TP53INP1

Gene Summary

Gene:TP53INP1; tumor protein p53 inducible nuclear protein 1
Aliases: SIP, Teap, p53DINP1, TP53DINP1, TP53INP1A, TP53INP1B
Location:8q22.1
Summary:-
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tumor protein p53-inducible nuclear protein 1
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (18)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • MicroRNAs
  • Stomach Cancer
  • Proto-Oncogene Proteins p21(ras)
  • Neoplastic Cell Transformation
  • Promoter Regions
  • Apoptosis
  • Breast Cancer
  • Oligonucleotide Array Sequence Analysis
  • Carrier Proteins
  • Gene Expression Profiling
  • Gene Silencing
  • Signal Transduction
  • Cell Survival
  • Tumor Suppressor Proteins
  • Cervical Cancer
  • Gene Expression
  • DNA Methylation
  • Nuclear Proteins
  • Cell Proliferation
  • Chromosome 8
  • 3' Untranslated Regions
  • Helicobacter Infections
  • Tissue Array Analysis
  • Liver Cancer
  • Biomarkers, Tumor
  • Microarray Analysis
  • Base Sequence
  • ZAP-70 Protein-Tyrosine Kinase
  • Cancer RNA
  • Down-Regulation
  • Transfection
  • Heat-Shock Proteins
  • RTPCR
  • Cancer Gene Expression Regulation
  • Cell Movement
  • Xenograft Models
  • Esophageal Cancer
  • Western Blotting
  • Apoptosis Regulatory Proteins
  • Pancreatic Cancer
  • RT-PCR
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TP53INP1 (cancer-related)

Wang Y, Lin G
TP53INP1 3'-UTR functions as a ceRNA in repressing the metastasis of glioma cells by regulating miRNA activity.
Biotechnol Lett. 2016; 38(10):1699-707 [PubMed] Related Publications
OBJECTIVES: To explore the effects of the competitive endogenous RNA (ceRNA) network between TP53INP1 and E-cadherin on the invasion and migration of glioma.
RESULTS: TP53INP1 and E-cadherin mRNA and protein were significantly overexpressed in normal brain tissues compared with glioma tissue specimens and correlated with the grades of glioma negatively. The expression of TP53INP1 and E-cadherin were correlated positively. Patients with higher TP53INP1 or E-cadherin expression had longer overall survival. Moreover, TP53INP1 3'-UTR inhibited glioma cell proliferation, invasion and proliferation; Furthermore, the 3'-UTRs of TP53INP1 and E-cadherin harboured seven identical miRNAs binding sites, and TP53INP1 3'-UTR could increase the expression of E-cadherin and decrease the expression of vimentin thus repressing the epithelial-mesenchymal transition (EMT). However, the coding sequence of TP53INP1 could not increase the expression of E-cadherin and the inhibitory effect on EMT of TP53INP1 3'-UTR was reversed by the siRNA against Dicer.
CONCLUSIONS: TP53INP1 3'-UTR could inhibit the EMT, thus hindering the migration and invasion of glioma via acting as a ceRNA for E-cadherin.

Stasikowska-Kanicka O, Wągrowska-Danilewicz M, Danilewicz M
Immunohistochemical Study EMT-Related Proteins in HPV-, and EBV-Negative Patients with Sinonasal Tumours.
Pathol Oncol Res. 2016; 22(4):781-8 [PubMed] Related Publications
Epithelial to mesenchymal transition (EMT) is a biological process in which the epithelial cells, transform to mesenchymal cells via multiple biochemical modifications. Immunohistochemical method was used to examine the expression of EMT-related proteins: Slug, E-cadherin and fibronectin, in 41 cases of sinonasal inverted papilloma (SIP), 33 cases of sinonasal squamous cell carcinoma (SNC), and 22 cases of normal mucosa as a control. In all cases negative viral status was previously confirmed using both in situ hybridization and immunohistochemical method. The immunoexpression of Slug and fibronectin were significantly increased in the SNC group as compared to SIPs and control cases. The immunoexpresssion of Slug was also higher in SIPs as compared to controls. The immunoexpression of E-cadherin was significantly lower in SNCs group as compared with SIPs and controls, but no statistically significant difference in E-cadherin immunoexpression was noted between SIPs and control cases. There were statistically significant negative correlations between immunoexpression of Slug vs E-cadherin, E-cadherin vs fibronectin and positive correlation between Slug vs fibronectin in SNC. Statistically significant correlation between Slug and fibronectin immunoexpression in SIPs was also found. In conclusion, our findings suggest that relationships between Slug, E-cadherin and fibronectin could potentially point to EMT in the sinonasal cancer. Lack of correlation between EMT-related proteins in tested SIPs could reflect a benign nature of those cases.

Tang Y, Zhan W, Cao T, et al.
CacyBP/SIP inhibits Doxourbicin-induced apoptosis of glioma cells due to activation of ERK1/2.
IUBMB Life. 2016; 68(3):211-9 [PubMed] Related Publications
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87. Overexpression of CacyBP/SIP obviously suppressed the DOX-induced cell apoptosis. On the contrary, silencing of CacyBP/SIP significantly promoted it. Further investigation indicated that inhibition of apoptosis by CacyBP/SIP was relevant to its nuclear translocation in response to the DOX treatment. Importantly, we found that the level of p-ERK1/2 in nuclei was related to the nuclear accumulation of CacyBP/SIP. Finally, the role of CacyBP/SIP was confirmed in vivo in a mouse model with the cell line stably silencing CacyBP/SIP. Taken together, our results suggest that CacyBP/SIP plays an important role in inhibiting apoptosis of glioma cells which might be mediated by ERK1/2 signaling pathway, which will provide some guidance for the treatment of glioma.

