Gene Summary

Gene:BCL2L11; BCL2-like 11 (apoptosis facilitator)
Aliases: BAM, BIM, BOD
Summary:The protein encoded by this gene belongs to the BCL-2 protein family. BCL-2 family members form hetero- or homodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. The protein encoded by this gene contains a Bcl-2 homology domain 3 (BH3). It has been shown to interact with other members of the BCL-2 protein family and to act as an apoptotic activator. The expression of this gene can be induced by nerve growth factor (NGF), as well as by the forkhead transcription factor FKHR-L1, which suggests a role of this gene in neuronal and lymphocyte apoptosis. Transgenic studies of the mouse counterpart suggested that this gene functions as an essential initiator of apoptosis in thymocyte-negative selection. Several alternatively spliced transcript variants of this gene have been identified. [provided by RefSeq, Jun 2013]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:bcl-2-like protein 11
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
Show (42)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Acute Lymphocytic Leukaemia (ALL)BCL2L11 and Acute Lymphocytic Leukaemia View Publications5
Stomach CancerBCL2L11 and Stomach Cancer View Publications4
Lung CancerBCL2L11 and Lung Cancer View Publications4
Colorectal CancerBCL2L11 and Colorectal Cancer View Publications3
Non-Hodgkin Lymphomars3789068 polymorphism BCL2L11 and increased risk of B-Cell NHL?
Morton et al, 2009 reported that the rs3789068 variation of the BCL2L11 gene was associated with increased risk of B-Cell NHL in a genotyping study of 203 SNPs in 1,946 NHL cases and 1,808 controls. The finding was replicated by a case control study run by the InterLymph consortium (Nieters, 2012).
View Publications2

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: BCL2L11 (cancer-related)

Faber AC, Farago AF, Costa C, et al.
Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer.
Proc Natl Acad Sci U S A. 2015; 112(11):E1288-96 [PubMed] Article available free on PMC after 17/09/2015 Related Publications
BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes. We found that high expression of the proapoptotic gene Bcl2-interacting mediator of cell death (BIM) predicts sensitivity to ABT-263. In particular, SCLC cell lines possessed greater BIM transcript levels than most other solid tumors and are among the most sensitive to ABT-263. However, a subset of relatively resistant SCLC cell lines has concomitant high expression of the antiapoptotic myeloid cell leukemia 1 (MCL-1). Whereas ABT-263 released BIM from complexes with BCL-2 and BCL-XL, high expression of MCL-1 sequestered BIM released from BCL-2 and BCL-XL, thereby abrogating apoptosis. We found that SCLCs were sensitized to ABT-263 via TORC1/2 inhibition, which led to reduced MCL-1 protein levels, thereby facilitating BIM-mediated apoptosis. AZD8055 and ABT-263 together induced marked apoptosis in vitro, as well as tumor regressions in multiple SCLC xenograft models. In a Tp53; Rb1 deletion genetically engineered mouse model of SCLC, the combination of ABT-263 and AZD8055 significantly repressed tumor growth and induced tumor regressions compared with either drug alone. Furthermore, in a SCLC patient-derived xenograft model that was resistant to ABT-263 alone, the addition of AZD8055 induced potent tumor regression. Therefore, addition of a TORC1/2 inhibitor offers a therapeutic strategy to markedly improve ABT-263 activity in SCLC.

Musilova K, Mraz M
MicroRNAs in B-cell lymphomas: how a complex biology gets more complex.
Leukemia. 2015; 29(5):1004-17 [PubMed] Related Publications
MicroRNAs (miRNAs) represent important regulators of gene expression besides transcriptional control. miRNA regulation can be involved in the cell developmental fate decisions, but can also have more subtle roles in buffering stochastic fluctuations in gene expression. They participate in pathways fundamental to B-cell development like B-cell receptor (BCR) signalling, B-cell migration/adhesion, cell-cell interactions in immune niches, and the production and class-switching of immunoglobulins. miRNAs influence B-cell maturation, generation of pre-, marginal zone, follicular, B1, plasma and memory B cells. In this review, we discuss miRNAs with essential functions in malignant B-cell development (such as miR-150, miR-155, miR-21, miR-34a, miR-17-92 and miR-15-16). We also put these miRNAs in the context of normal B-cell differentiation, as this is intimately connected to neoplastic B-cell development. We review miRNAs' role in the most common B-cell malignancies, including chronic lymphocytic leukaemia (CLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and mantle cell lymphoma (MCL). We focus on miR-contribution to the regulation of important signalling pathways (such as NF-κB, PI3K/AKT and TGF-β), BCR signalling and its modulators (such as PTEN, SHIP-1, ZAP-70, GAB1 and BTK), anti- and pro-apoptotic proteins (such as BCL2, MCL1, TCL1, BIM, p53 and SIRT1) and transcription factors (such as MYC, MYB, PU.1, FOXP1 and BCL6). We also discuss the association of miRNAs' expression levels with the patients' survival and response to therapy, summarizing their potential use as predictive and prognostic markers. Importantly, the targeting of miRNAs (like use of anti-miR-155 or miR-34a mimic) could provide a novel therapeutic approach as evidenced by tumour regression in xenograft mouse models and initial promising data from clinical trials.

