 1.57, 95% CI 1.06-2.36, p = .024. The observed effect of the T allele was restricted to stage III patients.
CONCLUSION: Our results indicate IL-13 SNP rs1800925 as a risk factor for CRC and that IL-4 SNP rs2243250 could be a useful prognostic marker in the follow-up and clinical management of patients with CRC especially in stage III disease.

Bonaventure A, Orsi L, Rudant J, et al.
Genetic polymorphisms of Th2 interleukins, history of asthma or eczema and childhood acute lymphoid leukaemia: Findings from the ESCALE study (SFCE).
Cancer Epidemiol. 2018; 55:96-103 [PubMed] Related Publications
BACKGROUND: Previous studies on the putative role of allergy in the aetiology of childhood leukaemia have reported contradictory results. The present study aimed to analyse the relation between a medical history of asthma or eczema and childhood acute lymphoid leukaemia (ALL) in light of potential candidate gene-environment interactions.
METHODS: Analyses were based on a subset of 434 cases of ALL and 442 controls successfully genotyped and of European ancestry children enrolled in a French population-based case-control study conducted in 2003-2004. Information about medical history was obtained during a standardized interview with the mothers. Candidate polymorphisms in genes of the Th2 cytokines IL4, IL10, IL13 and IL4-receptor, were genotyped or imputed.
RESULTS: None of the variant alleles were directly associated with childhood acute lymphoid leukaemia. A medical history of asthma or eczema was reported more often in the control group (OR = 0.7 [0.5-1.0]). This association was mostly seen in the group of children not carrying the IL13-rs20541 variant allele (Interaction Odds Ratio IOR 1.9, p-interaction = 0.07) and in those carrying the IL10 triple variant haplotype (IOR 0.5, p-interaction = 0.04). No interaction was observed with the candidate polymorphisms in IL4 and IL4R.
CONCLUSION: This study provides a new insight into the relationship between allergic symptoms and childhood acute lymphoid leukaemia, by suggesting this inverse association could be limited to children carrying certain genetic polymorphisms. If confirmed, these results could help better understand the biological mechanisms involved in the development of childhood acute lymphoid leukaemia.

Viganò E, Gunawardana J, Mottok A, et al.
Somatic IL4R mutations in primary mediastinal large B-cell lymphoma lead to constitutive JAK-STAT signaling activation.
Blood. 2018; 131(18):2036-2046 [PubMed] Related Publications
Primary mediastinal large B-cell lymphoma (PMBCL) is a distinct subtype of diffuse large B-cell lymphoma thought to arise from thymic medullary B cells. Gene mutations underlying the molecular pathogenesis of the disease are incompletely characterized. Here, we describe novel somatic

Eaton KD, Romine PE, Goodman GE, et al.
Inflammatory Gene Polymorphisms in Lung Cancer Susceptibility.
J Thorac Oncol. 2018; 13(5):649-659 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Chronic inflammation has been implicated in carcinogenesis, with increasing evidence of its role in lung cancer. We aimed to evaluate the role of genetic polymorphisms in inflammation-related genes in the risk for development of lung cancer.
METHODS: A nested case-control study design was used, and 625 cases and 625 well-matched controls were selected from participants in the β-Carotene and Retinol Efficacy Trial, which is a large, prospective lung cancer chemoprevention trial. The association between lung cancer incidence and survival and 23 polymorphisms descriptive of 11 inflammation-related genes (interferon gamma gene [IFNG], interleukin 10 gene [IL10], interleukin 1 alpha gene [IL1A], interleukin 1 beta gene [IL1B], interleukin 2 gene [IL2], interleukin 4 receptor gene [IL4R], interleukin 4 gene [IL4], interleukin 6 gene [IL6], prostaglandin-endoperoxide synthase 2 gene [PTGS2] (also known as COX2), transforming growth factor beta 1 gene [TGFB1], and tumor necrosis factor alpha gene [TNFA]) was evaluated.
RESULTS: Of the 23 polymorphisms, two were associated with risk for lung cancer. Compared with individuals with the wild-type (CC) variant, individuals carrying the minor allele variants of the IL-1β-511C>T promoter polymorphism (rs16944) (CT and TT) had decreased odds of lung cancer (OR = 0.74, [95% confidence interval (CI): 0.58-0.94] and OR = 0.71 [95% CI: 0.50-1.01], respectively, p = 0.03). Similar results were observed for the IL-1β-1464 C>G promoter polymorphism (rs1143623), with presence of the minor variants CG and CC having decreased odds of lung cancer (OR = 0.75 [95% CI: 0.59-0.95] and OR = 0.69 [95% CI: 0.46-1.03], respectively, p = 0.03). Survival was not influenced by genotype.
CONCLUSIONS: This study provides further evidence that IL1B promoter polymorphisms may modulate the risk for development of lung cancer.

