DNMT1

Gene Summary

Gene:DNMT1; DNA methyltransferase 1
Aliases: AIM, DNMT, MCMT, CXXC9, HSN1E, ADCADN, m.HsaI
Location:19p13.2
Summary:This gene encodes an enzyme that transfers methyl groups to cytosine nucleotides of genomic DNA. This protein is the major enzyme responsible for maintaining methylation patterns following DNA replication and shows a preference for hemi-methylated DNA. Methylation of DNA is an important component of mammalian epigenetic gene regulation. Aberrant methylation patterns are found in human tumors and associated with developmental abnormalities. Variation in this gene has been associated with cerebellar ataxia, deafness, and narcolepsy, and neuropathy, hereditary sensory, type IE. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:DNA (cytosine-5)-methyltransferase 1
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DNMT1 (cancer-related)

Tong D, Liang YN, Stepanova AA, et al.
Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.
Tumour Biol. 2017; 39(2):1010428317691010 [PubMed] Related Publications
Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p < 0.001) and RAB11FIP3 ( r = 0.165, p = 0.005) expression. The multivariate Cox proportional hazard model analysis demonstrated that the expression of Eps15 homology domain 1 alone is a significant prognostic marker of breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain 1 has a tumor suppressor function, and the combined marker of Eps15 homology domain 1/phosphorylation of epithelial growth factor receptor expression was identified as a better prognostic marker in breast cancer diagnosis. Furthermore, RAB11FIP3 combines with Eps15 homology domain 1 to promote the endocytosis recycling of phosphorylation of epithelial growth factor receptor.

Wieczorek E, Jablonowski Z, Tomasik B, et al.
Different Gene Expression and Activity Pattern of Antioxidant Enzymes in Bladder Cancer.
Anticancer Res. 2017; 37(2):841-848 [PubMed] Related Publications
The aim of this study was to evaluate the possible role in and contribution of antioxidant enzymes to bladder cancer (BC) etiology and recurrence after transurethral resection (TUR). We enrolled 40 patients with BC who underwent TUR and 100 sex- and age-matched healthy controls. The analysis was performed at diagnosis and recurrence, taking into account the time of recurrence. Gene expression of catalase (CAT), glutathione peroxidase 1 (GPX1) and manganese superoxide dismutase (SOD2) was determined in peripheral blood leukocytes. The activity of glutathione peroxidase 3 (GPX3) was examined in plasma, and GPX1 and copper-zinc containing superoxide dismutase 1 (SOD1) in erythrocytes. SOD2 and GPX1 expression and GPX1 and SOD1 activity were significantly higher in patients at diagnosis of BC in comparison to controls. In patients who had recurrence earlier than 1 year from TUR, CAT and SOD2 expression was lower (at diagnosis p=0.024 and p=0.434, at recurrence p=0.022 and p=0.010), while the GPX1 and GPX3 activity was higher (at diagnosis p=0.242 and p=0.394, at recurrence p=0.019 and p=0.025) compared to patients with recurrence after 1 year from TUR. This study revealed that the gene expression and activity of the antioxidant enzymes are elevated in blood of patients with BC, although a low expression of CAT might contribute to the recurrence of BC, in early prognosis.

Santi R, Rapizzi E, Canu L, et al.
Potential Pitfalls of SDH Immunohistochemical Detection in Paragangliomas and Phaeochromocytomas Harbouring Germline SDHx Gene Mutation.
Anticancer Res. 2017; 37(2):805-812 [PubMed] Related Publications
BACKGROUND/AIM: Germline mutations in any of the succinate dehydrogenase (SDH) genes result in destabilization of the SDH protein complex and loss of SDHB expression at immunohistochemistry. SDHA is lost together with SDHB in SDHA-mutated tumours, but its expression is retained in tumours with other SDH mutations. We investigated whether SDHA/SDHB immunohistochemistry is able to identify SDH-related tumours in a retrospective case series of phaeochromocytomas (PCCs) and paragangliomas (PGLs).
MATERIALS AND METHODS: SDHA and SDHB immunostaining was performed in 13 SDH gene-mutated tumours (SDHB: n=3; SDHC: n=1; SDHD: n=9) and 16 wild-type tumours. Protein expression by western blot analysis and enzymatic activity were also assessed.
RESULTS: Tumours harbouring SDH gene mutations demonstrated a significant reduction in enzymatic activity and protein expression when compared to wild-type tumours. SDHB immunostaining detected 76.9% of SDH mutated PCCs/PGLs (3/3 SDHB-mutated samples; 1/1 SDHC-mutated sample; 6/9 SDHD-mutated samples). In three SDHD-related tumours with the same mutation (p.Pro81Leu), positive (n=2) or weakly diffuse (n=1) SDHB staining was observed. All wild-type PCCs/PGLs exhibited SDHB immunoreactivity, while immunostaining for SDHA was positive in 93.8% cases and weakly diffuse in one (6.2%). SDHA protein expression was preserved in all tumours with mutations.
CONCLUSION: SDHA and SDHB immunohistochemistry should be interpreted with caution, due to possible false-positive or false-negative results, and ideally in the setting of quality assurance provided by molecular testing. In SDHD mutation, weak non-specific cytoplasmic staining occurs commonly, and this pattern of staining can be difficult to interpret with certainty.

Shirai Y, Shiba H, Haruki K, et al.
Preoperative Platelet-to-Albumin Ratio Predicts Prognosis of Patients with Pancreatic Ductal Adenocarcinoma After Pancreatic Resection.
Anticancer Res. 2017; 37(2):787-793 [PubMed] Related Publications
BACKGROUND: The aim of this study was to evaluate a novel prognostic value of preoperative platelet-to-albumin ratio (PAR) in patients resected for pancreatic cancer.
PATIENTS AND METHODS: A total of 107 patients who underwent pancreatic resection for pancreatic cancer were studied. The patients were divided into two groups as PAR ≥46.4×10(3) or <46.4×10(3) Survival data were analyzed using the log-rank test for univariate analysis and Cox proportional hazards for multivariate analysis.
RESULTS: The PAR was a significant prognostic index on univariate analysis for disease-free survival (DFS) and overall survival (OS). The PAR retained its significance on multivariate analysis for OS (hazard ratio(HR)=2.344, 95% confidence interval(CI)=1.188-4.624, p=0.014) along with tumor differentiation and nodal involvement. PAR was a significant independent prognostic index for poor DFS on multivariate analysis (HR=1.971, 95% CI=1.128-3.444, p=0.017).
CONCLUSION: The preoperative PAR is a novel significant independent prognostic index for DFS and OS in patients after pancreatic resection with curative intent.