Segovia-Mendoza M, Díaz L, González-González ME, et al.
Calcitriol and its analogues enhance the antiproliferative activity of gefitinib in breast cancer cells.
J Steroid Biochem Mol Biol. 2015; 148:122-31 [PubMed] Related Publications
Coexpression of EGFR and HER2 has been associated with poor disease outcome, high rates of metastasis and resistance to conventional treatments in breast cancer. Gefitinib, a tyrosine kinase inhibitor, reduces both cell proliferation and tumor growth of breast cancer cells expressing EGFR and/or HER2. On the other hand, calcitriol and some of its synthetic analogs are important antineoplastic agents in different breast cancer subtypes. Herein, we evaluated the effects of the combined treatment of gefitinib with calcitriol or its analogs on cell proliferation in breast cancer cells. The presence of EGFR, HER2 and vitamin D receptor were evaluated by Western blot in two established breast cancer cell lines: SUM-229PE, SKBR3 and a primary breast cancer-derived cell line. The antiproliferative effects of gefitinib alone or in combination with calcitriol and its analogs, calcipotriol and EB1089, were assessed by growth assay using a DNA content-based method. Inhibitory concentrations on cell proliferation were calculated by non-linear regression analysis using sigmoidal fitting of dose-response curves. Pharmacological effects of the drug combinations were calculated by the Chou-Talalay method. Phosphorylation of ERK1/2 MAPK was evaluated by Western blot. Gene expression of EGFR, HER2 and BIM was assessed by real time PCR. BIM protein levels were analyzed in cells by flow cytometry. The effects of the drugs alone or combinated on cell cycle phases were determined using propidium iodide. Apoptosis was evaluated by detection of subG1 peak and determination of active caspase 3 by flow cytometry. Gefitinib, calcitriol, calcipotriol and EB1089 inhibited cell proliferation in a dose dependent manner. The combinations of gefitinib with calcitriol or its analogs were more effective to inhibit cell growth than each compound alone in all breast cancer cells studied. The gene expression of EGFR and HER2 was downregulated and not affected, respectively, by the combined treatment. Furthermore, phosphorylation of ERK 1/2 was inhibited a greater extent in co-treated cells than in the cells treated with alone compounds. The combination of gefitinib with calcitriol or their synthetic analogs induced apoptosis in SUM-229PE cells, this was shown by the significant upregulation of BIM protein levels, higher percentages of cells in subG1 peak and increase of caspase 3-positive cells. The combination of gefitinib with calcitriol or their synthetic analogs resulted in a greater antiproliferative effect than with either of the agents alone in EGFR and HER2 positive breast cancer cells. The mechanistic explanation for these results includes downregulation of MAPK signaling pathway, decrease of cells in G2/M phase and induction of apoptosis mediated by upregulation of BIM and activation of caspase 3. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

Woo SM, Min KJ, Seo BR, et al.
Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression.
Cell Death Dis. 2014; 5:e1514 [PubMed] Article available free on PMC after 17/09/2015 Related Publications
Although ABT-737, a small-molecule Bcl-2/Bcl-xL inhibitor, has recently emerged as a novel cancer therapeutic agent, ABT-737-induced apoptosis is often blocked in several types of cancer cells with elevated expression of Mcl-1. Cafestol, one of the major compounds in coffee beans, has been reported to have anti-carcinogenic activity and tumor cell growth-inhibitory activity, and we examined whether cafestol could overcome resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. ABT-737 alone had no effect on apoptosis, but cafestol markedly enhanced ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma U251MG cells, and human breast carcinoma MDA-MB231 cells. By contrast, co-treatment with ABT-737 and cafestol did not induce apoptosis in normal human skin fibroblast. Furthermore, combined treatment with cafestol and ABT-737 markedly reduced tumor growth compared with either drug alone in xenograft models. We found that cafestol inhibited Mcl-1 protein expression, which is important for ABT-737 resistance, through promotion of protein degradation. Moreover, cafestol increased Bim expression, and siRNA-mediated suppression of Bim expression reduced the apoptosis induced by cafestol plus ABT-737. Taken together, cafestol may be effectively used to enhance ABT-737 sensitivity in cancer therapy via downregulation of Mcl-1 expression and upregulation of Bim expression.

Jing D, Bhadri VA, Beck D, et al.
Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells.
Blood. 2015; 125(2):273-83 [PubMed] Related Publications
Glucocorticoids are critical components of combination chemotherapy regimens in pediatric acute lymphoblastic leukemia (ALL). The proapoptotic BIM protein is an important mediator of glucocorticoid-induced apoptosis in normal and malignant lymphocytes, whereas the antiapoptotic BCL2 confers resistance. The signaling pathways regulating BIM and BCL2 expression in glucocorticoid-treated lymphoid cells remain unclear. In this study, pediatric ALL patient-derived xenografts (PDXs) inherently sensitive or resistant to glucocorticoids were exposed to dexamethasone in vivo. Microarray analysis showed that KLF13 and MYB gene expression changes were significantly greater in dexamethasone-sensitive than -resistant PDXs. Chromatin immunoprecipitation (ChIP) analysis detected glucocorticoid receptor (GR) binding at the KLF13 promoter to trigger KLF13 expression only in sensitive PDXs. Next, KLF13 bound to the MYB promoter, deactivating MYB expression only in sensitive PDXs. Sustained MYB expression in resistant PDXs resulted in maintenance of BCL2 expression and inhibition of apoptosis. ChIP sequencing analysis revealed a novel GR binding site in a BIM intronic region (IGR) that was engaged only in dexamethasone-sensitive PDXs. The absence of GR binding at the BIM IGR was associated with BIM silencing and dexamethasone resistance. This study has identified novel mechanisms of opposing BCL2 and BIM gene regulation that control glucocorticoid-induced apoptosis in pediatric ALL cells in vivo.

Jin Z, Zheng L, Xin X, et al.
Upregulation of forkhead box O3 transcription is involved in C2-ceramide induced apoptosis and autophagy in ovarian cancer cells in vitro.
Mol Med Rep. 2014; 10(6):3099-105 [PubMed] Related Publications
Ceramide is a bioactive lipid which functions as a tumor suppressor, mediating processes such as apoptosis, growth arrest, senescence and differentiation. The effects of ceramide in ovarian cancers have not been well established. The objective of the present study was to investigate the effects of C2‑ceramide treatment in A2780 ovarian cancer cells and its possible molecular mechanism. C2‑ceramide-induced proliferation inhibition was analyzed using an MTT assay and Trypan blue test. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling were used to identify the induction of apoptosis. Transmission electron microscopy was used to confirm the formation of autophagosomes. Quantitative polymerase chain reaction was performed to analyze the messenger RNA expression of the autophagy and cell death associated genes and western blotting was used to analyze the protein expression of beclin 1, LC3, Akt, forkhead box O3 (FOXO3) and adenosine monophosphate-activated protein kinase in ovarian cancer cells. It was found that C2‑ceramide inhibited A2780 cell proliferation in a time‑ and dose‑dependent manner and C2‑ceremide induced A2780 cell apoptosis and autophagy. However, C2‑ceramide‑induced autophagy did not result in cell death, but instead protected ovarian cancer cells from apoptosis. Akt inhibition and FOXO3 activation were implicated in C2‑ceramide‑treated ovarian cancer cells. Furthermore, FOXO3 target genes, which were associated with autophagy (MAP1LC3, GABARAP and GABARAPL1) and cell death (BNIP3, BNIP3L, BIM and PUMA), were upregulated. The present study has shown that C2‑ceramide induced apoptosis and autophagy in ovarian cancer cells. FOXO3 transcription was upregulated, which may contribute to C2‑ceramide‑induced apoptosis and autophagy.