Guo C, Ouyang Y, Cai J, et al.
High expression of IL-4R enhances proliferation and invasion of hepatocellular carcinoma cells.
Int J Biol Markers. 2017; 32(4):e384-e390 [PubMed] Related Publications
OBJECTIVE: In this study, we aimed to investigate the expression and function of interleukin-4 receptor (IL-4R) in hepatocellular carcinoma (HCC).
METHODS: We collected 40 pairs of human HCC and adjacent normal tissue specimens and examined the expression levels of IL-4R. After IL-4R knockdown in HCC cell lines, cell proliferation and invasion ability were examined. Cell cycle and apoptosis were analyzed by flow cytometry. The activity of multiple signaling pathways was examined by Western blot.
RESULTS: IL-4R was overexpressed in HCC tumors compared with adjacent normal control tissues and was associated with tumor differentiation status. IL-4R knockdown resulted in enhanced apoptosis, impaired proliferation and reduced invasion of HCC cells. Furthermore, IL-4R knockdown abolished IL-4-induced activation of the Janus Kinase 1 (JAK1)/signal transducer and activator of transcription 6 (STAT6) and JUN N-terminal kinase (JNK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways.
CONCLUSIONS: IL-4R plays an important role in regulating HCC cell survival and metastasis, and regulates the activity of the JAK1/STAT6 and JNK/ERK1/2 signaling pathways. We therefore suggest that IL-4/IL-4R may be a new therapeutic target for HCC.

Cho YA, Kim J
Association of IL4, IL13, and IL4R polymorphisms with gastrointestinal cancer risk: A meta-analysis.
J Epidemiol. 2017; 27(5):215-220 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Previous studies have suggested that IL4, IL13, and IL4R are associated with serum IgE levels and allergies, and common variants of these genes may alter cancer risk. To clarify these associations, we conducted a meta-analysis to investigate the associations of IL4, IL13, and IL4R polymorphisms with gastrointestinal cancer risk.
METHODS: We used 27 eligible case-control studies describing the associations of six polymorphisms of IL4, IL13, and IL4R with gastrointestinal cancer risk to calculate summary odds ratios (ORs) and 95% confidence intervals (CIs) using five different genetic models. The Q-statistic and I
RESULTS: The IL4 rs2070874 T allele seems to be associated with an increased risk of gastrointestinal cancer (OR 1.11; 95% CI, 1.00-1.24 for T allele vs. C allele). This association was significant in studies conducted outside of Asia (OR 1.28; 95% CI, 1.03-1.58 for T allele vs. C allele) and in studies investigating the association with gastric cancer (OR 1.17; 95% CI, 1.03-1.34 for T allele vs. C allele). However, the IL4R rs1801275 heterozygote seems to be associated with a reduced risk of gastrointestinal cancer (OR 0.79; 95% CI, 0.65-0.96 for AG vs. AA). Other polymorphisms did not show any significant associations with gastrointestinal cancer risk in any of the genetic models and subgroup analyses.
CONCLUSIONS: Our results suggest that certain polymorphisms of IL4 and IL4R may affect susceptibility to gastrointestinal cancer. However, further studies are required to confirm these findings.

Cayrol F, Praditsuktavorn P, Fernando TM, et al.
THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors.
Nat Commun. 2017; 8:14290 [PubMed] Free Access to Full Article Related Publications
Peripheral T-cell lymphomas (PTCL) are aggressive diseases with poor response to chemotherapy and dismal survival. Identification of effective strategies to target PTCL biology represents an urgent need. Here we report that PTCL are sensitive to transcription-targeting drugs, and, in particular, to THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7). The STAT-signalling pathway is highly vulnerable to THZ1 even in PTCL cells that carry the activating STAT3 mutation Y640F. In mutant cells, CDK7 inhibition decreases STAT3 chromatin binding and expression of highly transcribed target genes like MYC, PIM1, MCL1, CD30, IL2RA, CDC25A and IL4R. In surviving cells, THZ1 decreases the expression of STAT-regulated anti-apoptotic BH3 family members MCL1 and BCL-XL sensitizing PTCL cells to BH3 mimetic drugs. Accordingly, the combination of THZ1 and the BH3 mimetic obatoclax improves lymphoma growth control in a primary PTCL ex vivo culture and in two STAT3-mutant PTCL xenografts, delineating a potential targeted agent-based therapeutic option for these patients.

Yang S, Park Y, Lee J, et al.
Effects of Soy Product Intake and Interleukin Genetic Polymorphisms on Early Gastric Cancer Risk in Korea: A Case-Control Study.
Cancer Res Treat. 2017; 49(4):1044-1056 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The current study investigated whether the combined effects of soy intake and genetic polymorphisms of interleukin (IL) genes modify gastric cancer risk.
MATERIALS AND METHODS: A total of 377 cases and 754 controls of Korean origin were included in the analysis. Soy consumption was assessed using a semi-quantitative food frequency questionnaire. Seven variants of IL10 (rs1800871), IL2 (rs2069763 and rs2069762), IL13 (rs6596090 and rs20541), and IL4R (rs7205663 and rs1805010) were genetically analyzed. To analyze the combined effect of soy intake and genetic polymorphisms, a low-intake group and high-intake group of each type of soy were categorized based on the intake level of the control group. Interactions between soy products and these genetic variants were analyzed by a likelihood ratio test, in which a multiplicative interaction term was added to the logistic regression model.
RESULTS: A higher intake of nonfermented soy products was associated with a reduced cancer risk (odds ratio [OR], 0.62; 95% confidence interval [CI], 0.43 to 0.90), and the reduced risk was only apparent in males (OR, 0.44; 95% CI, 0.27 to 0.71). None of the IL genetic polymorphisms examined were independently associated with gastric cancer risk. Individuals with a minor allele of IL2 rs2069762 and a higher intake of nonfermented soy food had a decreased risk of gastric cancer (OR, 0.46; 95% CI, 0.31 to 0.68) compared to those with a lower intake (p
CONCLUSION: Based on the genetic characteristics of the studied individuals, the interaction between IL2 rs2069762 and nonfermented soy intake may modify the risk of gastric cancer.