Chen YL, Huang WC, Yao HL, et al.
Down-regulation of RASA1 Is Associated with Poor Prognosis in Human Hepatocellular Carcinoma.
Anticancer Res. 2017; 37(2):781-785 [PubMed] Related Publications
BACKGROUND/AIM: RASA1 (p120RasGAP), encodes Ras GTPase-activating protein 1 and, is a potent tumor suppressor gene that is frequently inactivated in several human cancer types. However, its precise role in hepatocellular carcinoma (HCC) has been blurred.
MATERIALS AND METHODS: We hypothesized that RASA1 plays a crucial role in tumor pathogenesis and progression of HCC. RASA1 expression levels were analyzed in 226 cases of HCC by immunohistochemistry.
RESULTS: It was found that 38.68% (41/106) of the high-grade HCC samples and 54.17% (65/120) of the low-grade HCC samples expressed RASA1 protein. The difference between RASA1 expression in high-grade and low-grade HCC was statistically significant (p=0.02). Additionally, RASA1 high expression was inversely associated with larger tumor size (p<0.001). Although RASA1 is known as a tumor suppressor, its role in overall survival (OS) in HCC is unclear. Kaplan-Meier survival analysis showed that patients with low level of RASA1 expression correlated with a significantly poorer survival compared to those with high level of RASA1 expression.
CONCLUSION: These data support that RASA1 could serve as an independent prognostic marker for HCC patients.

Torkildsen S, Brunetti M, Gorunova L, et al.
Rearrangement of the Chromatin Organizer Special AT-rich Binding Protein 1 Gene, SATB1, Resulting from a t(3;5)(p24;q14) Chromosomal Translocation in Acute Myeloid Leukemia.
Anticancer Res. 2017; 37(2):693-698 [PubMed] Related Publications
BACKGROUND/AIM: New chromosomal aberrations continue to be reported in acute myeloid leukemias (AML). The addition of more cases with the same genetic characteristics would establish an acquired aberration as a recurrent change, help determine its prognostic significance, and can provide insight into the mechanisms of leukemogenesis in patients with these rare abnormalities.
CASE REPORT: RNA-sequencing was performed on a patient with AML with the bone marrow karyotype 46,XY,t(3;5)(p24;q14)[5]/46,XY[10]. The translocation resulted in fusion of the SATB homeobox 1 gene (SATB1) (3p24) with an expression sequence tag with accession number BG503445 (5q14). The SATB1-BG503445 transcript may code for a SATB1 protein that would lack the C-terminal DNA-binding homeodomain.
CONCLUSION: The present study is the first to demonstrate rearrangement and disruption of SATB1 in AML. Rearrangements of chromosome band 3p24 were reported in 24 additional AMLs but not in known leukemia-specific chromosomal abnormalities. Further studies are needed to determine whether SATB1-BG503445 or other aberrations of SATB1 are recurrent in AML.

Galanopoulos M, Papanikolaou IS, Zografos E, et al.
Comparative Study of Mutations in Single Nucleotide Polymorphism Loci of KRAS and BRAF Genes in Patients Who Underwent Screening Colonoscopy, With and Without Premalignant Intestinal Polyps.
Anticancer Res. 2017; 37(2):651-657 [PubMed] Related Publications
AIM: Our aim was to perform a comparison study of the mutation rate of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), and v-Raf murine sarcoma viral oncogene homolog-B (BRAF) genes between blood-based cell-free DNA (cfDNA), and tissue sample biopsies in individuals undergoing screening colonoscopy.
MATERIALS AND METHODS: All specimens were collected from January 2015 to January 2016. A total of 92 blood samples and colonic biopsy specimens were collected from healthy individuals with no polyps undergoing screening colonoscopy (group A, n=35), patients with colorectal cancer (group B, n=27), and patients with neoplastic intestinal polyps (group C, n=30). Peripheral blood was collected from each patient and a focal tissue biopsy was conducted.
RESULTS: We only found a limited statistically significant difference (p=0.046) in the mutation analysis for codon 12 of the KRAS gene when we compared tissue biopsies from patients in group B to those from group C. In the blood samples, only the rate of mutation in codon 12 of the KRAS gene in samples of group B was significantly higher than that in group A (p=0.013).
CONCLUSION: Blood cfDNA may be a promising tool in CRC screening as it may discriminate patients with CRC compared to healthy individuals and those with colonic polyps, even though it does not appear useful in predicting the presence of colonic polyps.

Ryu SH, Heo SH, Park EY, et al.
Selumetinib Inhibits Melanoma Metastasis to Mouse Liver via Suppression of EMT-targeted Genes.
Anticancer Res. 2017; 37(2):607-614 [PubMed] Related Publications
AIM: We investigated the therapeutic effects of a mitogen-activated protein (MEK) inhibitor, selumetinib, in a hepatic melanoma metastasis model and studied its possible mechanism of action.
MATERIALS AND METHODS: Melanoma cell lines were exposed to selumetinib under different experimental conditions. We established a mouse model of liver metastasis and treated mice orally with vehicle or selumetinib and then evaluated metastasis progress.
RESULTS: Growth inhibition was observed in melanoma cells as a consequence of G1-phase cell-cycle arrest and the subsequent induction of apoptosis in a dose- and time-dependent manner. Mice with established liver metastases that were treated with selumetinib exhibited significantly less tumor progression than vehicle-treated mice. c-Myc expression in metastasized liver tissues were suppressed by selumetinib. Moreover, oral treatment with selumetinib modulated expression of epithelial-to-mesenchymal transition- and metastasis-related genes, including integrin alpha-5 (ITGA5), jagged 1 (JAG1), zinc finger E-box-binding homeobox 1 (ZEB1), NOTCH, and serpin peptidase inhibitor clade E (SERPINE1).
CONCLUSION: We established a mouse model of hepatic metastasis using a human melanoma cell line, such models are essential in elucidating the therapeutic effects of anti-metastatic drugs. Our data suggest the possibility that selumetinib presents a new strategy to treat liver metastasis in patients with melanoma by suppressing epithelial-to-mesenchymal transition-related genes.