Liu T, Kishton RJ, Macintyre AN, et al.
Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis.
Cell Death Dis. 2014; 5:e1470 [PubMed] Article available free on PMC after 17/09/2015 Related Publications
The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting inhibition of aerobic glycolysis as a plausible adjuvant approach for B-ALL therapies.

Grazia G, Vegetti C, Benigni F, et al.
Synergistic anti-tumor activity and inhibition of angiogenesis by cotargeting of oncogenic and death receptor pathways in human melanoma.
Cell Death Dis. 2014; 5:e1434 [PubMed] Related Publications
Improving treatment of advanced melanoma may require the development of effective strategies to overcome resistance to different anti-tumor agents and to counteract relevant pro-tumoral mechanisms in the microenvironment. Here we provide preclinical evidence that these goals can be achieved in most melanomas, by co-targeting of oncogenic and death receptor pathways, and independently of their BRAF, NRAS, p53 and PTEN status. In 49 melanoma cell lines, we found independent susceptibility profiles for response to the MEK1/2 inhibitor AZD6244, the PI3K/mTOR inhibitor BEZ235 and the death receptor ligand TRAIL, supporting the rationale for their association. Drug interaction analysis indicated that a strong synergistic anti-tumor activity could be achieved by the three agents and the AZD6244-TRAIL association on 20/21 melanomas, including cell lines resistant to the inhibitors or to TRAIL. Mechanistically, synergy was explained by enhanced induction of caspase-dependent apoptosis, mitochondrial depolarization and modulation of key regulators of extrinsic and intrinsic cell death pathways, including c-FLIP, BIM, BAX, clusterin, Mcl-1 and several IAP family members. Moreover, silencing experiments confirmed the central role of Apollon downmodulation in promoting the apoptotic response of melanoma cells to the combinatorial treatments. In SCID mice, the AZD6244-TRAIL association induced significant growth inhibition of a tumor resistant to TRAIL and poorly responsive to AZD6244, with no detectable adverse events on body weight and tissue histology. Reduction in tumor volume was associated not only with promotion of tumor apoptosis but also with suppression of the pro-angiogenic molecules HIF1α, VEGFα, IL-8 and TGFβ1 and with inhibition of tumor angiogenesis. These results suggest that synergistic co-targeting of oncogenic and death receptor pathways can not only overcome melanoma resistance to different anti-tumor agents in vitro but can also promote pro-apoptotic effects and inhibition of tumor angiogenesis in vivo.

Chinen Y, Kuroda J, Shimura Y, et al.
Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma.
Cancer Res. 2014; 74(24):7418-29 [PubMed] Related Publications
Multiple myeloma is a cytogenetically/molecularly heterogeneous hematologic malignancy that remains mostly incurable, and the identification of a universal and relevant therapeutic target molecule is essential for the further development of therapeutic strategy. Herein, we identified that 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a serine threonine kinase, is expressed and active in all eleven multiple myeloma-derived cell lines examined regardless of the type of cytogenetic abnormality, the mutation state of RAS and FGFR3 genes, or the activation state of ERK and AKT. Our results revealed that PDPK1 is a pivotal regulator of molecules that are essential for myelomagenesis, such as RSK2, AKT, c-MYC, IRF4, or cyclin Ds, and that PDPK1 inhibition caused the growth inhibition and the induction of apoptosis with the activation of BIM and BAD, and augmented the in vitro cytotoxic effects of antimyeloma agents in myeloma cells. In the clinical setting, PDPK1 was active in myeloma cells of approximately 90% of symptomatic patients at diagnosis, and the smaller population of patients with multiple myeloma exhibiting myeloma cells without active PDPK1 showed a significantly less frequent proportion of the disease stage III by the International Staging System and a significantly more favorable prognosis, including the longer overall survival period and the longer progression-free survival period by bortezomib treatment, than patients with active PDPK1, suggesting that PDPK1 activation accelerates the disease progression and the resistance to treatment in multiple myeloma. Our study demonstrates that PDPK1 is a potent and a universally targetable signaling mediator in multiple myeloma regardless of the types of cytogenetic/molecular profiles.

Zhao YN, Li Q
Adenovirus mediated BIMS transfer induces growth supression and apoptosis in Raji lymphoma cells.
Biomed Environ Sci. 2014; 27(9):655-64 [PubMed] Related Publications
OBJECTIVE: To transfer pro-apoptotic BIM directly into tumor cells bypass the complicated biological processes of BIM activation so as to reverse the chemoresistance of cancer cells.
METHODS: BIMS was specifically amplified from HL-60 cells by RT-PCR, confirmed to be correct by sequencing and cloned into shuttle vector pAdTrack-CMV carrying a green fluorescence protein gene to generate a recombinant plasmid pAdTrack-CMV-BIMS. This plasmid and adenovirus backbone plasmid pAdEasy-1 were linearized and electroporated into E.coli BJ5183 host bacteria to mediate homologous recombination. The positive clone was identified by restrict endonuclease digestion. The recombinant pAdEasy-CMV-BIMS was transferred into HEK293 cells for packaging and amplification. The successful construction of recombinant human BIMS adenovirus (Ad-BIMS) was demonstrated by Western blot. To test whether Ad-BIMS has the capability of inducing apoptosis of tumor cells, Ad-BIMS was used to infect GC resistant Burkitt lymphoma Raji cells.
RESULTS: After infected for 2-5 days, BIMS expression in Raji cells was detected by RT-PCR and Western blot. The significant growth retardation and apoptosis of Raji cells were also observed by MTT and flow cytometry.
CONCLUSION: These results indicated that BIMS might be a potential candidate of gene therapy for chemoresistant tumor cells.