Prokopchuk O, Steinacker JM, Nitsche U, et al.
IL-4 mRNA Is Downregulated in the Liver of Pancreatic Cancer Patients Suffering from Cachexia.
Nutr Cancer. 2017; 69(1):84-91 [PubMed] Related Publications
BACKGROUND: Interleukin-4 (IL-4) together with interleukin-13 (IL-13) play an important role in inflammation and wound repair, and are known to be upregulated in human skeletal muscle after strenuous physical exercise. Additionally, these cytokines may act as autocrine growth factors in pancreatic cancer cells. We hypothesize that IL-4, IL-13, and their corresponding receptors are involved in mechanism of cancer cachexia.
METHODS: Tissue samples from human skeletal muscle, white fat, liver, healthy pancreas, and pancreatic ductal adenocarcinoma were analyzed by quantitative real-time polymerase chain reaction for mRNA expression levels of IL-4, IL-13, IL-4 receptor α, and IL-13 receptor α1.
RESULTS: We demonstrate for the first time that liver IL-4 mRNA is downregulated in vivo in patients with pancreatic cancer and cachexia. Additionally, IL-4 mRNA in the liver inversely correlated with musculus psoas thickness.
CONCLUSION: We speculate that suppression of IL-4 is involved in cancer cachexia, although the exact mechanisms have to be further elucidated.

Kim ES, Choi YE, Hwang SJ, et al.
IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells.
Oncotarget. 2016; 7(52):86836-86856 [PubMed] Free Access to Full Article Related Publications
Radiotherapy induces the production of cytokines, thereby increasing aggressive tumor behavior. This radiation effect results in the failure of radiotherapy and increases the mortality rate in patients. We found that interleukin-4 (IL-4) and IL-4Rα (IL-4 receptor) are highly expressed in various human cancer cells subsequent to radiation treatment. In addition, IL-4 is highly overexpressed in metastatic carcinoma tissues compared with infiltrating carcinoma tissues. High expression of IL-4 in patients with cancer is strongly correlated with poor survival. The results of this study suggest that radiation-induced IL-4 contributes to tumor progression and metastasis. Radiation-induced IL-4 was associated with tumorigenicity and metastasis. IL-4 expression was downregulated by miR-340 and miR-429, which were decreased by ionizing radiation (IR). Radiation-regulated miR-340/429-IL4 signaling increased tumorigenesis and metastasis by inducing the production of Sox2, Vimentin, VEGF, Ang2, and MMP-2/9 via activating JAK, JNK, β-catenin, and Stat6 in vitro and in vivo. Our study presents a conceptual advance in our understanding of the modification of tumor microenvironment by radiation and suggests that combining radiotherapy with genetic therapy to inhibit IL-4 may be a promising strategy for preventing post-radiation recurrence and metastasis in patients.

Jin TB, Du S, Zhu XK, et al.
Polymorphism in the IL4R gene and clinical features are associated with glioma prognosis: Analyses of case-cohort studies.
Medicine (Baltimore). 2016; 95(31):e4231 [PubMed] Free Access to Full Article Related Publications
Inflammatory gene polymorphisms may be associated with glioma risk. The purpose of this study was to analyze effects of certain inflammatory gene and some clinical factors on patient survival.The clinical information of 269 glioma patients conceived operation from September 2010 to May 2014 to decide the 1-, 3-year survival rates according to follow-up results and analyze age, gender, the WHO classification, extent of surgical resection, radiotherapy and chemotherapy factors effects on prognosis. Survival distributions were estimated by using the Kaplan-Meier method and difference in the survival was tested using the log-rank test. To estimate the association between the IL4, IL13, IL10, IL4R SNPs, and PFS and OS in glioma, the HR and 95% CI were calculated by univariate Cox proportional hazards model. Multivariate Cox model were performed to compute adjusted HR and 95% CI. All data was analyzed with SPSS17.0 package. Extent of surgical resection, chemotherapy, and age are an important factor in glioma overall survival and progression-free survival overall. Extent of surgery and chemotherapy are important factors in astrocytoma overall survival. Univariate analysis showed that IL4R rs1801275 was significantly associated with overall survival of glioma and astrocytoma patients (P < 0.05). Multivariate Cox regression analysis showed that IL4R rs1801275 GG genotype could increase the death risk of glioma and astrocytoma patients (Glioma: hazard ratio [HR]: 4.897, 95% confidence limits [95% CI]: 1.962-12.222, P = 0.001; Astrocytoma: HR: 15.944, 95% CI: 4.019-63.253, P < 0.05).Our research results showed that extent of surgical resection, age, and chemotherapy affect the prognosis of glioma. The IL4R gene may affect the survival of glioma patients.

Klener P, Fronkova E, Berkova A, et al.
Mantle cell lymphoma-variant Richter syndrome: Detailed molecular-cytogenetic and backtracking analysis reveals slow evolution of a pre-MCL clone in parallel with CLL over several years.
Int J Cancer. 2016; 139(10):2252-60 [PubMed] Related Publications
Richter syndrome represents the transformation of the chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, most frequently the diffuse large B-cell lymphoma (DLBCL). In this report we describe a patient with CLL, who developed a clonally-related pleomorphic highly-aggressive mantle cell lymphoma (MCL) after five cycles of a fludarabine-based second-line therapy for the first relapse of CLL. Molecular cytogenetic methods together with whole-exome sequencing revealed numerous gene alterations restricted to the MCL clone (apart from the canonical t(11;14)(q13;q32) translocation) including gain of one copy of ATM gene or emergence of TP53, CREBBP, NUP214, FUBP1 and SF3B1 gene mutations. Similarly, gene expression analysis revealed vast differences between the MCL and CLL transcriptome, including overexpression of cyclin D1, downregulation of cyclins D2 and D3, or downregulation of IL4R in the MCL clone. Backtracking analysis using quantitative PCR specifically detecting an MCL-restricted focal deletion of TP53 revealed that the pre-MCL clone appeared in the bone marrow and peripheral blood of the patient approximately 4 years before the clinical manifestation of MCL. Both molecular cytogenetic and sequencing data support the hypothesis of a slow development of the pre-MCL clone in parallel to CLL over several years, and thereby exclude the possibility that the transformation event occurred at the stage of the CLL relapse clone by mere t(11;14)(q13;q32) acquisition.