Agosto-Arroyo E, Isayeva T, Wei S, et al.
Differential Gene Expression in Ductal Carcinoma In Situ of the Breast Based on ERBB2 Status.
Cancer Control. 2017; 24(1):102-110 [PubMed] Related Publications
BACKGROUND: The molecular signature of ductal carcinoma in situ (DCIS) in the breast is not well understood. Erb-b2 receptor tyrosine kinase 2 (ERBB2 [formerly known as HER2/neu]) positivity in DCIS is predictive of coexistent early invasive breast carcinoma. The aim of this study is to identify the gene-expression signature profiles of estrogen receptor (ER)/progesterone receptor (PR)-positive, ERBB2, and triple-negative subtypes of DCIS.
METHODS: Based on ER, PR, and ERBB2 status, a total of 18 high nuclear grade DCIS cases with no evidence of invasive breast carcinoma were selected along with 6 non-neoplastic controls. The 3 study groups were defined as ER/PR-positive, ERBB2, and triple-negative subtypes.
RESULTS: A total of 49 genes were differentially expressed in the ERBB2 subtype compared with the ER/PR-positive and triple-negative groups. PROM1 was overexpressed in the ERBB2 subtype compared with ER/PR-positive and triple-negative subtypes. Other genes differentially expressed included TAOK1, AREG, AGR3, PEG10, and MMP9.
CONCLUSIONS: Our study identified unique gene signatures in ERBB2-positive DCIS, which may be associated with the development of invasive breast carcinoma. The results may enhance our understanding of the progression of breast cancer and become the basis for developing new predictive biomarkers and therapeutic targets for DCIS.

Gu HF, Mou M, Liang ZG, et al.
The association between paraoxonase 1 gene polymorphisms and polycystic ovarian syndrome.
Cell Mol Biol (Noisy-le-grand). 2016; 62(14):44-47 [PubMed] Related Publications
Some studies investigated the association of paraoxonase 1 (PON1) polymorphisms with polycystic ovarian syndrome (PCOS) risk. However, the result was still inconsistent. The aim of this study was to investigate whether there is an association between the PON1 polymorphisms and PCOS risk. Electronic databases, such as PubMed, EMBASE, and China National Knowledge Infrastructure (CNKI) databases, were searched for identification of the studies. The associations between PON1 polymorphisms and PCOS risk was quantified using ORs with 95% CIs. A total of 8 eligible studies with 2272 cases and 1811 controls were included in this meta-analysis. PON1 Leu55Met polymorphism was associated with a significantly increased risk of PCOS (OR=1.31; 95%CI, 1.10-1.55). However, no association was found in Asians and Caucasians (Table 2). We also found that PON1 Q192R polymorphism was associated with a significantly increased risk of PCOS (OR=1.81; 95%CI, 1.17-2.82). Additionally, this polymorphism increased PCOS risk in Asians (OR=1.26; 95%CI, 1.13-1.41). Furthermore, PON1 C108T polymorphism showed increased PCOS risk (OR=1.46; 95%CI, 1.08-1.97). No association between this polymorphism and PCOS risk was found in Asians and Caucasians. In conclusion, this meta-analysis suggested that PON1 polymorphisms were associated with PCOS risk.

Hsieh R, Nico MM, Camillo CM, et al.
Mutational Status of NRAS and BRAF Genes and Protein Expression Analysis in a Series of Primary Oral Mucosal Melanoma.
Am J Dermatopathol. 2017; 39(2):104-110 [PubMed] Related Publications
Primary oral mucosal melanoma is an extremely rare and aggressive tumor arising from melanocytes located in the mucosal epithelium of the oral cavity. Although malignant melanoma of oral mucosa shares some clinical features with its cutaneous counterpart, it has been associated with a worst prognosis; its etiopathogenesis are still only partially unraveled as there is no influence of UV radiation. It is known that the mitogen-activated protein kinase pathway mediates cellular responses to growth signals and its activation is an important phenomenon in melanoma. The aim of this study was to evaluate NRAS and BRAF genes, both components of mitogen-activated protein kinase molecular pathway, and compare with their protein expression. Point mutations of NRAS (codons 12, 13, and 61) and BRAF (codon 600) were screened by pyrosequencing method, and its results were associated to the protein expression of RAS and BRAF performed by immunohistochemistry. The authors observed mutation in BRAF 600 (3/14), NRAS codons 12 and 13 (2/14), and NRAS codon 61 (2/8). One case showed positive RAS protein expression, but no mutation was observed. Twelve in 14 cases showed positive BRAF protein expression: 3 cases showed BRAF mutation; 2 cases showed NRAS codon 61 mutation; 2 cases showed NRAS codons 12 and 13 mutation but not simultaneously. Although NRAS and BRAF mutation frequency and RAS protein expression are low, BRAF protein expression was intense; probably, NRAS and BRAF mutations are independent events and alternative molecular mechanisms in the primary oral mucosal melanoma tumorigenesis.