Chen S, Zhang Y, Zhou L, et al.
A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis.
Blood. 2014; 124(17):2687-97 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
Bim contributes to resistance to various standard and novel agents. Here we demonstrate that Bim plays a functional role in bortezomib resistance in multiple myeloma (MM) cells and that targeting Bim by combining histone deacetylase inhibitors (HDACIs) with BH3 mimetics (eg, ABT-737) overcomes bortezomib resistance. BH3-only protein profiling revealed high Bim levels (Bim(hi)) in most MM cell lines and primary CD138(+) MM samples. Whereas short hairpin RNA Bim knockdown conferred bortezomib resistance in Bim(hi) cells, adaptive bortezomib-resistant cells displayed marked Bim downregulation. HDACI upregulated Bim and, when combined with ABT-737, which released Bim from Bcl-2/Bcl-xL, potently killed bortezomib-resistant cells. These events were correlated with Bim-associated autophagy attenuation, whereas Bim knockdown sharply increased autophagy in Bim(hi) cells. In Bim(low) cells, autophagy disruption by chloroquine (CQ) was required for HDACI/ABT-737 to induce Bim expression and lethality. CQ also further enhanced HDACI/ABT-737 lethality in bortezomib-resistant cells. Finally, HDACI failed to diminish autophagy or potentiate ABT-737-induced apoptosis in bim(-/-) mouse embryonic fibroblasts. Thus, Bim deficiency represents a novel mechanism of adaptive bortezomib resistance in MM cells, and Bim-targeting strategies combining HDACIs (which upregulate Bim) and BH3 mimetics (which unleash Bim from antiapoptotic proteins) overcomes such resistance, in part by disabling cytoprotective autophagy.

Nestal de Moraes G, Castro CP, Salustiano EJ, et al.
The pterocarpanquinone LQB-118 induces apoptosis in acute myeloid leukemia cells of distinct molecular subtypes and targets FoxO3a and FoxM1 transcription factors.
Int J Oncol. 2014; 45(5):1949-58 [PubMed] Related Publications
Acute myeloid leukemia (AML) patients' outcome is usually poor, mainly because of drug resistance phenotype. The identification of new drugs able to overcome mechanisms of chemoresistance is essential. The pterocarpanquinone LQB-118 compound has been shown to have a potent cytotoxic activity in myeloid leukemia cell lines and patient cells. Our aim was to investigate if LQB-118 is able to target FoxO3a and FoxM1 signaling pathways while sensitizing AML cell lines. LQB-118 induced apoptosis in both AML cell lines HL60 (M3 FAB subtype) and U937 (M4/M5 FAB subtype). Cell death occurred independently of alterations in cell cycle distribution. In vivo administration revealed that LQB-118 was not cytotoxic to normal bone marrow-derived cells isolated from mice. LQB-118 induced FoxO3a nuclear translocation and upregulation of its direct transcriptional target Bim, in HL60 cells. However, LQB-118 induced FoxO3a nuclear exclusion, followed by Bim downregulation, in U937 cells. Concomitantly, LQB-118 exposure reduced FoxM1 and Survivin expression in U937 cells, but this effect was more subtle in HL60 cells. Taken together, our data suggest that LQB-118 has a selective and potent antitumor activity against AML cells with distinct molecular subtypes, and it involves differential modulation of the signaling pathways associated with FoxO3a and FoxM1 transcription factors.

Hui KF, Leung YY, Yeung PL, et al.
Combination of SAHA and bortezomib up-regulates CDKN2A and CDKN1A and induces apoptosis of Epstein-Barr virus-positive Wp-restricted Burkitt lymphoma and lymphoblastoid cell lines.
Br J Haematol. 2014; 167(5):639-50 [PubMed] Related Publications
Epstein-Barr virus (EBV) latent proteins exert anti-apoptotic effects on EBV-transformed lymphoid cells by down-regulating BCL2L11 (BIM), CDKN2A (p16(INK4A) ) and CDKN1A (p21(WAF1) ). However, the potential therapeutic effects of targeting these anti-apoptotic mechanisms remain unexplored. Here, we tested both in vitro and in vivo effects of the combination of histone deacetylase (HDAC) and proteasome inhibitors on the apoptosis of six endemic Burkitt lymphoma (BL) lines of different latency patterns (types I and III and Wp-restricted) and three lymphoblastoid cell lines (LCLs). We found that the combination of HDAC and proteasome inhibitors (e.g. SAHA/bortezomib) synergistically induced the killing of Wp-restricted and latency III BL and LCLs but not latency I BL cells. The synergistic killing was due to apoptosis, as evidenced by the high percentage of annexin V positivity and strong cleavage of PARP1 (PARP) and CASP3 (caspase-3). Concomitantly, SAHA/bortezomib up-regulated the expression of CDKN2A and CDKN1A but did not affect the level of BCL2L11 or BHRF1 (viral homologue of BCL2). The apoptotic effects were dependent on reactive oxygen species generation. Furthermore, SAHA/bortezomib suppressed the growth of Wp-restricted BL xenografts in nude mice. This study provides the rationale to test the novel application of SAHA/bortezomib on the treatment of EBV-associated Wp-restricted BL and post-transplant lymphoproliferative disorder.

Xiong H, Wang J, Guan H, et al.
SphK1 confers resistance to apoptosis in gastric cancer cells by downregulating Bim via stimulating Akt/FoxO3a signaling.
Oncol Rep. 2014; 32(4):1369-73 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
We previously reported that sphingosine kinase 1 (SphK1), an enzyme that catalyzes the production of sphingosine-1-phosphate (SIP), is upregulated in human gastric cancer and predicts poor clinical outcome. In the present study, we used known differential effects of UV irradiation on human MGC-803 gastric cancer cells to determine their effect on SphK1 activity. Ectopic expression of SphK1 in MGC-803 gastric cancer cells markedly enhanced their resistance to UV irradiation, whereas silencing endogenous SphK1 with shRNAs weakened this ability. Furthermore, these anti-apoptotic effects were significantly associated with decrease of Bim, an apoptosis-related protein. We further demonstrated that SphK1 could downregulate the transcriptional activity of forkhead box O3a (FoxO3a) by inducing its phosphorylation, which was found to be associated with the PI3K/Akt signaling. Taken together, our study supports the theory that SphK1 confers resistance to apoptosis in gastric cancer cells via the Akt/FoxO3a/Bim pathway.