Wang W, Liu J, Wu Q
MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1.
Eur Rev Med Pharmacol Sci. 2016; 20(1):92-100 [PubMed] Related Publications
OBJECTIVE: This study aimed to investigate the role of miR-205 in radiosensitivity and autophagy of prostate cancer cells and to explore its regulative effect on TP53INP1.
MATERIALS AND METHODS: MiR-205 expression was compared in three prostate cancer cell lines (DU145, PC-3 and LNCaP) and one normal human prostate epithelial cell line (RWPE-1). The effect of irradiation-induced autophagy on radiosensitivity of the cancer cells and the effect of miR-205 on irradiation-induced autophagy were explored. The regulative effect of miR-205 on TP53INP1 and the function of this axis was further studied.
RESULTS: Ectopic expression of miR-205 substantially reduced the survival fraction of both DU145 and LNCaP cells to irradiation and inhibited irradiation-induced autophagy. Irradiation-induced autophagy acted as a protective mechanism in prostate cancer cells. TP53INP1 is a direct functional target of miR-205 in irradiation-induced autophagy and radiosensitivity regulation.
CONCLUSIONS: The miR-205/TP53INP1 mediated autophagy pathway might be an important molecular mechanism regulating radiosensitivity of prostate cancer cells and represents a potential therapeutic target for prostate cancer.

Fu C, Wan Y, Shi H, et al.
Expression and regulation of CacyBP/SIP in chronic lymphocytic leukemia cell balances of cell proliferation with apoptosis.
J Cancer Res Clin Oncol. 2016; 142(4):741-8 [PubMed] Related Publications
PURPOSE: Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, with incidence in Chinese populations also increasing. CLL involves an accumulation of abnormal B cells which result in dysregulation of cell proliferation and apoptosis rates. The calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) plays a pivotal role in tumorigenicity and cell apoptosis. Here, we investigated the function of CacyBP/SIP in CLL cell proliferation and apoptosis.
METHODS: CacyBP/SIP expression levels were measured in peripheral blood mononuclear cells from 23 Chinese CLL patients and three healthy donors by western blotting. Correlation analysis was performed to assess associations between CacyBP/SIP expression and clinical stage, chromosome abnormalities and zeta-chain-associated protein kinase 70 (ZAP-70) expression. We silenced CacyBP/SIP expression in MEC-1 cells using a lentivirus system and analyzed cell vitality, cell cycle and tumorigenicity. Apoptosis was also analyzed following the upregulation of CacyBP/SIP expression in MEC-1 cells.
RESULTS: Downregulation of CacyBP/SIP expression in CLL patients was negatively correlated with CLL clinical stage, but not with patient sex, age, del(13q14) or del(17q-) presence, or ZAP-70 expression. CacyBP/SIP silencing significantly enhanced cell proliferation and tumorigenicity. CacyBP/SIP silencing promoted accumulation of cells in S phase by upregulation of β-catenin, cyclin D1 and cyclin E, and downregulation of p21. Moreover, CacyBP/SIP overexpression facilitated CLL apoptosis through the activation of pro-caspase-3.
CONCLUSION: CacyBP/SIP is a useful indicator of CLL disease processes and plays an important role in sustaining the balance of cell proliferation and apoptosis.

Wang X, Wang L, Mo Q, et al.
A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis.
Oncol Rep. 2016; 35(1):518-23 [PubMed] Related Publications
Pancreatic cancer is a common malignancy whose prognosis and treatment of pancreatic cancer is extremely poor, with only 20% of patients reaching two years of survival. Previous findings have shown that the tumor suppressor p53 is involved in the development of various types of cancer, including pancreatic cancer. Additionally, p53 is able to activate TP53INP1 transcription by regulating several phenotypes of cancer cells. Using gain and loss-of-function assays, the aim of the present study was to examine the relationships between miR-19a/b and cancer development as well as potential underlying mechanisms. The results showed that miR-19a/b identified a positive feedback regulation of p53/TP53INP1 axis. Additionally, p53 upregulated the TP53INP1 level in pancreatic cancer cells. However, overexpressed miR-19a/b partially restored the TP53 function in the pancreatic cancer cells while miR-19a/b downregulated TP53INP1 protein by directly targeting 3'UTR of its mRNA at the post-transcriptional level. In addition, the patient tissues identified that the miR-19a/b level in pancreatic cancer tissues was conversely correlated with TP53 and TP53INP1 expression. The results provide evidence for revealing the molecular mechanism involved in the development of pancreatic cancer and may be useful in the identification of new therapeutic targets for pancreatic cancer.

Yamamoto K, Ito S, Hanafusa H, et al.
Uncovering Direct Targets of MiR-19a Involved in Lung Cancer Progression.
PLoS One. 2015; 10(9):e0137887 [PubMed] Free Access to Full Article Related Publications
Micro RNAs (miRNAs) regulate the expression of target genes posttranscriptionally by pairing incompletely with mRNA in a sequence-specific manner. About 30% of human genes are regulated by miRNAs, and a single miRNA is capable of reducing the production of hundreds of proteins by means of incomplete pairing upon miRNA-mRNA binding. Lately, evidence implicating miRNAs in the development of lung cancers has been emerging. In particular, miR-19a, which is highly expressed in malignant lung cancer cells, is considered the key miRNA for tumorigenesis. However, its direct targets remain underreported. In the present study, we focused on six potential miR-19a target genes selected by miRNA target prediction software. To evaluate these genes as direct miR-19a target genes, we performed luciferase, pull-down, and western blot assays. The luciferase activity of plasmids with each miR-19a-binding site was observed to decrease, while increased luciferase activity was observed in the presence of anti-miR-19a locked nucleic acid (LNA). The pull-down assay showed biotinylated miR-19a to bind to AGO2 protein and to four of six potential target mRNAs. Western blot analysis showed that the expression levels of the four genes changed depending on treatment with miR-19a mimic or anti-miR-19a-LNA. Finally, FOXP1, TP53INP1, TNFAIP3, and TUSC2 were identified as miR-19a targets. To examine the function of these four target genes in lung cancer cells, LK79 (which has high miR-19a expression) and A549 (which has low miR-19a expression) were used. The expression of the four target proteins was higher in A549 than in LK79 cells. The four miR-19a target cDNA expression vectors suppressed cell viability, colony formation, migration, and invasion of A549 and LK79 cells, but LK79 cells transfected with FOXP1 and TP53INP1 cDNAs showed no difference compared to the control cells in the invasion assay.