Kim GJ, Lee JH, Lee DH
Clinical and prognostic significance of Merkel cell polyomavirus in nonsmall cell lung cancer.
Medicine (Baltimore). 2017; 96(3):e5413 [PubMed] Free Access to Full Article Related Publications
Recently, an association between Merkel cell polyomavirus (MCPyV) and epidermal growth factor receptor (EGFR) mutations in nonsmall cell lung cancer (NSCLC) was reported. However, the underlying carcinogenic effects and the prognosis related to MCPyV are still unclear. The aim of this study was to clarify the incidence and prognosis related to MCPyV infections in NSCLC.Tissue samples from 167 NSCLC patients (92 with squamous cell carcinomas [SCCs] and 75 with adenocarcinomas) were analyzed for the presence of MCPyV and EGFR mutations. Clinicopathological characteristics, disease-free survival rate, and overall survival rate were assessed with respect to MCPyV.MCPyV DNA was detected in 30 patients (18.0%) out of 167 patients, and EGFR mutations were found in 31 out of 127 patients (24.4%). EGFR mutations were more frequently detected in MCPyV-positive patients than in MCPyV-negative patients; however, this did not reach statistical significance (P = 0.075). There was no difference in overall survival between patients with and without MCPyV infections. The disease-free survival rate of patients with pN0 stage, SCC, or EGFR mutations was lower for patients with MCPyV than without MCPyV (P = 0.036, 0.042, and 0.050, respectively).Although the prevalence of MCPyV infection was relatively low, the presence of MCPyV DNA was significantly correlated with cancer prognosis in subgroups of NSCLC patients. These results suggest that MCPyV may be partly associated with pathogenesis and prognosis in some cases of NSCLC.

Guo YL, Shan BE, Guo W, et al.
Aberrant methylation of DACT1 and DACT2 are associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma.
J Biomed Sci. 2017; 24(1):6 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The DACT (Dishevelled-associated antagonist of β-catenin) family of scaffold proteins may play important roles in tumorigenesis. However, the epigenetic changes of DACT1, 2, 3 and their effect on esophageal squamous cell carcinoma (ESCC) have not been investigated so far. The aim of this study was to investigate the promoter methylation and expression of DACT family, in order to elucidate more information on the role of DACT with regard to the progression and prognosis of ESCC.
METHODS: MSP and BGS methods were respectively applied to examine the methylation status of DACT; RT-PCR, Western blot and immunohistochemistry methods were respectively used to determine the mRNA and protein expression of DACT; MTT, Colony-formation and Wound-healing assay were performed to assess the effect of DACT1 and DACT2 on proliferation and migration of esophageal cancer cells.
RESULTS: Frequent reduced expression of DACT1, DACT2 and DACT3 were found in esophageal cancer cell lines and the expression levels of DACT1 and DACT2 were reversed by 5-Aza-Dc. Decreased mRNA and protein expression of DACT1 and DACT2 were observed in ESCC tumor tissues and were associated with the methylation status of transcription start site (TSS) region. The hypermethylation of CpG islands (CGI) shore region in DACT1 was observed both in tumor and corresponding adjacent tissues but wasn't related to the transcriptional inhibition of DACT1. The methylation status of TSS region in DACT1 and DACT2 and the protein expression of DACT2 were independently associated with ESCC patients' prognosis.
CONCLUSIONS: The TSS region hypermethylation may be one of the main mechanisms for reduced expression of DACT1 and DACT2 in ESCC. The simultaneous methylation of DACT1 and DACT2 may play important roles in progression of ESCC and may serve as prognostic methylation biomarkers for ESCC patients.

Cacan E
Epigenetic-mediated immune suppression of positive co-stimulatory molecules in chemoresistant ovarian cancer cells.
Cell Biol Int. 2017; 41(3):328-339 [PubMed] Related Publications
The immunological response against cancer is a critical balance between immune-activating and immune-suppressing mechanisms. Ovarian cancer creates a suppressive microenvironment to escape immune elimination; however, the molecular mechanisms are poorly understood, and it is unclear whether chemotherapeutic drugs exert an immunoreactive or immunosuppressive effect on the tumor microenvironment. 4-1BB ligand (4-1BBL/CD157) and OX-40 ligand (OX-40L/CD252) are important regulators of effector cytotoxic T-cells activity. This study demonstrates that expression of positive co-stimulatory molecules, OX-40L and 4-1BBL, is suppressed while expression of immunosuppressive molecule programmed death ligand-1 (PD-L1/CD274) is enhanced in chemoresistant cells compared to parental chemosensitive ovarian cancer cells. Here, the molecular mechanisms of silencing of OX-40L and 4-1BBL expression were investigated in chemoresistant A2780-AD ovarian cancer cells. The suppression of OX-40L and 4-1BBL are due to DNA hypermethylation and histone deacetylation, two important mechanisms that contribute to gene silencing during cancer progression. We identify important epigenetic regulators, histone deacetylase 1/3 (HDAC1/HDAC3) and DNA methyltransferase 1 (DNMT1), that exhibit aberrant association with OX-40L and 4-1BBL promoters in chemoresistant ovarian cancer cells. Knockdown of HDAC1 or DNMT1 expression, and pharmacological inhibition of DNMT or HDAC enzymatic activity, significantly increase OX-40L and 4-1BBL expression in chemoresistant cells. This study suggests that loss of histone acetylation and accumulation of DNA methylation correlates with suppressed expression of OX-40L and 4-1BBL in chemoresistant ovarian cancer cells. This study marks the first report of the regulation of these two molecules by histone deacetylation and DNA methylation in chemoresistant ovarian cancer cells.