Beach JA, Nary LJ, Hovanessian R, Medh RD
Correlation of glucocorticoid-mediated E4BP4 upregulation with altered expression of pro- and anti-apoptotic genes in CEM human lymphoblastic leukemia cells.
Biochem Biophys Res Commun. 2014; 451(3):382-8 [PubMed] Article available free on PMC after 29/08/2015 Related Publications
In Caenorhabditiselegans, motorneuron apoptosis is regulated via a ces-2-ces-1-egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4.

Hwang KE, Kim YS, Hwang YR, et al.
Enhanced apoptosis by pemetrexed and simvastatin in malignant mesothelioma and lung cancer cells by reactive oxygen species-dependent mitochondrial dysfunction and Bim induction.
Int J Oncol. 2014; 45(4):1769-77 [PubMed] Related Publications
Pemetrexed is a multitarget antifolate currently used for the treatment of malignant mesothelioma and non-small cell lung cancer (NSCLC). Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors used primarily for hyperlidpidemia, have been studied for their antiproliferative and pro-apoptotic effects. However, the effects of simvastatin on pemetrexed-induced apoptosis have not been investigated. In this study, we investigated whether combination treatment with pemetrexed and simvastatin potentiates the apoptotic activity above that is seen with either drug alone in malignant mesothelioma and NSCLC cells. We found that the combination of pemetrexed and simvastatin induced more extensive caspase-dependent apoptosis than either drug alone in malignant mesothelioma cells (MSTO-211) or NSCLC cells (A549). In addition, reactive oxygen species (ROS) generation in cells treated with both pemetrexed and simvastatin was markedly increased compared to cells treated with either pemetrexed or simvastatin alone. Combination treatment also increased the loss of mitochondrial membrane potential, increased cytosolic release of cytochrome c, and altered expression of inhibitor of apoptosis proteins (IAP) and B-cell lymphoma-2 (Bcl-2) families of apoptosis related proteins. On the other hand, pretreatment with N-acetylcysteine (NAC) prevented apoptosis and mitochondrial dysfunction by pemetrexed and simvastatin. In addition, Bim siRNA conferred protection against apoptosis induced by pemetrexed and simvastatin. These results suggest that combination of pemetrexed and simvastatin potentiates their apoptotic activity beyond that of either drug alone in malignant mesothelioma and lung cancer cells. This activity is mediated through ROS-dependent mitochondrial dysfunction and Bim induction.

Park SH, Lee JH, Berek JS, Hu MC
Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53.
Int J Oncol. 2014; 45(4):1691-8 [PubMed] Article available free on PMC after 29/08/2015 Related Publications
Auranofin is a gold-containing compound classified by the World Health Organization as a clinically established rheumatoid arthritis therapeutic agent. Through drug screening for novel anticancer therapeutics, we unexpectedly identified auranofin as a potent anticancer agent against a p53-null ovarian carcinoma SKOV3 cell line. However, the molecular mechanism underlying auranofin-mediated anticancer activity in ovarian cancer cells is basically unknown. Here, we show that auranofin inhibits proliferation and survival of SKOV3 cells in a dose‑ and time‑dependent manner. Auranofin treatment activates the pro-apoptotic caspase-3, increases protein levels of apoptosis-inducing proteins Bax and Bim and reduces the expression of the anti-apoptotic mediator Bcl-2 in SKOV3 cells. Moreover, auranofin downregulates IκB kinase (IKK)-β and promotes nuclear localization and the activation of FOXO3 tumor suppressor, leading to cellular apoptosis in SKOV3 cells. In contrast, silencing FOXO3 diminishes the pro-apoptotic signaling of auranofin in SKOV3 cells. These results suggest that auranofin may induce caspase-3-mediated apoptosis in a FOXO3-dependent manner. The observed upregulation of pro-apoptotic genes and apoptosis in cancer cells without p53 in response to auranofin suggests a novel p53-independent mechanism underlying auranofin-induced apoptosis in ovarian cancer cells.

Soh SX, Lim JY, Huang JW, et al.
Multi-agent chemotherapy overcomes glucocorticoid resistance conferred by a BIM deletion polymorphism in pediatric acute lymphoblastic leukemia.
PLoS One. 2014; 9(8):e103435 [PubMed] Article available free on PMC after 29/08/2015 Related Publications
A broad range of anti-cancer agents, including glucocorticoids (GCs) and tyrosine kinase inhibitors (TKIs), kill cells by upregulating the pro-apoptotic BCL2 family member, BIM. A common germline deletion in the BIM gene was recently shown to favor the production of non-apoptotic BIM isoforms, and to predict inferior responses in TKI-treated chronic myeloid leukemia (CML) and EGFR-driven lung cancer patients. Given that both in vitro and in vivo GC resistance are predictive of adverse outcomes in acute lymphoblastic leukemia (ALL), we hypothesized that this polymorphism would mediate GC resistance, and serve as a biomarker of poor response in ALL. Accordingly, we used zinc finger nucleases to generate ALL cell lines with the BIM deletion, and confirmed the ability of the deletion to mediate GC resistance in vitro. In contrast to CML and lung cancer, the BIM deletion did not predict for poorer clinical outcome in a retrospective analysis of 411 pediatric ALL patients who were uniformly treated with GCs and chemotherapy. Underlying the lack of prognostic significance, we found that the chemotherapy agents used in our cohort (vincristine, L-asparaginase, and methotrexate) were each able to induce ALL cell death in a BIM-independent fashion, and resensitize BIM deletion-containing cells to GCs. Together, our work demonstrates how effective therapy can overcome intrinsic resistance in ALL patients, and suggests the potential of using combinations of drugs that work via divergent mechanisms of cell killing to surmount BIM deletion-mediated drug resistance in other cancers.