Joshi BH, Suzuki A, Fujisawa T, et al.
Identification, characterization, and targeting of IL-4 receptor by IL-4-Pseudomonas exotoxin in mouse models of anaplastic thyroid cancer.
Discov Med. 2015; 20(111):273-84 [PubMed] Related Publications
Thyroid cancer is a rapidly increasing endocrine cancer. Since interleukin-4 receptor (IL-4R) is overexpressed in human solid cancer, we examined expression of IL-4R in 50 cases of anaplastic thyroid cancer (ATC), 37 well-differentiated papillary cancer (WDPC), 35 well-differentiated follicular cancer of thyroid (WDFC), and 37 normal thyroid specimens by immunohistochemistry (IHC) and in-situ hybridization (ISH) techniques. We demonstrated that IL-4Rα was overexpressed in 36/50 (72%) ATC, 20/35 (57%) WDFC, and 11/37 (30%) WDPC tumors. Other two subunits of IL-4R, interleukin-13 receptor α1 (IL-13Rα1) and interleukin-2 receptor gamma (IL-2RγC), were either weakly expressed or absent. As ATC is a highly aggressive cancer with higher incidence of IL-4Rα expression, we characterized IL-4R in 3 ATC cell lines. RT-qPCR and IFA results showed that IL-4Rα is overexpressed while IL-13Rα1 is weakly expressed. Control human umbilical vein endothelial cell line (HUVEC) showed weak expression of IL-4Rα. Binding and competition studies with 125I-IL-4 in ATC cell lines demonstrated that IL-4 specifically bound to IL-4Rα on cell surface. ATC cell lines were highly sensitive to a chimeric fusion cytotoxin consisting of circularly permuted IL-4 and truncated Pseudomonas exotoxin (IL-4-PE), which killed them in a concentration dependent manner. IL-4-PE also blocked colony formation of ATC cell lines in clonogenic assays. IL-4-PE mediated a significant antitumor activity in mouse models of ATC. Intratumoral administration of IL-4-PE caused significant regression of established tumors in a dose dependent manner and increased the overall survival without any visible toxicity. Thus, IL-4Rα in ATC may represent a novel therapeutic target and IL-4-PE may serve as an investigational therapeutic option for ATC.

Nielsen KR, Steffensen R, Bendtsen MD, et al.
Inherited Inflammatory Response Genes Are Associated with B-Cell Non-Hodgkin's Lymphoma Risk and Survival.
PLoS One. 2015; 10(10):e0139329 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Malignant B-cell clones are affected by both acquired genetic alterations and by inherited genetic variations changing the inflammatory tumour microenvironment.
METHODS: We investigated 50 inflammatory response gene polymorphisms in 355 B-cell non-Hodgkin's lymphoma (B-NHL) samples encompassing 216 diffuse large B cell lymphoma (DLBCL) and 139 follicular lymphoma (FL) and 307 controls. The effect of single genes and haplotypes were investigated and gene-expression analysis was applied for selected genes. Since interaction between risk genes can have a large impact on phenotype, two-way gene-gene interaction analysis was included.
RESULTS: We found inherited SNPs in genes critical for inflammatory pathways; TLR9, IL4, TAP2, IL2RA, FCGR2A, TNFA, IL10RB, GALNT12, IL12A and IL1B were significantly associated with disease risk and SELE, IL1RN, TNFA, TAP2, MBL2, IL5, CX3CR1, CHI3L1 and IL12A were, associated with overall survival (OS) in specific diagnostic entities of B-NHL. We discovered noteworthy interactions between DLBCL risk alleles on IL10 and IL4RA and FL risk alleles on IL4RA and IL4. In relation to OS, a highly significant interaction was observed in DLBCL for IL4RA (rs1805010) * IL10 (rs1800890) (HR = 0.11 (0.02-0.50)). Finally, we explored the expression of risk genes from the gene-gene interaction analysis in normal B-cell subtypes showing a different expression of IL4RA, IL10, IL10RB genes supporting a pathogenetic effect of these interactions in the germinal center.
CONCLUSIONS: The present findings support the importance of inflammatory genes in B-cell lymphomas. We found association between polymorphic sites in inflammatory response genes and risk as well as outcome in B-NHL and suggest an effect of gene-gene interactions during the stepwise oncogenesis.