Dang YZ, Zhang Y, Li JP, et al.
High VEGFR1/2 expression levels are predictors of poor survival in patients with cervical cancer.
Medicine (Baltimore). 2017; 96(1):e5772 [PubMed] Free Access to Full Article Related Publications
The aim of the study to evaluate the prognostic significance of vascular endothelial growth factor receptor 1 and 2 (VEGFR1/2) expression levels and to correlate these levels with clinicopathological parameters in patients with cervical cancer.Forty-two patients with International Federation of Gynecology and Obstetrics Stage IIB-IVB cervical cancer were analyzed between January 2011 and December 2012. RNA expression levels of VEGFR1/2 were assessed by branched DNA-liquidchip technology and immunohistochemistry. Associations between RNA expression levels, important clinicopathological parameters, and patient survival were statistically evaluated.Higher VEGFR1/2 expression levels were predictive of poor overall survival (P = 0.009 and P = 0.024, respectively). Patients with higher VEGFR1 expression levels were associated with poorer progression-free survival than those with lower VEGFR1 expression levels (P = 0.043). In addition, patients with higher VEGFR1 expression levels were more likely to develop distant metastases than those with lower VEGFR1 expression levels (P = 0.049). Higher VEGFR2 expression levels were associated with larger tumor size (P = 0.037).VEGFR1/2 expression levels were prognostic factors for patients with cervical cancer. Higher VEGFR1/2 expression levels were also predictive of poor overall survival.

Schaefer T, Satzger I, Gutzmer R
Clinics, prognosis and new therapeutic options in patients with mucosal melanoma: A retrospective analysis of 75 patients.
Medicine (Baltimore). 2017; 96(1):e5753 [PubMed] Free Access to Full Article Related Publications
Mucosal melanomas represent a rare entity with different risk factors and molecular features compared to cutaneous melanomas. They arise most commonly from mucosal surfaces in the head/neck region, the female genital tract (FGT) and the anorectal region. The aim of this study was to evaluate clinics, prognosis, and treatment options of patients with mucosal melanoma, in particular with regard to different primary sites.We retrospectively analyzed 75 patients with mucosal melanomas diagnosed in the years 1993 to 2015 in our department. The primary melanomas were located in the head/neck region (n = 32), the FGT (n = 24), and the anorectal region (n = 19).The median age of the patients was 66 years. At initial diagnosis the primary melanoma was not completely resectable in 11 (15%) patients, 18 (24%) patients had regional lymph node metastases, and 7 (9%) patients distant metastases. During follow-up, 22 (29%) patients suffered from a local recurrence, in particular patients with primary melanoma in the head/neck region without postoperative radiotherapy. By multivariate analysis location of the primary melanoma in the head/neck area or anorectal region and presence of metastases at time of diagnosis represented poor prognostic factors for recurrence-free survival. In 62 tested individuals 7 KIT mutations were found, 2 BRAF mutations in 57 tested patients. Four patients received targeted therapies, 14 checkpoint inhibitors, 4 (1/1 on vemurafenib, 1/7 on ipilimumab, and 2/7 on PD-1 inhibitors) patients showed responses of more than 100 days duration.Mucosal melanomas are often locally advanced or metastatic at initial diagnosis, thus they require extensive staging procedures. The high rate of local recurrences in the head/neck region can be significantly reduced by postoperative radiotherapy. For the potential use of medical treatment a mutation analysis for KIT and BRAF genes should be performed. The use of new immunologic and targeted therapies has to be further evaluated.

Akbarzadeh M, Rahbarghazi R, Nabat E, et al.
The impact of different extracellular matrices on melatonin effect in proliferation and stemness properties of ovarian cancer cells.
Biomed Pharmacother. 2017; 87:288-295 [PubMed] Related Publications
AIM: Endogenous melatonin has numerous physiological roles on modulating the function of different organs. Recent studies revealed oncostatic and protective effects of this molecule on tumor development. In this study, we examined the impact of melatonin and key underlying mechanisms on stemness, morphology, invasiveness and viability of SKOV3 ovarian cancer cells in different types of extracellular matrix.
METHODS: Cell viability was evaluated by MTT Assay. Colony-forming assay was performed by seeding 4×10(3) cells on different matrices in six well-plate. The percentage of cancer stem like cells was determined by flow cytometric assay after applying antibodies against stemness markers, CD133 and CD44. Different types of extracellular matrix including fibronectin, gelatin, collagen and matrigel were applied to incubate the cells in the presence of melatonin. Downstream gene expressions including VEGF and E-cadherin were determined by Real-time PCR.
RESULTS: Melatonin (0.1mM) decreased the percentage of viable cells up to 61.79±8.2% (p<0.05). Colony formation assay revealed the significant impact of melatonin in inhibition of colony formation in these cells. The maximum effect was shown in the cells incubated with melatonin on gelatin (p<0.05). Identification of stemness markers showed that applying matrigel caused significant increase in the percentage of cancer stem like cells compared to other types of extracellular matrix (p<0.05). However melatonin slightly diminished the number of stem cell like cells in all incubated matrices. Our results from gene expression assays revealed that melatonin induced a marked increase in E-cadherin along with decrease in VEGF expression levels (p<0.05).
CONCLUSION: Our results suggest that interaction between ovarian cancer cells and neighboring matrices determines the subsequent anti invasive activities of melatonin.

Zhang B, Zhang W, Yan L, Wang D
The association between MTHFR gene C677T polymorphism and ALL risk based on a meta-analysis involving 17,469 subjects.
Clin Chim Acta. 2017; 466:85-92 [PubMed] Related Publications
BACKGROUND: The methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism is closely related to the acute lymphoblastic leukaemia (ALL) indicated by many previous epidemiologic studies. However, their conclusions were still conflicting.
METHODS: Our aim is to evaluate their associations using a more comprehensive updated meta-analysis. Electronic searches were conducted to select published studies prior to February, 2016.
RESULTS: Totally, 39 case-control studies including 6551 ALL cases and 10,918 controls were selected in current meta-analysis. The association was detected significantly between MTHFR C677T polymorphism and ALL reducing susceptibility.
CONCLUSIONS: Our results indicate that the MTHFR C677T polymorphism may be a promising ALL biomarker and studies to explore the protein levels of the variants and their functional role are required for the definitive conclusions.