Wu J, Dan C, Zhao HB, et al.
ALDOB acts as a novel HBsAg-binding protein and its coexistence inhibits cisplatin-induced HepG2 cell apoptosis.
Crit Rev Eukaryot Gene Expr. 2014; 24(3):181-91 [PubMed] Related Publications
Chronic infection with hepatitis B virus is a cause of end-stage liver disease and hepatocellular carcinoma (HCC). We previously screened fructose-bisphosphate aldolase B (ALDOB) as a candidate binding protein of hepatitis B surface antigen (HBsAg) using a yeast 2-hybrid assay. In this study we aimed to confirm ALDOB as a binding protein of the S region of the HbsAg (HBs) and to investigate the function and involved mechanism between its interactions during HCC development. Our results demonstrated that both of exogenous and endogenous ALDOB proteins bind to HBs and colocalize in the cytoplasm in vitro. The coexistence of HBs and ALDOB inhibit apoptosis of cisplatin-induced HepG2 cells. Furthermore, western blot analysis showed the coexistence of HBs and ALDOB enhance the phosphorylations of AKT and its downstream of GSK-3β (phosphorylation); decreased expression of the pro-apoptotic proteins Bax, Bid, Bim, and Puma; and increased expression of the prosurvival proteins Bcl-2, Bcl-xl, and Mcl-1 in HepG2 cells. These findings suggest that interaction between HBs and ALDOB might be applied as a potential therapeutic target during the treatment of HBV-related hepatitis or HCC.

Johnson SK, Stewart JP, Bam R, et al.
CYR61/CCN1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease.
Blood. 2014; 124(13):2051-60 [PubMed] Article available free on PMC after 25/09/2015 Related Publications
Secreted protein CCN1, encoded by CYR61, is involved in wound healing, angiogenesis, and osteoblast differentiation. We identified CCN1 as a microenvironmental factor produced by mesenchymal cells and overexpressed in bones of a subset of patients with monoclonal gammopathy of undetermined significance (MGUS), asymptomatic myeloma (AMM), and multiple myeloma (MM). Our analysis showed that overexpression of CYR61 was independently associated with superior overall survival of MM patients enrolled in our Total Therapy 3 protocol. Moreover, elevated CCN1 was associated with a longer time for MGUS/AMM to progress to overt MM. During remission from MM, high levels of CCN1 were associated with superior progression-free and overall survival and stratified patients with molecularly defined high-risk MM. Recombinant CCN1 directly inhibited in vitro growth of MM cells, and overexpression of CYR61 in MM cells reduced tumor growth and prevented bone destruction in vivo in severe combined immunodeficiency-hu mice. Signaling through αvβ3 was required for CCN1 prevention of bone disease. CYR61 expression may signify early perturbation of the microenvironment before conversion to overt MM and may be a compensatory mechanism to control MM progression. Therapeutics that upregulate CYR61 should be investigated for treating MM bone disease.

Jin HO, Lee YH, Park JA, et al.
Piperlongumine induces cell death through ROS-mediated CHOP activation and potentiates TRAIL-induced cell death in breast cancer cells.
J Cancer Res Clin Oncol. 2014; 140(12):2039-46 [PubMed] Related Publications
PURPOSE: Piperlongumine (PL) has been shown to selectively induce apoptotic cell death in cancer cells via reactive oxygen species (ROS) accumulation. In this study, we characterized a molecular mechanism for PL-induced cell death.
METHODS: Cell viability and cell death were assessed by MTT assay and Annexin V-FITC/PI staining, respectively. ROS generation was measured using the H2DCFDA. Small interfering RNA (siRNA) was used for suppressing gene expression. The mRNA and protein expression were analyzed by RT-PCR and Western blot analysis, respectively.
RESULTS: We found that PL promotes C/EBP homologous protein (CHOP) induction, which leads to the up-regulation of its targets Bim and DR5. Pretreatment with the ROS scavenger N-acetyl-cysteine abolishes the PL-induced up-regulation of CHOP and its target genes, suggesting an essential role for ROS in PL-induced CHOP activation. The down-regulation of CHOP or Bim with siRNA efficiently attenuates PL-induced cell death, suggesting a critical role for CHOP in this cell death. Furthermore, PL potentiates TRAIL-induced cytotoxicity in breast cancer cells by upregulating DR5, as DR5 knockdown abolished the sensitizing effect of PL on TRAIL responses.
CONCLUSIONS: Overall, our data suggest a new mechanism for the PL-induced cell death in which ROS mediates CHOP activation, and combination treatment with PL and TRAIL could be a potential strategy for breast cancer therapy.

Mirzaei MR, Najafi A, Arababadi MK, et al.
Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines.
Tumour Biol. 2014; 35(10):9999-10009 [PubMed] Related Publications
OCT4B1 is a newly discovered spliced variant of OCT4 which is primarily expressed in pluripotent and tumor cells. Based on our previous studies, OCT4B1 is significantly overexpressed in tumors, where it endows an anti-apoptotic property to tumor cells. However, the mechanism by which OCT4B1 regulates the apoptotic pathway is not yet elucidated. Here, we investigated the effects of OCT4B1 suppression on the expression alteration of 84 genes involved in apoptotic pathway. The AGS (gastric adenocarcinoma), 5637 (bladder tumor), and U-87MG (brain tumor) cell lines were transfected with OCT4B1 or irrelevant siRNAs. The expression level of apoptotic genes was then quantified using a human apoptosis panel-PCR kit. Our data revealed an almost similar pattern of alteration in the expression profile of apoptotic genes in all three studied cell lines, following OCT4B1 suppression. In general, the expression of more than 54 apoptotic genes (64 % of arrayed genes) showed significant changes. Among these, some up-regulated (CIDEA, CIDEB, TNFRSF1A, TNFRSF21, TNFRSF11B, TNFRSF10B, and CASP7) and down-regulated (BCL2, BCL2L11, TP73, TP53, BAD, TRAF3, TRAF2, BRAF, BNIP3L, BFAR, and BAX) genes had on average more than tenfold gene expression alteration in all three examined cell lines. With some minor exceptions, suppression of OCT4B1 caused upregulation of pro-apoptotic and down-regulation of anti-apoptotic genes in transfected tumor cells. Uncovering OCT4B1 down-stream targets could further elucidate its part in tumorigenesis, and could lead to finding a new approach to combat cancer, based on targeting OCT4B1.