Sousa H, Mesquita L, Ribeiro J, et al.
Polymorphisms in host immune response associated genes and risk of nasopharyngeal carcinoma development in Portugal.
Immunobiology. 2016; 221(2):145-52 [PubMed] Related Publications
BACKGROUND: Host genetic susceptibility markers in immune response associated genes may contribute to identify individuals with high risk of developing viral infection and viral-associated cancers. We aimed to characterize different polymorphisms in immune response associated genes and evaluate its association with nasopharyngeal carcinoma (NPC) development.
METHODS: We have developed a hospital-based case-control study selecting 134 patients with NPC (cases) and 732 healthy individuals (controls) from the Northern Region of Portugal. Eight single nucleotide polymorphisms (SNP) were selected: -56C>T IFNGR1 (rs2234711), +4854G>T IL1A (rs17561), +3954C>T IL1B (rs1143634), +1902A>G IL4RA (rs1801275), -1082G>A IL10 (rs1800896), +2018T>C IL1RN (rs419598), HLA-A locus A>T (rs2530388), HCGA9 locus A>T (rs6457110). All polymorphisms were analysed by real-time methodology using TaqMan(®) SNP Genotyping Assays.
RESULTS: The overall analysis revealed no statistical significant differences between genotypes distributions in all of studied polymorphisms (p>0.05). However, the results for HCGA9 rs6457110 polymorphism showed a tendency for an increased risk of NPC development among TT carriers with an almost of 2-fold increased risk (OR=1.86; 95%CI 1.00-3.65).
CONCLUSIONS: This is the first study to characterize these polymorphisms in NPC patients in Portugal. Our study indicates that HCGA9 rs6457110 polymorphism might represent a risk marker for NPC development in our population and that other SNPs should be further studied in larger populations to clarify the evidences. This data reinforces the need for more studies, especially in NPC low-prevalent populations.

Suzuki A, Leland P, Joshi BH, Puri RK
Targeting of IL-4 and IL-13 receptors for cancer therapy.
Cytokine. 2015; 75(1):79-88 [PubMed] Related Publications
The Th2 cytokines, interleukin (IL)-4 and -13, are structurally and functionally related. They regulate immune responses and the immune microenvironment, not only under normal physiological conditions, but also in cancer. Both cytokines bind to their high-affinity receptors and form various configurations of receptor subtypes. We and others have reported that IL-4 and IL-13 bind to IL-4Rα and IL-13Rα1 chains, forming functional receptors in cancer cells. IL-13 also binds with high affinity to a private chain IL-13Rα2. After forming ligand-receptor complexes, both cytokines initiate signal transduction and mediate biological effects, such as tumor proliferation, cell survival, cell adhesion and metastasis. In certain cancers, the presence of these cytokine receptors may serve as biomarkers of cancer aggressiveness. In a series of studies, we reported that overexpression of IL-4 and IL-13 receptors on cancer cells provides targets for therapeutic agents for cancer therapy. In addition, both of these cytokines and their receptors have been shown to play important roles in modulating the immune system for tumor growth. IL-4, IL-13 and their receptors seem to play a role in cancer stem cells and provide unique targets to eradicate these cells. In this review article, we summarize some of the important attributes of IL-4 and IL-13 receptors in cancer biology and discuss pre-clinical and clinical studies pertaining to recombinant immunotoxins designed to target these receptors.

Joshi BH, Leland P, Lababidi S, et al.
Interleukin-4 receptor alpha overexpression in human bladder cancer correlates with the pathological grade and stage of the disease.
Cancer Med. 2014; 3(6):1615-28 [PubMed] Free Access to Full Article Related Publications
Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran-Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥ 2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥ 2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III-IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not expressed. Ten normal bladder specimens demonstrated ≤ 1+ staining for IL-4Rα and IL-13Rα1 and no staining for IL-2RγC. These results demonstrate that IL-4Rα is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4Rα may be a bladder tumor-associated protein and a prognostic biomarker.

Krebs S, Chow KK, Yi Z, et al.
T cells redirected to interleukin-13Rα2 with interleukin-13 mutein--chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Rα1.
Cytotherapy. 2014; 16(8):1121-31 [PubMed] Free Access to Full Article Related Publications
BACKGROUND AIMS: Outcomes for patients with glioblastoma remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL) 13Rα2, human epidermal growth factor receptor 2, epidermal growth factor variant III or erythropoietin-producing hepatocellular carcinoma A2 has shown promise for the treatment of glioma in preclinical models. On the basis of IL13Rα2 immunotoxins that contain IL13 molecules with one or two amino acid substitutions (IL13 muteins) to confer specificity to IL13Rα2, investigators have constructed CARS with IL13 muteins as antigen-binding domains. Whereas the specificity of IL13 muteins in the context of immunotoxins is well characterized, limited information is available for CAR T cells.
METHODS: We constructed four second-generation CARs with IL13 muteins with one or two amino acid substitutions, and evaluated the effector function of IL13-mutein CAR T cells in vitro and in vivo.
RESULTS: T cells expressing all four CARs recognized IL13Rα1 or IL13Rα2 recombinant protein in contrast to control protein (IL4R) as judged by interferon-γ production. IL13 protein produced significantly more IL2, indicating that IL13 mutein-CAR T cells have a higher affinity to IL13Rα2 than to IL13Rα1. In cytotoxicity assays, CAR T cells killed IL13Rα1- and/or IL13Rα2-positive cells in contrast to IL13Rα1- and IL13Rα2-negative controls. Although we observed no significant differences between IL13 mutein-CAR T cells in vitro, only T cells expressing IL13 mutein-CARs with an E13K amino acid substitution had anti-tumor activity in vivo that resulted in a survival advantage of treated animals.
CONCLUSIONS: Our study highlights that the specificity/avidity of ligands is context-dependent and that evaluating CAR T cells in preclinical animal model is critical to assess their potential benefit.