El Hadi H, Abdellaoui-Maane I, Kottwitz D, et al.
Development and evaluation of a novel RT-qPCR based test for the quantification of HER2 gene expression in breast cancer.
Gene. 2017; 605:114-122 [PubMed] Related Publications
Accurate measurement of Human epidermal growth factor receptor (HER2) gene expression is central for breast or stomach cancer therapy orientation and prognosis. The current standards testing methods for HER2 expression are immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). In the current study, we explored the use of quantitative real time reverse transcription-PCR (RT-qPCR) as a potential method for the accurate relative quantification of the HER2 gene using formalin fixed paraffin embedded (FFPE) breast cancer biopsy samples. The main aim of the current study is to measure the level of concordance of RT-qPCR based quantification of HER2 overexpression with both IHC and FISH. Accordingly, an endogenous control gene (ECG) is required for this relative quantification and should ideally be expressed equivalently across tested samples. Stably expressed ECGs have been selected from a panel of seven genes using GenEx V6 software which is based on geNorm and NormFinder and statistical methods. Quantification of HER2 gene expression was performed by our RT-qPCR-based test and compared to the results obtained by both IHC and FISH methods. HER2 gene quantification using RT-qPCR test was normalized using the two ECGs (RPL30 and RPL37A) that were successfully identified and selected from a panel of seven genes as the most stable and reliable ECGs. We evaluated a total of 216 FFPE tissue samples from breast cancer patients. The results obtained with RT-qPCR in the current study were compared to both IHC and FISH data collected for the same patients. In addition to an internal evaluation, an external evaluation of this assay was also performed in a recognized pathology center in Europe (Clinic Barcelona Hospital Universitari, Spain) using 116 FFPE breast cancer tissue samples. The results demonstrated a high concordance between RT-qPCR and either IHC (98%) or FISH (72%) methods. Accordantly, the overall concordance was 85%. To our knowledge, this is the first study using the specific combination of RPL30 and RPL37 as reference genes for an accurate HER2 gene quantification in FFPE biopsy samples. Although further clinical validation regarding evolution and therapeutic response using RT-qPCR for the quantification of HER2 expression are still needed, the present study constitutes definitely a factual element that the RT-qPCR based assay may constitute a valid complementary test to accurately measure HER2 expression for a better treatment orientation.

Laczmanska I, Skiba P, Karpinski P, et al.
Customized Array Comparative Genomic Hybridization Analysis of 25 Phosphatase-encoding Genes in Colorectal Cancer Tissues.
Cancer Genomics Proteomics. 2017; 14(1):69-74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: Molecular mechanisms of alterations in protein tyrosine phosphatases (PTPs) genes in cancer have been previously described and include chromosomal aberrations, gene mutations, and epigenetic silencing. However, little is known about small intragenic gains and losses that may lead to either changes in expression or enzyme activity and even loss of protein function.
MATERIALS AND METHODS: The aim of this study was to investigate 25 phosphatase genes using customized array comparative genomic hybridization in 16 sporadic colorectal cancer tissues.
RESULTS: The analysis revealed two unique small alterations: of 2 kb in PTPN14 intron 1 and of 1 kb in PTPRJ intron 1. We also found gains and losses of whole PTPs gene sequences covered by large chromosome aberrations.
CONCLUSION: In our preliminary studies using high-resolution custom microarray we confirmed that PTPs are frequently subjected to whole-gene rearrangements in colorectal cancer, and we revealed that non-polymorphic intragenic changes are rare.

Kim BA, Jee HG, Yi JW, et al.
Expression Profiling of a Human Thyroid Cell Line Stably Expressing the BRAFV600E Mutation.
Cancer Genomics Proteomics. 2017; 14(1):53-67 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: The BRAF(V600E) mutation acts as an initiator of cancer development in papillary thyroid carcinoma (PTC). Gene expression changes caused by the BRAF(V600E) mutation may have an important role in thyroid cancer development.
MATERIALS AND METHODS: To study genomic alterations caused by the BRAF(V600E) mutation, we made human thyroid cell lines that harbor the wild-type BRAF gene (Nthy/WT) and the V600E mutant-type BRAF gene (Nthy/V600E).
RESULTS: Flow cytometry and western blotting showed stable transfection of the BRAF gene. In functional experiments, Nthy/V600E showed increased anchorage-independent growth and invasion through Matrigel, compared to Nthy/WT. Microarray analysis revealed that 2,441 genes were up-regulated in Nthy/V600E compared to Nthy/WT. Gene ontology analysis showed that the up-regulated genes were associated with cell adhesion, migration, and the ERK and MAPK cascade, and pathway analysis showed enrichment in cancer-related pathways.
CONCLUSION: Our Nthy/WT and Nthy/V600E cell line pair could be a suitable model to study the molecular characteristics of BRAF(V600E) PTC.

Janiak M, Paskal W, Rak B, et al.
TIMP4 expression is regulated by miR-200b-3p in prostate cancer cells.
APMIS. 2017; 125(2):101-105 [PubMed] Related Publications
In prostate cancer TIMP4 expression level fluctuates with tumor progression. The mechanism and factors influencing its expression remain unclear. The aim of the study was to test the hypothesis on regulation of TIMP4 by microRNA-200b-3p. The levels of TIMP4 and miR-200b-3p expression were determined by real time PCR in 27 prostate carcinomas and eight benign prostatic hyperplasia samples. We found that miR-200b-3p positively correlated with TIMP4 expression in cancer samples (r = 0.46; p < 0.02). Moreover, mean miR-200b-3p level and TIMP4 expression were both higher in cancer tissues compared to benign prostatic hyperplasia samples (p > 0.05). Next, to test probable mechanisms of the regulation androgen-sensitive human prostate adenocarcinoma cells (LNCaP) were transfected with synthetic-miR-200b-3p or its synthetic antagonist. Modulation of miR-200b-3p in LNCaP cells had an impact on TIMP4 expression confirming the observation made in analyzed clinical samples. Two targets of miR-200b-3p: ZEB1 and ETS1 were investigated subsequently as potential regulators of TIMP4, however, no effect of their modulation on TIMP4 expression in LNCaP cells was found. Concluding, miR-200b-3p mediates regulation of TIMP4 expression in prostate cancer but exact mechanism needs to be investigated.