Vandenberg CJ, Waring P, Strasser A, Cory S
Plasmacytomagenesis in Eμ-v-abl transgenic mice is accelerated when apoptosis is restrained.
Blood. 2014; 124(7):1099-109 [PubMed] Article available free on PMC after 25/09/2015 Related Publications
Mice susceptible to plasma cell tumors provide a useful model for human multiple myeloma. We previously showed that mice expressing an Eµ-v-abl oncogene solely develop plasmacytomas. Here we show that loss of the proapoptotic BH3-only protein Bim or, to a lesser extent, overexpression of antiapoptotic Bcl-2 or Mcl-1, significantly accelerated the development of plasmacytomas and increased their incidence. Disease was preceded by an increased abundance of plasma cells, presumably reflecting their enhanced survival capacity in vivo. Plasmacytomas of each genotype expressed high levels of v-abl and frequently harbored a rearranged c-myc gene, probably as a result of chromosome translocation. As in human multiple myelomas, elevated expression of cyclin D genes was common, and p53 deregulation was rare. Our results for plasmacytomas highlight the significance of antiapoptotic changes in multiple myeloma, which include elevated expression of Mcl-1 and, less frequently, Bcl-2, and suggest that closer attention to defects in Bim expression is warranted.

Chien W, Ding LW, Sun QY, et al.
Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells.
Oncotarget. 2014; 5(13):4881-94 [PubMed] Article available free on PMC after 25/09/2015 Related Publications
Endoplasmic reticulum stress from unfolded proteins is associated with the proliferation of pancreatic tumor cells, making the many regulatory molecules of this pathway appealing targets for therapy. The objective of our study was to assess potential therapeutic efficacy of inhibitors of unfolded protein response (UPR) in pancreatic cancers focusing on IRE1α inhibitors. IRE1α-mediated XBP-1 mRNA splicing encodes a transcription factor that enhances transcription of chaperone proteins in order to reverse UPR. Proliferation assays using a panel of 14 pancreatic cancer cell lines showed a dose- and time-dependent growth inhibition by IRE1α-specific inhibitors (STF-083010, 2-Hydroxy-1-naphthaldehyde, 3-Ethoxy-5,6-dibromosalicylaldehyde, toyocamycin). Growth inhibition was also noted using a clonogenic growth assay in soft agar, as well as a xenograft in vivo model of pancreatic cancer. Cell cycle analysis showed that these IRE1α inhibitors caused growth arrest at either the G1 or G2/M phases (SU8686, MiaPaCa2) and induced apoptosis (Panc0327, Panc0403). Western blot analysis showed cleavage of caspase 3 and PARP, and prominent induction of the apoptotic molecule BIM. In addition, synergistic effects were found between either STF-083010, 2-Hydroxy-1-naphthaldehyde, 3-Ethoxy-5,6-dibromosalicylaldehyde, or toyocamycin and either gemcitabine or bortezomib. Our data suggest that use of an IRE1α inhibitor is a novel therapeutic approach for treatment of pancreatic cancers.

Gallagher SJ, Mijatov B, Gunatilake D, et al.
The epigenetic regulator I-BET151 induces BIM-dependent apoptosis and cell cycle arrest of human melanoma cells.
J Invest Dermatol. 2014; 134(11):2795-805 [PubMed] Related Publications
Epigenetic changes are widespread in melanoma and contribute to the pathogenic biology of this disease. In the present study, we show that I-BET151, which belongs to a new class of drugs that target the BET family of epigenetic "reader" proteins, inhibits melanoma growth in vivo and induced variable degrees of apoptosis in a panel of melanoma cells. Apoptosis was caspase dependent and associated with G1 cell cycle arrest. All melanoma cells tested had increased levels of the BH3 proapoptotic protein BIM, which appeared to be regulated by the BRD2 BET protein and to some extent by BRD3. In contrast, knockdown experiments indicated that inhibition of BRD4 was associated with decreased levels of BIM. Apoptosis was dependent on BIM in some but not all cell lines, indicating that other factors were determinants of apoptosis, such as downregulation of antiapoptotic proteins revealed in gene expression arrays. G1 cell cycle arrest appeared to be mediated by p21 and resulted from inhibition of the BRD4 protein. The activity of BET protein inhibitors appears independent of the BRAF and NRAS mutational status of melanoma, and further studies to assess their therapeutic role in melanoma are warranted.

Weng H, Huang H, Dong B, et al.
Inhibition of miR-17 and miR-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing BIM-S.
Cancer Res. 2014; 74(16):4409-19 [PubMed] Related Publications
Cancer cell chemoresistance arises in part through the acquisition of apoptotic resistance. Leukemia cells resistant to chemotherapy-induced apoptosis have been found to be sensitive to oridonin, a natural agent with potent anticancer activity. To investigate its mechanisms of action in reversing chemoresistance, we compared the response of human leukemia cells with oridonin and the antileukemia drugs Ara-C and VP-16. Compared with HL60 cells, K562 and K562/ADR cells displayed resistance to apoptosis stimulated by Ara-C and VP-16 but sensitivity to oridonin. Mechanistic investigations revealed that oridonin upregulated BIM-S by diminishing the expression of miR-17 and miR-20a, leading to mitochondria-dependent apoptosis. In contrast, neither Ara-C nor VP-16 could reduce miR-17 and miR-20a expression or could trigger BIM-S-mediated apoptosis. Notably, silencing miR-17 or miR-20a expression by treatment with microRNA (miRNA; miR) inhibitors or oridonin restored sensitivity of K562 cells to VP-16. Synergistic effects of oridonin and VP-16 were documented in cultured cells as well as mouse tumor xenograft assays. Inhibiting miR-17 or miR-20a also augmented the proapoptotic activity of oridonin. Taken together, our results identify a miRNA-dependent mechanism underlying the anticancer effect of oridonin and provide a rationale for its combination with chemotherapy drugs in addressing chemoresistant leukemia cells.