Ferrer G, Bosch R, Hodgson K, et al.
B cell activation through CD40 and IL4R ligation modulates the response of chronic lymphocytic leukaemia cells to BAFF and APRIL.
Br J Haematol. 2014; 164(4):570-8 [PubMed] Related Publications
The two tumour necrosis factor family proteins BAFF (TNFSF13B) and APRIL (TNFSF13) and their receptors [BAFF-R (TNFRSF13C), TACI (TNFRSF13B), BCMA (TNFRSF17)] play a critical role in the survival of normal B cells. The sensitivity of normal B cells to BAFF and APRIL can be modulated by signals regulated by their receptors. This modulation, however, has not been extensively investigated in chronic lymphocytic leukaemia (CLL) cells. We evaluated the expression, regulation and signalling of BAFF and APRIL receptors in normal and in CLL cells upon stimulation through CD40+IL4R and BCR. We further analysed the prognostic value of BAFF and APRIL receptors expression in patients with CLL. BCMA expression was significantly higher on CLL cells than on normal B cells. BCR and CD40+IL4R stimulation promoted an increase in TACI and BCMA expression, cell viability and activation in normal B cells. A similar effect was observed in CLL cells after CD40+IL4R but not BCR stimulation. BCMA expression correlated with unmutated IGHV genes, poor-risk cytogenetics, and short progression-free survival. These findings further characterize the link between CD40+IL4R regulatory signals, BAFF, APRIL and their receptors and the survival of leukaemic cells and clinical features of CLL.

Kohanbash G, McKaveney K, Sakaki M, et al.
GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α.
Cancer Res. 2013; 73(21):6413-23 [PubMed] Free Access to Full Article Related Publications
Malignant gliomas are lethal cancers in the brain and heavily infiltrated by myeloid cells. Interleukin-4 receptor-α (IL-4Rα) mediates the immunosuppressive functions of myeloid cells, and polymorphisms in the IL-4Rα gene are associated with altered glioma risk and prognosis. In this study, we sought to evaluate a hypothesized causal role for IL-4Rα and myeloid suppressor cells in glioma development. In both mouse de novo gliomas and human glioblastoma cases, IL-4Rα was upregulated on glioma-infiltrating myeloid cells but not in the periphery or in normal brain. Mice genetically deficient for IL-4Rα exhibited a slower growth of glioma associated with reduced production in the glioma microenvironment of arginase, a marker of myeloid suppressor cells, which is critical for their T-cell inhibitory function. Supporting this result, investigations using bone marrow-derived myeloid cells showed that IL-4Rα mediates IL-13-induced production of arginase. Furthermore, glioma-derived myeloid cells suppressed T-cell proliferation in an IL-4Rα-dependent manner, consistent with their identification as myeloid-derived suppressor cells (MDSC). Granulocyte macrophage colony-stimulating factor (GM-CSF) plays a central role for the induction of IL-4Rα expression on myeloid cells, and we found that GM-CSF is upregulated in both human and mouse glioma microenvironments compared with normal brain or peripheral blood samples. Together, our findings establish a GM-CSF-induced mechanism of immunosuppression in the glioma microenvironment via upregulation of IL-4Rα on MDSCs.

Quan L, Gong Z, Yao S, et al.
Cytokine and cytokine receptor genes of the adaptive immune response are differentially associated with breast cancer risk in American women of African and European ancestry.
Int J Cancer. 2014; 134(6):1408-21 [PubMed] Free Access to Full Article Related Publications
Disparities in breast cancer biology are evident between American women of African ancestry (AA) and European ancestry (EA) and may be due, in part, to differences in immune function. To assess the potential role of constitutional host immunity on breast carcinogenesis, we tested associations between breast cancer risk and 47 single nucleotide polymorphisms (SNPs) in 26 cytokine-related genes of the adaptive immune system using 650 EA (n = 335 cases) and 864 AA (n = 458 cases) women from the Women's Circle of Health Study (WCHS). With additional participant accrual to the WCHS, promising SNPs from the initial analysis were evaluated in a larger sample size (1,307 EAs and 1,365 AAs). Multivariate logistic regression found SNPs in genes important for T helper type 1 (Th1) immunity (IFNGR2 rs1059293, IL15RA rs2296135, LTA rs1041981), Th2 immunity (IL4R rs1801275), and T regulatory cell-mediated immunosuppression (TGFB1 rs1800469) associated with breast cancer risk, mainly among AAs. The combined effect of these five SNPs was highly significant among AAs (P-trend = 0.0005). When stratified by estrogen receptor (ER) status, LTA rs1041981 was associated with ER-positive breast cancers among EAs and marginally among AAs. Only among AA women, IL15 rs10833 and IL15RA rs2296135 were associated with ER-positive tumors, and IL12RB1 rs375947, IL15 rs10833 and TGFB1 rs1800469 were associated with ER-negative tumors. Our study systematically identified genetic variants in the adaptive immune response pathway associated with breast cancer risk, which appears to differ by ancestry groups, menopausal status and ER status.