Nie G, Duan H, Li X, et al.
MicroRNA‑205 promotes the tumorigenesis of nasopharyngeal carcinoma through targeting tumor protein p53-inducible nuclear protein 1.
Mol Med Rep. 2015; 12(4):5715-22 [PubMed] Free Access to Full Article Related Publications
Nasopharyngeal carcinoma (NPC) is a common type of cancer in southern China, miRNAs have been shown to be involved in the tumorigenesis of multiple cancer types. The present study aimed to explore the potential role of miR‑205 in NPC. Reverse transcription quantitative polymerase chain reaction was used to determine the expression levels of miR‑205 in 20 fresh NPC specimens and 20 normal nasopharyngeal tissues. The function of miR‑205 in the proliferation, migration, invasion and apoptosis of NPC‑derived cells was detected by MTT assay, colony formation assay, wound healing assay, Transwell assay and flow cytometry. Furthermore, a target gene of miR‑205 was identified using the luciferase reporter assay. The expression of miR‑205 was increased in NPC tissues compared with that in normal tissues. Overexpression of miR‑205 was found to promote the proliferation, migration and invasion of NPC‑derived cells, while apoptosis was suppressed. Tumor protein p53-inducible nuclear protein 1 was identified as a target gene of miR‑205. Overall, the present study demonstrated that miR‑205 may function as an oncogene in NPC tumorigenesis.

Chiang IT, Wang WS, Liu HC, et al.
Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro.
Oncol Rep. 2015; 34(4):1853-74 [PubMed] Related Publications
Lung cancer is the most common cause of cancer mortality and new cases are on the increase worldwide. However, the treatment of lung cancer remains unsatisfactory. Curcumin has been shown to induce cell death in many human cancer cells, including human lung cancer cells. However, the effects of curcumin on genetic mechanisms associated with these actions remain unclear. Curcumin (2 µM) was added to NCI-H460 human lung cancer cells and the cells were incubated for 24 h. Total RNA was extracted from isolated cells for cDNA synthesis, labeling, microarray hybridization and flour‑labeled cDNA hybridized on chip. Localized concentrations of fluorescent molecules were detected and quantified using Expression Console software (Affymetrix) with default RMA parameters. GeneGo software was used for the key genes involved and their possible interaction pathways. The results showed that ~170 genes were significantly upregulated and 577 genes were significantly downregulated in curcumin‑treated cells. Specifically, the up‑ and downregulated genes included CCNE2, associated with DNA damage; ID3, associated with cell survival and 146 genes with a >2- to 3-fold change including the TP53INP1 gene, associated with DNA damage; CDC6, CDCA5, TAKMIP2, CDK14, CDK5, CDCA76, CDC25A, CDC5L and SKP2, associated with cell cycle; the CARD6, ID1 and ID2 genes, associated with cell survival and the BRMS1L, associated with cell migration and invasion. Additionally, 59 downregulated genes exhibited a >4-fold change, including the DDIT3 gene, associated with DNA damage; while 97 genes had a >3- to 4-fold change including the DDIT4 gene, associated with DNA damage; the CCPG1 gene, associated with cell cycle and 321 genes with a >2- to 3-fold including the GADD45A and CGREF1 genes, associated with DNA damage; the CCPG1 gene, associated with cell cycle, the TNFRSF10B, GAS5, TSSC1 and TNFRSF11B gene, associated with cell survival and the ARHAP29 and CADM2 genes, associated with cell migration and invasion. In conclusion, gene alterations provide information regarding the cytotoxic mechanism of curcumin at the genetic level and provide additional biomarkers or targets for the treatment of human lung cancer.

Saadi H, Seillier M, Carrier A
The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis.
Biochimie. 2015; 118:44-50 [PubMed] Related Publications
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.

Pang W, Su J, Wang Y, et al.
Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts.
Cancer Sci. 2015; 106(10):1362-9 [PubMed] Free Access to Full Article Related Publications
Cancer-associated fibroblasts (CAF) are a major constituent of the pancreatic cancer microenvironment and that the meaning is as intended. Pancreatic cancer cells can induce normal fibroblasts to convert into CAF and, reciprocally, CAF promote tumor invasions and proliferations. The mechanism of the conversion from normal fibroblasts (NF) to CAF remains unclear. MicroRNA are short non-coding RNA involved in the post-transcription gene regulation, which have been defined as an imperative controller in tumor invasions, proliferations and colony formations. Microvesicles (MV) have been proved to be an important mediator of intercellular communication and can selectively transport secreted microRNA from a donor cell into a recipient cell. In this study, we isolated primary pancreatic fibroblasts from wild type C57 mice and co-cultured them with pancreatic cancer cell lines, BxPC-3 and SW1990, and observed the conversion from NF to CAF, or at least CAF-like cells. This phenomenon could also be replicated in primary fibroblasts treated with MV separated from a cancer cell media. We identified that miR-155 was upregulated in PaC-derived MV and we confirmed that normal fibroblasts could convert into CAF after MV containing miR-155 had been taken up. TP53INP1 is a target of miR-155 in fibroblasts and a downregulation of TP53INP1 protein levels could contribute to the fibroblasts' activation. These results indicated that pancreatic cancer cells might reprogram normal adjacent fibroblasts into CAF by means of secreted MV containing miR-155. Targeting the circulating microRNA might be a potential therapy for malignant tumors.