Wan L, Tan M, Yang J, et al.
APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction.
Dev Cell. 2014; 29(4):377-91 [PubMed] Article available free on PMC after 25/09/2015 Related Publications
Anaphase-promoting complex Cdc20 (APC(Cdc20)) plays pivotal roles in governing mitotic progression. By suppressing APC(Cdc20), antimitotic agents activate the spindle-assembly checkpoint and induce apoptosis after prolonged treatment, whereas depleting endogenous Cdc20 suppresses tumorigenesis in part by triggering mitotic arrest and subsequent apoptosis. However, the molecular mechanism(s) underlying apoptosis induced by Cdc20 abrogation remains poorly understood. Here, we report the BH3-only proapoptotic protein Bim as an APC(Cdc20) target, such that depletion of Cdc20 sensitizes cells to apoptotic stimuli. Strikingly, Cdc20 and multiple APC-core components were identified in a small interfering RNA screen that, upon knockdown, sensitizes otherwise resistant cancer cells to chemoradiation in a Bim-dependent manner. Consistently, human adult T cell leukemia cells that acquire elevated APC(Cdc20) activity via expressing the Tax viral oncoprotein exhibit reduced Bim levels and resistance to anticancer agents. These results reveal an important role for APC(Cdc20) in governing apoptosis, strengthening the rationale for developing specific Cdc20 inhibitors as effective anticancer agents.

Dong Y, Xiong M, Duan L, et al.
H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in chronic myelogenous leukemia cells induced by imatinib.
Apoptosis. 2014; 19(8):1281-92 [PubMed] Related Publications
Increasing evidence suggests that histone H2AX plays a critical role in regulation of tumor cell apoptosis and acts as a novel human tumor suppressor protein. However, the action of H2AX in chronic myelogenous leukemia (CML) cells is unknown. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. Here, we report that H2AX was involved in apoptosis of CML cells. Overexpression of H2AX increased apoptotic sensitivity of CML cells (K562) induced by imatinib. However, overexpression of Ser139-mutated H2AX (blocking phosphorylation) decreased sensitivity of K562 cells to apoptosis. Similarly, knockdown of H2AX made K562 cells resistant to apoptotic induction. These results revealed that the function of H2AX involved in apoptosis is strictly related to its phosphorylation (Ser139). Our data further indicated that imatinib may stimulate mitogen-activated protein kinase (MAPK) family member p38, and H2AX phosphorylation followed a similar time course, suggesting a parallel response. H2AX phosphorylation can be blocked by p38 siRNA or its inhibitor. These data demonstrated that H2AX phosphorylation was regulated by p38 MAPK pathway in K562 cells. However, the p38 MAPK downstream, mitogen- and stress-activated protein kinase-1 and -2, which phosphorylated histone H3, were not required for H2AX phosphorylation during apoptosis. Finally, we provided epigenetic evidence that H2AX phosphorylation regulated apoptosis-related gene Bim expression. Blocking of H2AX phosphorylation inhibited Bim gene expression. Taken together, these data demonstrated that H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in CML cells induced by imatinib.

Wiener Z, Band AM, Kallio P, et al.
Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β.
Proc Natl Acad Sci U S A. 2014; 111(21):E2229-36 [PubMed] Article available free on PMC after 25/09/2015 Related Publications
In the majority of microsatellite-stable colorectal cancers (CRCs), an initiating mutation occurs in the adenomatous polyposis coli (APC) or β-catenin gene, activating the β-catenin/TCF pathway. The progression of resulting adenomas is associated with oncogenic activation of KRas and inactivation of the p53 and TGF-β/Smad functions. Most established CRC cell lines contain mutations in the TGF-β/Smad pathway, but little is known about the function of TGF-β in the early phases of intestinal tumorigenesis. We used mouse and human ex vivo 3D intestinal organoid cultures and in vivo mouse models to study the effect of TGF-β on the Lgr5(+) intestinal stem cells and their progeny in intestinal adenomas. We found that the TGF-β-induced apoptosis in Apc-mutant organoids, including the Lgr5(+) stem cells, was mediated by up-regulation of the BH3-only proapoptotic protein Bcl-2-like protein 11 (Bim). BH3-mimetic compounds recapitulated the effect of Bim not only in the adenomas but also in human CRC organoids that had lost responsiveness to TGF-β-induced apoptosis. However, wild-type intestinal crypts were markedly less sensitive to TGF-β than Apc-mutant adenomas, whereas the KRas oncogene increased resistance to TGF-β via the activation of the Erk1/2 kinase pathway, leading to Bim down-regulation. Our studies identify Bim as a critical mediator of TGF-β-induced apoptosis in intestinal adenomas and show that the common progression mutations modify Bim levels and sensitivity to TGF-β during intestinal adenoma development.

Gao W, Chan JY, Wong TS
Differential expression of long noncoding RNA in primary and recurrent nasopharyngeal carcinoma.
Biomed Res Int. 2014; 2014:404567 [PubMed] Article available free on PMC after 25/09/2015 Related Publications
BACKGROUND: Recent studies suggested that non-protein-coding genes are implicated in the tumorigenic process of nasopharyngeal carcinoma (NPC). In the present study, we aimed to identify the differentially expressed long noncoding RNA (lncRNA) using data available in the public domain.
METHODS: Microarray data set GSE12452 was reannotated with ncFANs. Real-time quantitative PCR was used to quantify and validate the identified lncRNAs in NPC.
RESULTS: In primary NPC, upregulation of lnc-C22orf32-1, lnc-AL355149.1-1, and lnc-ZNF674-1 was observed. High levels of lnc-C22orf32-1 and lnc-AL355149.1-1 were significantly associated with the male patients. In addition, increased expression of lnc-C22orf32-1 and lnc-ZNF674-1 was associated with advanced tumor stages. Recurrent NPC displayed a distinctive lncRNA expression pattern. lnc-BCL2L11-3 was significantly increased in the recurrent NPC tissues. In addition, significant reduction of lnc-AL355149.1-1 and lnc-ZNF674-1 was observed in the recurrent NPC tissues.
CONCLUSIONS: Our results demonstrated that it is feasible to identify the differentially expressed lncRNA in the microarray dataset by functional reannotation. The association of lncRNA with gender and tumor size implicated that lncRNA possibly plays a part in the pathogenesis of primary NPC. Further, the distinctive lncRNA identified in the recurrent NPC may reveal a distinctive development mechanism underlying tumor recurrence.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BCL2L11, Cancer Genetics Web: http://www.cancer-genetics.org/BCL2L11.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999