Bentov I, Damodarasamy M, Plymate S, Reed MJ
B16/F10 tumors in aged 3D collagen in vitro simulate tumor growth and gene expression in aged mice in vivo.
In Vitro Cell Dev Biol Anim. 2013; 49(6):395-9 [PubMed] Free Access to Full Article Related Publications
Although the incidence of cancer rises with age, tumor growth is often slowed in older hosts. The B16/F10 melanoma cell line is commonly used in murine models of age-related tumor growth suppression. We wished to determine if the growth pattern and gene expression of B16/10 tumors grown in aged mice could be simulated in 3D collagen matrices derived from aged mice. Outcome measures were tumor size in vitro and gene expression of the key growth regulatory molecules: growth hormone receptor (GHR), IL-10Rβ, IL-4Rα, and IL-6. B16/F10 tumors were grown in 20-25-mo-old C57/BL6 male mice. Tumor sizes ranged from 30 to 4,910 mg in vivo. Tumors from a subset of mice were removed after euthanasia, and equivalent amounts of each tumor were placed in aged 3D collagen and grown for 5 d. Tumor sizes in aged 3D collagen correlated highly with their original tumor size in vivo. Gene expression changes noted in vivo were also maintained during tumor growth in aged 3D collagen in vitro. The relative expression of GHR was increased, IL-10Rβ was unchanged, and IL-4Rα and IL-6 were decreased in the larger tumors relative to the smaller tumors in vitro, in a pattern similar to that noted in vivo. We propose that 3D matrices from aged mice provide an in vitro model of tumor growth that correlates highly with tumor size and expression of key regulatory molecules in vivo.

Seto K, Shoda J, Horibe T, et al.
Interleukin-4 receptor α-based hybrid peptide effectively induces antitumor activity in head and neck squamous cell carcinoma.
Oncol Rep. 2013; 29(6):2147-53 [PubMed] Related Publications
Interleukin-4 receptor α (IL-4Rα) is highly expressed on the surface of various human solid tumors including head and neck squamous cell carcinoma (HNSCC). We designed a novel IL-4Rα-lytic hybrid peptide composed of a binding peptide to IL-4Rα and a cell-lytic peptide. In the present study, we evaluated the antitumor activity of the IL-4Rα-lytic hybrid peptide as a novel molecular-targeted therapy in HNSCC. Immunoblot analysis revealed that IL-4Rα was expressed in all tested HNSCC cell lines (HSC-2, HSC-3, HSC-4, Ca9-22 and OSC-19), but not in a human normal keratinocyte (HaCaT) cell line. Immunohistochemical expression levels of IL-4Rα in HNSCC tissues were higher compared to those in normal epithelial tissue. The IL-4Rα-lytic hybrid peptide showed cytotoxic activity in all five cancer cell lines with a concentration that killed 50% of all cells (IC50) as low as 10 µM. HaCaT cells were less sensitive to this peptide with an IC50 of >30 µM. In addition, intratumoral administration of IL-4Rα-lytic hybrid peptide significantly inhibited tumor growth in a xenograft model of human HNSCC in vivo. These results indicate that the IL-4Rα-lytic hybrid peptide may serve as a potent agent to provide a novel therapy for patients with HNSCC.

Murray JL, Thompson P, Yoo SY, et al.
Prognostic value of single nucleotide polymorphisms of candidate genes associated with inflammation in early stage breast cancer.
Breast Cancer Res Treat. 2013; 138(3):917-24 [PubMed] Free Access to Full Article Related Publications
To examine the role of germline genetic variations in inflammatory pathways as modifiers of time to recurrence (TTR) in patients with early stage breast cancer (BC), DNA from 997 early stage BC patients was genotyped for 53 tagging single nucleotide polymorphisms (SNPs) in 12 genes involved in inflammation. SNPs were analyzed separately for Caucasians versus African-Americans and Hispanics. Cox proportional hazards models were used to evaluate the association between SNPs in the inflammatory genes and TTR, adjusted for clinical and pathologic covariates. In univariable analyses of Caucasian women, the homozygous genotype of 12 SNPs, including 6 NFKB1 SNPs, 4 IL4 SNPs, and 2 IL13 SNPs, were significantly associated with a decrease in TTR compared with the heterozygous and/or corresponding homozygous genotype (P < 0.05). The significant NFKB1 and IL4 SNPs were in an area of high linkage disequilibrium (D' > 0.8). After adjusting for stage, age, and treatment, carriage of the homozygous genotypes for NFKB1 rs230532 and IL13rs1800925 were independently associated with a shorter TTR (P = 0.001 and P = 0.034, respectively). In African-American and Hispanic patients, expression of NFKB1 rs3774932, TNFrs1799964, and IL4rs3024543 SNPs were associated with a shorter TTR in univariable model. Only NFKB1 rs3774932 (P = 0.02) and IL4Rrs3024543 (P = 0.03) had independent prognostic value in the multivariable model These data support the existence of host genetic susceptibility as a component in recurrence risk mediated by pro-inflammatory and immune factors, and suggest the potential for drugs which modify immune responses and inflammatory genes to improve prognosis in early stage BC.

Backes DM, Siddiq A, Cox DG, et al.
Single-nucleotide polymorphisms of allergy-related genes and risk of adult glioma.
J Neurooncol. 2013; 113(2):229-38 [PubMed] Free Access to Full Article Related Publications
Previous studies have shown an inverse association between allergies and glioma risk; however, results for associations between single nucleotide polymorphisms (SNPs) of allergy-related genes and glioma risk have been inconsistent and restricted to a small number of SNPs. The objective of this study was to examine the association between 166 SNPs of 21 allergy-related genes and glioma risk in a nested case-control study of participants from three large US prospective cohort studies. Blood collection took place between 1982 and 1994 among the 562 included Caucasian participants (143 cases and 419 matched controls) prior to case diagnosis. Custom Illumina assay chips were used for genotyping. Logistic regression analyses, controlling for age and study cohort, were used to determine associations between each SNP and glioma risk. Statistically significant associations were found between rs2494262 and rs2427824 of the FCER1A gene, which encodes the alpha chain of the high affinity immunoglobulin E receptor, and glioma risk (nominal trend p values 0.01 and 0.03, respectively). Significant associations were also found between SNPs in IL10, ADAM33, NOS1 and IL4R and glioma risk. However, our analyses were not corrected for multiple comparisons and need to be interpreted with caution. Our findings with FCER1A SNPs provide further support for the link between allergies and risk of glioma.