Kim S, Lahmy R, Riha C, et al.
The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential.
Pancreas. 2015; 44(5):718-27 [PubMed] Free Access to Full Article Related Publications
OBJECTIVES: Pancreatic ductal adenocarcinoma (PDA) initiates from quiescent acinar cells that attain a Kras mutation, lose signaling from basic helix-loop-helix (bHLH) transcription factors, undergo acinar-ductal metaplasia, and rapidly acquire increased growth potential. We queried whether PDA cells can be reprogrammed to revert to their original quiescent acinar cell state by shifting key transcription programs.
METHODS: Human PDA cell lines were engineered to express an inducible form of the bHLH protein E47. Gene expression, growth, and functional studies were investigated using microarray, quantitative polymerase chain reaction, immunoblots, immunohistochemistry, small interfering RNA, chromatin immunoprecipitation analyses, and cell transplantation into mice.
RESULTS: In human PDA cells, E47 activity triggers stable G0/G1 arrest, which requires the cyclin-dependent kinase inhibitor p21 and the stress response protein TP53INP1. Concurrently, E47 induces high level expression of acinar digestive enzymes and feed forward activation of the acinar maturation network regulated by the bHLH factor MIST1. Moreover, induction of E47 in human PDA cells in vitro is sufficient to inhibit tumorigenesis.
CONCLUSIONS: Human PDA cells retain a high degree of plasticity, which can be exploited to induce a quiescent acinar cell state with reduced tumorigenic potential. Moreover, bHLH activity is a critical node coordinately regulating human PDA cell growth versus cell fate.

Liu F, Kong X, Lv L, Gao J
TGF-β1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes.
Cancer Lett. 2015; 359(2):288-98 [PubMed] Related Publications
It has been shown that acquisition of epithelial-mesenchymal transition (EMT) and induction of cancer stem cell (CSC)-like properties contribute to metastasis of cancers in many studies; however, the molecular mechanisms underlying EMT and CSC phenotypes in liver cancer cells remain to be elucidated. MiR-155 is an important microRNA associated with tumour progression. Here, we report that miR-155 regulates not only the epithelial-mesenchymal transition but also the stem-like transition in liver cancer cells. Utilizing quantitative RT-PCR, we found that the expression of miR-155 is positively related to the levels of CD90, CD133 and Oct4 in enriched spheres. Up-regulated miR-155 significantly increases the population of stem-like CSCs among liver cancer cells and the ability to form tumour spheres. Additionally, miR-155 overexpression in cells significantly increases cell motility and invasion, as well as the epithelial-mesenchymal transition process. Conversely, suppression of miR-155 in cells had an opposite effect, which was partially rescued by the down-regulation of TP53INP1. Collectively, miR-155 promotes liver cancer cell EMT and CSCs, in part, via silencing TP53INP1. In addition, we found that TGF-β1 indirectly regulates TP53INP1 expression via miR-155 in liver cancer cells. Taken together, our findings suggest that miR-155 regulates TP53INP1 expression, to induce the epithelial-mesenchymal transition and acquisition of a stem cell phenotype.

Liu F, Kong X, Lv L, Gao J
MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal.
FEBS Lett. 2015; 589(4):500-6 [PubMed] Related Publications
In liver cancer, miR-155 up-regulation can regulate cancer-cell invasion. However, whether miR-155 expression is associated with liver cancer stem cells (CSCs) remains unknown. Here, we show that miR-155 expression is up-regulated in tumor spheres. Knock-down of miR-155 resulted in suppression of tumor sphere formation, through a decrease in the proportion of CD90(+) and CD133(+) CSCs and in the expression of Oct4, whereas miR-155 overexpression had the opposite effect. TP53INP1 was determined to be involved in the CSCs-like properties that were regulated by miR-155. Thus, miR-155 may play an important role in promoting the generation of stem cell-like cells and their self-renewal by targeting the gene TP53INP1.

Yuan R, Zhi Q, Zhao H, et al.
Upregulated expression of miR-106a by DNA hypomethylation plays an oncogenic role in hepatocellular carcinoma.
Tumour Biol. 2015; 36(4):3093-100 [PubMed] Related Publications
Aberrant microRNA (miRNA) expression has been widely recognized to play an extremely important role in several cancers, including hepatocellular carcinoma (HCC). According to the previous studies, abnormal miR-106a expression was closely related to various cancer occurrences. However, the miR-106a expression in HCC remains unclear. In our study, we firstly detected the miR-106a expression levels in 36 pairs of HCC tissues. The results showed that miR-106a expression in HCC tissues was apparently higher than the level in the adjacent tissues. Then, we used quantitative real-time PCR (qPCR) and BSP to analyze miR-106a expression and promoter methylation in HCC cell lines. There came to a conclusion that the methylation status of the miR-106a promoter region was inversely correlated with the expression of miR-106a. After prediction with online software, we further used dual-luciferase reporter gene assay to ensure that TP53INP1 and CDKN1A might be the direct targets of miR-106a. At last, we explored the functions of miR-106a in HCC cells in vitro. Our results manifested that high-miR-106a cell line had stronger invasiveness, faster cell cycle progression, and more resistance to apoptosis compared with the low-miR-106a cell line. Therefore, our study suggested that upregulated expression of miR-106a by its promoter hypomethylation might contribute to the progression of HCC, which might be considered as a potentially effective biomarker and therapeutic approach in the future.