Merten L, Agaimy A, Moskalev EA, et al.
Inactivating Mutations of RB1 and TP53 Correlate With Sarcomatous Histomorphology and Metastasis/Recurrence in Gastrointestinal Stromal Tumors.
Am J Clin Pathol. 2016; 146(6):718-726 [PubMed] Related Publications
OBJECTIVES: Loss-of-function mutations in TP53 and CDKN2A have been found at varying frequencies in gastrointestinal stromal tumors (GISTs), while no mutations of RB1 have been reported to date. The aim of the current study was to determine the mutation frequency of TP53, RB1, and CDKN2A in GISTs.
METHODS: A cohort of 83 primary untreated GISTs was analyzed for mutations in TP53, RB1, and CDKN2A by massive parallel sequencing. Tumors with mutations in TP53 and RB1 were analyzed by fluorescence in situ hybridization for the corresponding gene loci.
RESULTS: Two GISTs harbored inactivating mutations in RB1, and two other GISTs displayed inactivating mutations in TP53 All four tumors were KIT mutant high-risk tumors with highly cellular sarcomatous histomorphology and variable combinations of plump spindle cells to epithelioid highly atypical cells and high mitotic activity. Three of these patients developed recurrent or metastatic disease, while the fourth patient showed tumor rupture intraoperatively. The combined overall frequency of TP53 and RB1 mutations was 13% considering high-risk or malignant GISTs.
CONCLUSIONS: TP53 and RB1 mutations seem to be restricted to high-risk/malignant GISTs and occur at an equal although relatively low frequency.

Sonohara F, Inokawa Y, Kanda M, et al.
Association of Inflammasome Components in Background Liver with Poor Prognosis After Curatively-resected Hepatocellular Carcinoma.
Anticancer Res. 2017; 37(1):293-300 [PubMed] Related Publications
BACKGROUND/AIM: Inflammasomes are multiprotein complexes that evoke key inflammatory cascades. The present study evaluated the influence of inflammasome component expression in non-tumorous tissue on postsurgical hepatocellular carcinoma (HCC) prognosis.
MATERIALS AND METHODS: The expressions of candidate genes were investigated using real-time quantitative reverse-transcription polymerase chain reaction in resected HCC cases. In order to identify potential prognostic factors, statistical analyses were performed for each gene.
RESULTS: The expression of nod-like receptor family, pyrin domain containing 3 (NLRP3), nod-like receptor family, CARD domain containing 4 (NLRC4), and absent in melanoma 2 (AIM2) was significantly higher in corresponding normal tissue (CN) compared to those in HCC. High expression of NLRP3, NLRC4, and caspase 1 (CASP1) in CN was significantly correlated with worse overall survival. Furthermore, multivariate analysis revealed that NLRP3 expression in CN greater than the median was an independent prognostic factor for poorer overall survival.
CONCLUSION: High expression of NLRP3, NLRC4, and CASP1 in background non-tumorous liver is significantly correlated with poor prognosis of patients after resection of HCC.

Santos MD, Silva C, Rocha A, et al.
Prognostic and Therapeutic Potential Implications of Genetic Variability in Prostaglandin E2 Pathway Genes in Rectal Cancer.
Anticancer Res. 2017; 37(1):281-291 [PubMed] Related Publications
AIM: To evaluate the prognostic significance and potential therapeutic implication of genetic variability in prostaglandin E2 pathway genes in patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT) followed by surgery.
MATERIALS AND METHODS: This cohort study included 167 patients with LARC, treated with nCRT followed by surgery. A total of 61 single nucleotide polymorphisms (SNPs) were characterized using the Sequenom platform through multiplex amplification followed by mass-spectometric product separation. Surgical specimens were classified according to Mandard tumor regression grade (TRG). The patients were divided as 'good responders' (Mandard TGR1-2) and 'poor responders' (Mandard TRG3-5). We examined prognostic value of polymorphisms studied to determine if they are related to Mandard response.
RESULTS: Mandard tumor response and rs17268122 in ATP binding cassette subfamily C member (ABCC4) gene were the only two parameters with independent prognostic significance for disease-free survival.
CONCLUSION: tagSNP ABCC4 rs17268122 appears to be a prognostic factor in LARC treated with nCRT and surgery, independently of response to nCRT. The screening of ABCC4 rs17268122 tagSNP and the Mandard tumor response in clinical practice may help to identify patients with different rectal cancer prognosis and contribute to an individualized therapeutic decision tree.

Nitta T, Koike H, Miyao T, et al.
YM155 Reverses Statin Resistance in Renal Cancer by Reducing Expression of Survivin.
Anticancer Res. 2017; 37(1):75-80 [PubMed] Related Publications
AIM: The purpose of the present study was to clarify whether treatment with YM155, a novel small-molecule inhibitor of survivin, reverses statin resistance in statin-resistant renal cell cancer (RCC).
MATERIALS AND METHODS: We induced simvastatin resistance in a renal clear cell carcinoma cell line (Caki-1-staR). In vitro and in vivo models were used to test the efficacy of YM155 and simvastatin.
RESULTS: Survivin gene expression was significantly stronger in Caki-1-staR cells than in its parent cells (Caki-1). In Caki-1-staR cells, YM155 significantly reduced expression of survivin gene and cell proliferation in a dose-dependent manner. Treatment with YM155 significantly reversed simvastatin resistance in Caki-1-staR cells. YM155 significantly inhibited the growth of Caki-1-staR tumors in a nude mouse tumor xenograft model. Furthermore, YM155 significantly enhanced the antitumor effects of simvastatin on Caki-1-staR tumors.
CONCLUSION: Our results indicate that inhibition of survivin by YM155 overcomes statin resistance in RCC cells.