Eto M, Kamba T, Miyake H, et al.
STAT3 polymorphism can predict the response to interferon-α therapy in patients with metastatic renal cell carcinoma.
Eur Urol. 2013; 63(4):745-52 [PubMed] Related Publications
BACKGROUND: In our 2007 retrospective study, we reported that single nucleotide polymorphisms (SNPs) in the signal transducer and activator of transcription 3 (acute-phase response factor) (STAT3) gene were significantly associated with better response to interferon (IFN)-α in patients with metastatic renal cell carcinoma (mRCC).
OBJECTIVE: To prospectively confirm those results, the Japan Immunotherapy SNPs-Study Group for Kidney Cancer conducted this trial.
DESIGN, SETTING, AND PARTICIPANTS: In this multicenter, prospective study, 203 eligible patients were enrolled. We evaluated the correlation between the antitumor effects of IFN-α and 11 SNPs (STAT3-2, STAT3-0, SOCS3-1, IL4R-34, PTGS1-3, PTGS1-4, PTGS1-5, PTGS2-12, IRF2-67, ICSBP-38, and TAP2-5) in eight genes in 180 patients who received IFN-α for >12 wk.
INTERVENTIONS: Patients were treated with three doses per week of IFN-α 5 million IU.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We analyzed the association of response to IFN-α and overall survival (OS) with genetic polymorphisms using a chi-square test and a logistic regression model.
RESULTS AND LIMITATIONS: The response rate of IFN-α was 13.8% (28 of 203 patients; 9 complete responses [CRs], 19 partial responses [PRs]). The CR rate of 4.4% was higher than we expected. Response to IFN-α was not associated with any of the 11 SNPs examined. However, when we assessed patients with CR, PR, and stable disease >24 wk as a group representing those with clinical response, a significant association was observed between STAT3-2 (rs1905341) and the clinical response of IFN-α (p=0.039). Namely, C/C genotype of STAT3-2 was significantly associated with the clinical response of IFN-α and OS. These results were generated in Japanese patients and should be studied in other ethnic groups.
CONCLUSIONS: This is the first prospective study demonstrating that a STAT3 polymorphism can be a predictive marker for treatment with IFN-α for patients with mRCC.

D'Amelio AM, Monroy C, El-Zein R, Etzel CJ
Using haplotype analysis to elucidate significant associations between genes and Hodgkin lymphoma.
Leuk Res. 2012; 36(11):1359-64 [PubMed] Free Access to Full Article Related Publications
In this study, we estimated the association between the inferred haplotypes in the inflammation, DNA repair, and folate pathways, and developed risk models for Hodgkin lymphoma. The study population consisted of 200 Hodgkin lymphoma cases and 220 controls. A susceptible association was observed on the XPC gene with haplotype CT (rs2228001 and rs2228000), and a protective association was observed on the IL4R gene with haplotype TCA (rs1805012, rs1805015, and rs1801275). These results can provide the necessary tools to identify high-risk individuals after validation in large data sets.

Devapatla B, Sanders J, Samuelson DJ
Genetically determined inflammatory-response related cytokine and chemokine transcript profiles between mammary carcinoma resistant and susceptible rat strains.
Cytokine. 2012; 59(2):223-7 [PubMed] Free Access to Full Article Related Publications
Multiple human breast and rat mammary carcinoma susceptibility (Mcs) alleles have been identified. Wistar Kyoto (WKY) rats are resistant to developing mammary carcinomas, while Wistar Furth (WF) females are susceptible. Gene transcripts at Mcs5a1, Mcs5a2, and Mcs5c are differentially expressed between resistant WKY and susceptible WF alleles in immune-system tissues. We hypothesized that immune-related gene transcript profiles are genetically determined in mammary carcinoma resistant and susceptible mammary glands. Low-density QPCR arrays were used to compare inflammation related genes between mammary carcinoma resistant WKY and susceptible WF females. Mammary gland gene transcript levels predicted to be different based on arrays were tested in independent samples. In total, 20 females per strain were exposed to 7,12-dimethylbenz(a)anthracene (DMBA) to induce mammary carcinogenesis. Twelve age-matched controls per strain without DMBA were included to determine main effects of DMBA-exposure. Significant (ANOVA P ≤ 0.01) effects of strain on mammary gland transcript level were observed for Cx3cl1, Il11ra, Il4, C3, Ccl20, Ccl11, Itgb2, Cxcl12, and Cxcr7. Significant effects of DMBA-exposure were observed for Cx3cl1, Il11ra, Cxcr4, Il4ra, and Il4. Strain and DMBA-exposure interaction effects were significant for Cx3cl1. Transcript levels of Cxcr7 relative to Cxcr4 were modified differently by DMBA in mammary carcinoma resistant and susceptible strains. In conclusion, several genetically-determined differences in cytokine, chemokine, and receptor gene transcript levels were identified between mammary carcinoma susceptible and resistant mammary glands, which may be indicative of cell populations and activities that suppress mammary carcinogenesis in resistant genotypes.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IL4R, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999