Chaluvally-Raghavan P, Zhang F, Pradeep S, et al.
Copy number gain of hsa-miR-569 at 3q26.2 leads to loss of TP53INP1 and aggressiveness of epithelial cancers.
Cancer Cell. 2014; 26(6):863-79 [PubMed] Free Access to Full Article Related Publications
Small noncoding miRNAs represent underexplored targets of genomic aberrations and emerging therapeutic targets. The 3q26.2 amplicon is among the most frequent genomic aberrations in multiple cancer lineages including ovarian and breast cancers. We demonstrate that hsa-miR-569 (hereafter designated as miR569), which is overexpressed in a subset of ovarian and breast cancers, at least in part due to the 3q26.2 amplicon, alters cell survival and proliferation. Downregulation of TP53INP1 expression by miR569 is required for the effects of miR569 on survival and proliferation. Targeting miR569 sensitizes ovarian and breast cancer cells overexpressing miR569 to cisplatin by increasing cell death both in vitro and in vivo. Thus targeting miR569 could potentially benefit patients with the 3q26.2 amplicon and subsequent miR569 elevation.

Gao F, Wang W
MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a.
Mol Med Rep. 2015; 11(2):1200-6 [PubMed] Related Publications
MicroRNAs (miRNAs) are a conserved class of small, endogenous, non protein-coding RNA molecules that are capable of regulating gene expression at post-transcriptional levels and are involved in diverse cellular processes, including cancer pathogenesis. It has previously been reported that miRNA-96 (miR-96) is overexpressed in human colorectal cancer (CRC). However, the underlying mechanism of miR-96 regulation in CRC remains to be elucidated. In the present study, miR-96 was confirmed to be upregulated in CRC tissues by reverse transcription quantitative polymerase chain reaction. MTT assay, colony formation assay and cell cycle analysis revealed that miR-96 overexpression led to increased tumor cell viability, colony formation ability and cell cycle progression. By contrast, inhibition of miR-96 resulted in the suppression of cell proliferation. It was also demonstrated that miR-96 reduced the messenger RNA and protein expression levels of tumor protein p53 inducible nuclear protein 1 (TP53INP1), forkhead box protein O1 (FOXO1) and FOXO3a, which are closely associated with cell proliferation. A luciferase reporter assay indicated that miR-96 inhibited luciferase intensity controlled by the 3'UTRs of TP53INP1, FOXO1 and FOXO3a. In conclusion, the results of the present study demonstrated that miR-96 contributed to CRC cell growth and that TP53INP1, FOXO1 and FOXO3a were direct targets of miR-96, suggesting that miR-96 may have the potential to be used in the development of miRNA‑based therapies for CRC patients.

van Keimpema M, Grüneberg LJ, Mokry M, et al.
FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells.
Blood. 2014; 124(23):3431-40 [PubMed] Free Access to Full Article Related Publications
The forkhead transcription factor FOXP1 is involved in B-cell development and function and is generally regarded as an oncogene in activated B-cell-like subtype of diffuse large B-cell lymphoma (DLBCL) and mucosa-associated lymphoid tissue lymphoma, lymphomas relying on constitutive nuclear factor κB (NF-κB) activity for survival. However, the mechanism underlying its putative oncogenic activity has not been established. By gene expression microarray, upon overexpression or silencing of FOXP1 in primary human B cells and DLBCL cell lines, combined with chromatin immunoprecipitation followed by next-generation sequencing, we established that FOXP1 directly represses a set of 7 proapoptotic genes. Low expression of these genes, encoding the BH3-only proteins BIK and Harakiri, the p53-regulatory proteins TP63, RASSF6, and TP53INP1, and AIM2 and EAF2, is associated with poor survival in DLBCL patients. In line with these findings, we demonstrated that FOXP1 promotes the expansion of primary mature human B cells by inhibiting caspase-dependent apoptosis, without affecting B-cell proliferation. Furthermore, FOXP1 is dependent upon, and cooperates with, NF-κB signaling to promote B-cell expansion and survival. Taken together, our data indicate that, through direct repression of proapoptotic genes, (aberrant) expression of FOXP1 complements (constitutive) NF-κB activity to promote B-cell survival and can thereby contribute to B-cell homeostasis and lymphomagenesis.

Mehrotra M, Medeiros LJ, Luthra R, et al.
Identification of putative pathogenic microRNA and its downstream targets in anaplastic lymphoma kinase-negative anaplastic large cell lymphoma.
Hum Pathol. 2014; 45(10):1995-2005 [PubMed] Related Publications
Anaplastic large cell lymphomas (ALCL) are tumors of T/null-cell lineage characterized by uniform CD30 expression. The 2008 World Health Organization classification subdivided ALCLs into 2 groups: anaplastic lymphoma kinase (ALK)-positive (established entity) and ALK-negative (proposed new entity) ALCL. The genetic basis for the pathogenesis of newly categorized ALK- ALCL is poorly understood. In this study, we used microRNA microarray analysis to identify differentially expressed microRNAs in ALK+ and ALK- ALCL. ALK- ALCL showed significantly higher expression of miR-155 (0.888 ± 0.228) compared with ALK+ ALCL (0.0565 ± 0.009) on microarray and by quantitative real-time polymerase chain reaction in ALK- ALCL compared with ALK+ ALCL (P < .05) with a strong correlation between the 2 platforms (R = 0.9, P < .0003). A novel in situ hybridization method allows direct visualization of expression patterns and relative quantitation of miR-155 (mean score, 2.3 versus 1.3; P = .01) for the first time in tissue sections of ALCL. Among computationally predicted targets of miR-155, we identified ZNF652 (r = -0.57, P = .05), BACH1 (r = 0.88, P = .02), RBAK (r = 0.81, P = .05), TRIM32 (r = 0.92, P = .01), E2F2 (r = 0.81, P = .05), and TP53INP1 (r = -0.31, P = .03) as genes whose expression by quantitative real-time polymerase chain reaction correlated significantly with the level of miR-155 in ALCL tumor tissue.