Damaskos C, Valsami S, Kontos M, et al.
Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer.
Anticancer Res. 2017; 37(1):35-46 [PubMed] Related Publications
With a lifetime risk estimated to be one in eight in industrialized countries, breast cancer is the most frequent type of cancer among women worldwide. Patients are often treated with anti-estrogens, but it is common that some tumors develop resistance to therapy. The causation and progression of cancer is controlled by epigenetic processes, so there is an ongoing interest in research into mechanisms, genes and signaling pathways associating carcinogenesis with epigenetic modulation of gene expression. Given the fact that histone deacetylases (HDACs) have a great impact on chromatin remodeling and epigenetics, their inhibitors have become a very interesting field of research.
AIM: This review focused on the use of HDAC inhibitors as anticancer treatment and explains the mechanisms of therapeutic effects on breast cancer. We anticipate further clinical benefits of this new class of drugs, both as single agents and in combination therapy. Molecules such as suberoylanilide hydroxamic acid, trichostatin A, suberoylbis-hydroxamic acid, panobinostat, entinostat, valproic acid, sodium butyrate, SK7041, FTY720, N-(2-hydroxyphenyl)-2-propylpentanamide, Scriptaid, YCW1, santacruzamate A and ferrocenyl have shown promising antitumor effects against breast cancer. HDAC inhibitors consists an attractive field for targeted therapy against breast cancer. Future therapeutic strategies will include combination of HDAC inhibitors and chemotherapy or other inhibitors, in order to target multiple oncogenic signaling pathways. More trials are needed.

Gagliardi F, Narayanan A, Mortini P
SPARCL1 a novel player in cancer biology.
Crit Rev Oncol Hematol. 2017; 109:63-68 [PubMed] Related Publications
Matricellular proteins are secreted, nonstructural proteins, involved in the mediation of molecular interactions between cells and extracellular microenvironment. They include several, structurally unrelated, members and their homologs. Among these a particularly interesting one is SPARCL1 due to its potential interactions in tumor biology. SPARCL1 is a secreted glycoprotein, belonging to SPARC family of matricellular proteins. It is implicated in the regulation of cell adhesion, migration, and proliferation. SPARCL1 is expressed in physiological context, both during embryogenesis and in adult life during tissue remodeling. Its diverse expression pattern in different forms of human cancers has suggested it may play different roles in tumor biology, as both oncogene and tumor suppressor, based on tumor type. Aim of this review is to critically revise current knowledges about the role, played by SPARCL1, in physiological and pathological contexts and highlight its role as a key-gene in the regulation of tumor biology.

Pronina IV, Loginov VI, Burdennyy AM, et al.
DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression.
Gene. 2017; 604:1-8 [PubMed] Related Publications
The methylation of promoter CpG islands and the interaction between microRNAs (miRNAs) and messenger RNAs (mRNAs) of target genes are considered two crucial mechanisms for gene and pathway deregulation in malignant tumors. The aim of this study was to analyze the role of promoter methylation in altering the expression of 13 miRNAs that are associated with breast cancer (BC): miR-124, -125b, -127, -132, -137, -148a, -191, -193a, -203, -212, -34b, -375, -9. The role of methylation in the deregulation of these miRNAs has not been previously assessed in the representative set of BC samples. We used a set of 58 paired (tumor/normal) breast tissue samples and methylation-specific PCR to demonstrate significant aberrations in the methylation patterns of 9 miRNA genes. In particular, we observed hypermethylation of MIR-127, -132, and -193a, and hypomethylation of MIR-191 for the first time. Using quantitative PCR, we established a strong correlation between promoter methylation and expression levels for 12 miRNA genes (all except MIR-212); this finding demonstrates the functional importance of altered methylation patterns. We also performed a correlation analysis between expression levels of the 13 miRNAs and 5 cancer-associated genes, namely RASSF1(A), CHL1, APAF1, DAPK1, and BCL2, which were predicted as targets for these miRNAs, to investigate the impact of these miRNAs on these genes with key cellular functions in BC. Significant negative correlation was revealed for the following miRNA-mRNA pairs: miR-127-5p and DAPK1, miR-375 and RASSF1(A), and miR-124-3p and BCL2. Additionally, we also found a strong association between hypermethylation of MIR-127 and MIR-125b-1 and BC progression, particularly metastasis. Thus, our findings provide evidence for the significant role of methylation in the deregulation of 12 miRNA genes in BC, identify putative novel functional miRNA-mRNA pairs, and suggest MIR-127 and MIR-125b-1 hypermethylation to be potential biomarkers of BC metastasis.

Li S, Zhang H, Ning T, et al.
MiR-520b/e Regulates Proliferation and Migration by Simultaneously Targeting EGFR in Gastric Cancer.
Cell Physiol Biochem. 2016; 40(6):1303-1315 [PubMed] Related Publications
BACKGROUND: MicroRNAs (miRNAs) have been demonstrated to play a crucial role in tumorigenesis. Previous studies have shown that miR-520b/e acts as a tumor suppressor in several tumors. Other studies indicated that epidermal growth factor receptor (EGFR) is highly expressed in many tumors, and involved in the development of tumors, such as cell proliferation, migration, angiogenesis and apoptosis. However, the correlation of miRNAs and EGFR in gastric cancer (GC) has not been adequately investigated. Our aim was to explore the relationship.
METHODS: The expression levels of EGFR and miR-520b/e were examined by RT-PCR and Western blot. We also investigated the relationship between EGFR and miR-520b/e in GC cell lines by relevant experiments.
RESULTS: In this study, we found that miR-520b/e inhibits the protein expression of EGFR by directly binding with the 3'-untranslated region (3'-UTR). And it was shown that the down-regulation of miR-520b/e promotes cell proliferation and migration by negative regulation of the EGFR pathway, while over-expression of miR-520b/e inhibits these properties. In addition, the biological function of EGFR in GC cell lines was validated by silencing and over-expression assays respectively.
CONCLUSIONS: Taken together, our results demonstrate that miR-520b/e acts as a tumor suppressor by regulating EGFR in GC, and provide a novel marker and insight for the potential therapeutic target of GC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DNMT1, Cancer Genetics Web: http://www.cancer-genetics.org/DNMT1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999