Xiong H, Wang J, Guan H, et al.
SphK1 confers resistance to apoptosis in gastric cancer cells by downregulating Bim via stimulating Akt/FoxO3a signaling.
Oncol Rep. 2014; 32(4):1369-73 [PubMed] Free Access to Full Article Related Publications
We previously reported that sphingosine kinase 1 (SphK1), an enzyme that catalyzes the production of sphingosine-1-phosphate (SIP), is upregulated in human gastric cancer and predicts poor clinical outcome. In the present study, we used known differential effects of UV irradiation on human MGC-803 gastric cancer cells to determine their effect on SphK1 activity. Ectopic expression of SphK1 in MGC-803 gastric cancer cells markedly enhanced their resistance to UV irradiation, whereas silencing endogenous SphK1 with shRNAs weakened this ability. Furthermore, these anti-apoptotic effects were significantly associated with decrease of Bim, an apoptosis-related protein. We further demonstrated that SphK1 could downregulate the transcriptional activity of forkhead box O3a (FoxO3a) by inducing its phosphorylation, which was found to be associated with the PI3K/Akt signaling. Taken together, our study supports the theory that SphK1 confers resistance to apoptosis in gastric cancer cells via the Akt/FoxO3a/Bim pathway.

Zhang J, Cheng C, Yuan X, et al.
microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma.
Int J Clin Exp Pathol. 2014; 7(2):602-10 [PubMed] Free Access to Full Article Related Publications
MicroRNA-155 (miR-155) is overexpressed in many human cancers; however, the function of miR-155 is largely unknown in esophageal squamous cell carcinoma (ESCC). In the present study, we found that miR-155 is dramatically increased in ESCC tissues compared with the paired adjacent normal tissues, which suggested that miR-155 acts as an oncogene in ESCC. We predicted that tumor protein p53-induced nuclear protein 1 (TP53INP1) is a candidate target gene of miR-155 given that miR-155 expression decreased mRNA and protein levels of TP53INP1 as determined by RT-PCR and Western blot analysis. In addition, miR-155 and TP53INP1 showed a negative relation in ESCC tissues. Dual luciferase-based reporter assay indicated direct regulation of TP53INP1 by miR-155. Furthermore, we demonstrated that RNA interference of TP53INP1 increased the proliferation and colonies formation of EC-1 cells. Up-regulation of TP53INP1 abrogated miR-155 induced growth in EC-1 cells and mutation of TP53INP1 in 3'-UTR restored the effects when co-transfected with miR-155. We also indicated that overexpression of miR-155 significantly promoted the proliferation of EC-1 cells in vitro and the development of tumors in nude mice. Taken together, our study reveals that miR-155 acts as an oncogene by targeting TP53INP1 in ESCC.

Qin J, Luo M, Qian H, Chen W
Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1.
Gene. 2014; 538(2):342-7 [PubMed] Related Publications
Chemotherapy plays a crucial role in hepatocellular carcinoma (HCC) treatment especially for patients with advanced HCC. Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of HCC. However, acquisition of cisplatin resistance is common in patients with HCC, and the underlying mechanism of such resistance is not fully understood. In the study, we focused on identifying the role of miRNAs in chemotherapy resistance after cisplatin-based combination chemotherapy. We assayed the expression level of miR-182 after cisplatin-based chemotherapy in patients with advanced HCC, and defined the biological functions by real-time PCR analysis and CCK-8 assay. We found that miR-182 levels were significantly increased in HCC patients treated with cisplatin-based chemotherapy. miR-182 levels were also higher in cisplatin-resistant HepG2 (HepG2-R) cells than in HepG2 cells. Upregulated miR-182 significantly increased the cell viability, whereas miR-182 knockdown reduced the cell viability during cisplatin treatment. miR-182 inhibition also partially overcame cisplatin resistance in HepG2-R cell. Furthermore, we found that upregulated miR-182 inhibited the expression of tumor suppressor gene TP53INP1 (tumor protein 53-induced nuclear protein 1) in vitro. In vivo, miR-182 and TP53INP1 expression was negatively correlated. We finally demonstrated that miR-182 increased cisplatin resistance of HCC cell, partly by targeting TP53INP1. These data suggest that miR-182/TP53INP1 signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

Zhang CM, Zhao J, Deng HY
MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1.
J Biomed Sci. 2013; 20:79 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MiR-155 has emerged as an "oncomiR", which is the most significantly up-regulated miRNA in breast cancer. However, the mechanisms of miR-155 functions as an oncomiR are mainly unknown. In this study, the aims were to investigate the effects of miR-155 on cell proliferation, cell cycle, and cell apoptosis of ERalpha (+) breast cancer cells and to verify whether TP53INP1 (tumor protein 53-induced nuclear protein 1) is a target of miR-155, and tried to explore the mechanisms of miR-155 in this process.
RESULTS: The expression of miR-155 is significantly higher in MCF-7 cells compared with MDA-MB-231 cells. Ectopic expression of TP53INP1 inhibits growth of MCF-7 cells by inducing cell apoptosis and inhibiting cell cycle progression. Overexpression of miR-155 increases cell proliferation and suppress cell apoptosis, whereas abrogating expression of miR-155 suppress cell proliferation and promotes cell apoptosis of MCF-7 cells. In addition, miR-155 negatively regulates TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, and luciferase reporter reveals that TP53INP1 is targeted by miR-155.
CONCLUSIONS: TP53INP1 is the direct target of miR-155. MiR-155, which is overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating target TP53INP1.

Krupar R, Hartl M, Wirsching K, et al.
Comparison of HPV prevalence in HNSCC patients with regard to regional and socioeconomic factors.
Eur Arch Otorhinolaryngol. 2014; 271(6):1737-45 [PubMed] Related Publications
HPV infection is considered as an independent risk factor for head and neck squamous cell carcinomas (HNSCC). Due to highly variable prevalence results in numerous studies, it is, however, difficult to estimate the relevance of HPV infection as risk factor for a specific patient collective. This study aimed to elucidate the disparities of HPV prevalence by analyzing socioeconomically and regionally different patient collectives. Two age, gender, stage and tumor location matched cohorts of 18 private health insured (PHIP) and 16 statutory health insured patients (SIP) suffering from an oropharyngeal squamous cell carcinoma (OSCC) and treated at a university hospital were screened for p16 overexpression and HPV infection by immunohistochemistry and PCR. In addition 85 HNSCC patients of an otolaryngology private practice (PPP) in a rural area were screened for p16 overexpression and positive cases were tested for HPV infection. HPV prevalence was 72.2% in the PHIP collective in comparison to 25.0% (p = 0.015) in the SIP collective with a significantly improved 5-year overall survival (p = 0.003) of the PHIP collective. The total HPV prevalence of PPP group was 7.1% with the highest infection rate in tonsillar carcinomas (33.3%) and a larger percentage of female patients in the HPV positive group (p = 0.037). This study shows that variable HPV infection rates in HNSCC can be caused by the selection of particular patient collectives, which suggest taking socioeconomic and regional factors into account for a decision on HPV testing, if it is not performed on a routine basis.

Wang H, Feng Y, Bao Z, et al.
Epigenetic silencing of KAZALD1 confers a better prognosis and is associated with malignant transformation/progression in glioma.
Oncol Rep. 2013; 30(5):2089-96 [PubMed] Related Publications
In order to more thoroughly analyze aberrant DNA methylation in glioma, we applied a large cohort methylation microarray including 119 glioma samples. Six genes, ADCY1, KAZALD1, KLF4, SLMAP, TETRAN and TP53INP1, were screened out through significance analysis of microarray (SAM), survival Cox-regression and certain other pre-set conditions. We focused on the KAZALD1 oncogene. KAZALD1, also known as IGFBP-rP10, belongs to the IGFBP family. We found that KAZALD1 was hypomethylated in high-grade glioma (anaplastic gliomas and glioblastomas) compared to low-grade glioma (astrocytoma, oligodendrocytoma and oligoastrocytoma) using methylation microarrays (p<0.001). Immunohistochemistry (IHC) of 91 glioma samples showed that the KAZALD1 expression scores of high-grade glioma samples were higher compared to the scores of low-grade gliomas (p<0.001). In high-grade gliomas, overall survival (OS) was shorter for patients with KAZALD1 hypomethylation or overexpression compared to those without. Decreased KAZALD1 expression in glioma inhibited cell proliferation and invasion both in vitro and in vivo. On the basis of these observations and the results from subset analysis, it is reasonable to conclude that KAZALD1 promoter hypomethylation is an important prognostic biomarker in glioma. KAZALD1 promotes glioma malignant progression through invasion and proliferation.

Zhang Y, Yang J, Cui X, et al.
A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth.
EMBO Mol Med. 2013; 5(9):1322-34 [PubMed] Free Access to Full Article Related Publications
Changes in the intracellular levels of the essential micronutrient zinc have been implicated in multiple diseases including pancreatic cancer; however, the molecular mechanism is poorly understood. Here, we report a novel mechanism where increased zinc mediated by the zinc importer ZIP4 transcriptionally induces miR-373 in pancreatic cancer to promote tumour growth. Reporter, expression and chromatin immunoprecipitation assays demonstrate that ZIP4 activates the zinc-dependent transcription factor CREB and requires this transcription factor to increase miR-373 expression through the regulation of its promoter. miR-373 induction is necessary for efficient ZIP4-dependent enhancement of cell proliferation, invasion, and tumour growth. Further analysis of miR-373 in vivo oncogenic function reveals that it is mediated through its negative regulation of TP53INP1, LATS2 and CD44. These results define a novel ZIP4-CREB-miR-373 signalling axis promoting pancreatic cancer growth, providing mechanistic insights explaining in part how a zinc transporter functions in cancer cells and may have broader implications as inappropriate regulation of intracellular zinc levels plays an important role in many other diseases.

Shiozaki A, Iitaka D, Ichikawa D, et al.
xCT, component of cysteine/glutamate transporter, as an independent prognostic factor in human esophageal squamous cell carcinoma.
J Gastroenterol. 2014; 49(5):853-63 [PubMed] Related Publications
BACKGROUND: xCT is a component of the cysteine/glutamate transporter, which plays a key role in glutathione synthesis. The objectives of the present study were to investigate the role of xCT in the regulation of genes involved in cell cycle progression and the clinicopathological significance of its expression in esophageal squamous cell carcinoma (ESCC).
METHODS: xCT expression in human ESCC cell lines was analyzed by Western blotting and immunofluorescent staining. Knockdown experiments were conducted with xCT siRNA, and the effect on cell cycle was analyzed. The cells' gene expression profiles were analyzed by microarray analysis. An immunohistochemical analysis of 70 primary tumor samples obtained from ESCC patients that had undergone esophagectomy was performed.
RESULTS: xCT was highly expressed in TE13 and KYSE170 cells. In these cells, the knockdown of xCT using siRNA inhibited G1-S phase progression. Microarray analysis identified 1652 genes whose expression levels in TE13 cells were altered by the knockdown of xCT. Pathway analysis showed that the top-ranked canonical pathway was the G1/S checkpoint regulation pathway, which involves TP53INP1, CDKN1A, CyclinD1/cdk4, and E2F5. Immunohistochemical staining showed that xCT is mainly found in the nuclei of carcinoma cells, and that its expression is an independent prognostic factor.
CONCLUSIONS: These observations suggest that the expression of xCT in ESCC cells might affect the G1/S checkpoint and impact on the prognosis of ESCC patients. As a result, we have a deeper understanding of the role played by xCT as a mediator and/or biomarker in ESCC.

Zhang C, Zhao J, Deng H
17β-estradiol up-regulates miR-155 expression and reduces TP53INP1 expression in MCF-7 breast cancer cells.
Mol Cell Biochem. 2013; 379(1-2):201-11 [PubMed] Related Publications
In estrogen responsive breast cancer cells, estradiol (E2) is a key regulator of cell proliferation and survival. MiR-155 has emerged as an "oncomiR", which is the most significantly up-regulated miRNA in breast cancer. Moreover, miR-155 is higher in ERα (+) breast tumors than ERα (-), but no one has examined whether E2 regulates miR-155 expression in MCF-7 cells. In this study, the aim was to explore whether miR-155 involved in E2 regulated expression of estrogen responsive genes. We evaluated miR-155 expression in human breast cancer cells by real-time PCR, finding out miR-155 was overexpressed in MCF-7 cells compared with MDA-MB-231 cells. Treatment with E2 in MCF-7 cells increased miR-155 expression, promoting proliferation and decreasing apoptosis, similarly, transfection of miR-155m to MCF-7 cells gave the similar results. In contrast, inhibited miR-155 expression by transfection with miR-155 inhibitors reduced proliferation and promoted apoptosis of MCF-7 cells. Moreover, TP53INP1 is one of the targets of miR-155. E2 negatively regulated TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, whereas transfection with miR-155 inhibitors increased TP53INP1, cleaved-caspase-3, -8, -9, and p21 protein level. These results demonstrated that E2 promoted breast cancer development and progression possibly through increasing the expression of miR-155, which was overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating TP53INP1.

Chen X, Zheng P, Xue Z, et al.
CacyBP/SIP enhances multidrug resistance of pancreatic cancer cells by regulation of P-gp and Bcl-2.
Apoptosis. 2013; 18(7):861-9 [PubMed] Related Publications
Our former report indicates that calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) is over-expressed in the SGC7901/ADR cell line. However, the potential role of CacyBP/SIP in the development of multidrug resistance (MDR) of pancreatic cancer is still uncertain. In this paper, we investigated the role of CacyBP/SIP in MDR of pancreatic cancer cells and its possible underlying mechanisms, and found that CacyBP/SIP was over-expressed in the Gemcitabine induced MDR pancreatic cancer cell PC-3/Gem compared with its parental cell PC-3. Up-regulation of CacyBP/SIP expression could enhance resistance of chemotherapy drugs on PC-3 cells and inhibit Adriamycin-induced apoptosis accompanied by decreased accumulation of intracellular Adriamycin. Furthermore, CacyBP/SIP could significantly up-regulate the expression of P-gp, Bcl-2, and the transcription of the MDR1 gene. In addition, the decrease of CacyBP/SIP expression using RNA interference or P-gp inhibitor could partially reverse CacyBP/SIP-mediated MDR. In brief, our study demonstrated that CacyBP/SIP could enhance the MDR phenotype of pancreatic cancer cells by increasing the expression of P-gp and Bcl-2, thus inhibiting apoptosis of pancreatic cancer cell.

Wang M, Gu H, Qian H, et al.
miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation.
Eur J Cancer. 2013; 49(8):2010-21 [PubMed] Related Publications
AIM: To investigate the potential roles and mechanisms of miR-17-5p/20a in human gastric cancer development and progression.
METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine miR-17-5p/20a expression profiles in 110 gastric cancer tissues. microRNAs' (miRNAs) mimics and inhibitors were used to reveal their function in gastric cancer. Antagomirs were applied to treating gastric cancer cell derived xenograft in vivo. Western blot and luciferase assays were performed to uncover the targets and mechanisms of miR-17-5p/20a.
RESULTS: miR-17-5p/20a levels were upregulated in human gastric cancer tissues. Overexpression of miR-17-5p/20a promoted gastric cancer cell cycle progression and inhibited cell apoptosis, whereas knockdown of miR-17-5p/20a resulted in cell cycle arrest and increased apoptosis. p21 and tumour protein p53-induced nuclear protein 1 (TP53INP1) were validated as the targets of miR-17-5p/20a. Antagomirs against miR-17-5p/20a significantly inhibited gastric cancer growth via upregulation of p21 and TP53INP1 in a mouse xenograft model. The negative relationship between miR-17-5p/20a and TP53INP1 was observed in patient gastric cancer tissues. Murine double minute 2 (MDM2) was found to be involved in miRNA regulation and function. Targeted inhibition of MDM2 in a miRNA mimic-transfected gastric cancer cell line abolished miR-17-5p/20a function and inhibition of p21 expression. MDM2 restoration by pCMV-MDM2 rescued the functionality.
CONCLUSIONS: Our findings indicate that miR-17-5p/20a promote gastric cancer cell proliferation and inhibit cell apoptosis via post-transcriptional modulation of p21 and TP53INP1. They may be promising therapeutic markers for gastric cancer. MDM2 contributes to miR-17-5p/20a function and inhibition of p21 in gastric cancer, and may be a novel mechanism underlying the oncogenic roles of miR-17-5p/20a.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TP53INP1, Cancer Genetics Web: http://www.cancer-genetics.org/TP53INP1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999