Gene Summary

Gene:TUBB3; tubulin beta 3 class III
Aliases: CDCBM, FEOM3, TUBB4, CDCBM1, CFEOM3, beta-4, CFEOM3A
Summary:This gene encodes a class III member of the beta tubulin protein family. Beta tubulins are one of two core protein families (alpha and beta tubulins) that heterodimerize and assemble to form microtubules. This protein is primarily expressed in neurons and may be involved in neurogenesis and axon guidance and maintenance. Mutations in this gene are the cause of congenital fibrosis of the extraocular muscles type 3. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 6. [provided by RefSeq, Oct 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tubulin beta-3 chain
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (19)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TUBB3 (cancer-related)

Cao Y, Zhang G, Wang P, et al.
Clinical significance of UGT1A1 polymorphism and expression of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A in gastric cancer.
BMC Gastroenterol. 2017; 17(1):2 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Individualized therapeutic regimen is a recently intensively pursued approach for targeting diseases, in which the search for biomarkers was considered the first and most important. Thus, the goal of this study was to investigate whether the UGT1A1, ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A genes are underlying biomarkers for gastric cancer, which, to our knowledge, has not been performed.
METHODS: Ninety-eight tissue specimens were collected from gastric cancer patients between May 2012 and March 2015. A multiplex branched DNA liquidchip technology was used for measuring the mRNA expressions of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A. Direct sequencing was performed for determination of UGT1A1 polymorphisms. Furthermore, correlations between gene expressions, polymorphisms and clinicopathological characteristics were investigated.
RESULTS: The expressions of TYMS, TUBB3 and STMN1 were significantly associated with the clinicopathological characteristics of age, gender and family history of gastric cancer, but not with differentiation, growth patterns, metastasis and TNM staging in patients with gastric cancer. No clinical characteristics were correlated with the expressions of ERCC1, BRCA1, RRM1 and TOP2A. Additionally, patients carrying G allele at -211 of UGT1A1 were predisposed to developing tubular adenocarcinoma, while individuals carrying 6TAA or G allele respectively at *28 or -3156 of UGT1A1 tended to have a local invasion.
CONCLUSIONS: The UGT1A1 polymorphism may be useful to screen the risk population of gastric cancer, while TYMS, TUBB3 and STMN1 may be potential biomarkers for prognosis and chemotherapy guidance.

Liu J, Keisling MP, Samkari A, et al.
Malignant glioma with primitive neuroectodermal tumor-like component (MG-PNET): novel microarray findings in a pediatric patient.
Clin Neuropathol. 2016 Nov/Dec; 35(6):353-367 [PubMed] Related Publications
Central nervous system (CNS) tumors exhibiting dual features of malignant glioma (MG) and primitive neuroectodermal tumor (PNET) are rare and diagnostically challenging. Previous studies have shown that MG-PNET carry MYCN or MYC gene amplifications within the PNET component concomitant with glioma-associated alterations, most commonly 10q loss, in both components [9]. Here we confirm and extend the profile of molecular genetic findings in a MG-PNET involving the left frontal lobe of a 12-year-old male. Histologically, the PNET-like component showed morphological features akin to anaplastic medulloblastoma highlighted by widespread immunoreactivity for βIII-tubulin (TUBB3) and nonphosphorylated neurofilament protein, and to a lesser degree, Neu-N, synaptophysin, and CD99, whereas the gliomatous component was demarcated by glial fibrillary acidic protein (GFAP) labeling. Immunohistochemical labeling with an anti-H3K27M mutant-specific antibody was not detectable in either gliomatous and/or PNET-like areas. Interphase fluorescent in situ hybridization (FISH) study on touch preparations from frozen tumor and formaldehyde-fixed, paraffin-embedded histological sections showed amplification of MYC in both PNET-like and gliomatous areas. Single nucleotide polymorphism (SNP) microarray analysis revealed that the tumor carried gains of multiple chromosomes and chromosome arms, losses of multiple chromosomes and chromosome arms, gains of multiple chromosomal segments (not limited to amplification of chromosomal segments 4q12 including PDGFRA, and 8q24.21 including MYC), and a hitherto unreported chromothripsis-like abnormality on chromosome 8. No mutations were identified for IDH1, IDH2, or BRAF genes by sequence analysis. The molecular genetic findings support the presence of a CNS-PNET as an integral part of the tumor coupled with overlapping genetic alterations found in both adult and pediatric high-grade gliomas/glioblastoma. Collectively, microarray data point to a complex underpinning of genetic alterations associated with the MG-PNET tumor phenotype.

Huang D, Wang S, Wang A, et al.
Thymosin beta 4 silencing suppresses proliferation and invasion of non-small cell lung cancer cells by repressing Notch1 activation.
Acta Biochim Biophys Sin (Shanghai). 2016; 48(9):788-94 [PubMed] Related Publications
Thymosin beta 4 (Tβ4), a pleiotropic actin-sequestering polypeptide that is involved in wound healing and developmental processes, has been reported to be strongly associated with tumorigenesis. A recent tissue microarray analysis showed that Tβ4 was highly expressed in certain tumor cells, including lung cancer. However, the exact expression pattern and the role of Tβ4 in non-small cell lung cancer (NSCLC) have not to our knowledge been investigated. In the present study, we confirmed that Tβ4 expression was increased in NSCLC tissues and cell lines. Tβ4 gene silencing in A549 and H1299 cells inhibited cell proliferation, migration, and invasion in vitro and decreased tumor growth in vivo Mechanistic investigations revealed a significant decrease in Notch1 activation in Tβ4 gene-silenced cells. Moreover, restoring the Notch1 expression attenuated the function of Tβ4 silencing in NSCLC cells. Taken together, these findings suggest that Tβ4 may play an oncogenic role in NSCLC progression and may be a novel molecular target for anti-NSCLC therapy.

Zhang Q, Sun T, Kang P, et al.
Combined analysis of rearrangement of ALK, ROS1, somatic mutation of EGFR, KRAS, BRAF, PIK3CA, and mRNA expression of ERCC1, TYMS, RRM1, TUBB3, EGFR in patients with non-small cell lung cancer and their clinical significance.
Cancer Chemother Pharmacol. 2016; 77(3):583-93 [PubMed] Related Publications
PURPOSE: The assessment of single gene such as ERCC1, TYMS, RRM1, TUBB3, EGFR, KRAS, BRAF, PIK3CA, ALK, and ROS1 is now widely applied in therapeutic decisions of non-small cell lung cancer (NSCLC). The aim of our study was to concurrently analyze these genes and evaluate their clinical significance in patients with NSCLC.
METHODS: Rearrangement of ALK and ROS1 was analyzed in 120 patients using FISH assays. Somatic mutation of EGFR, KRAS, BRAF, PIK3CA and mRNA expression of ERCC1, TYMS, RRM1, TUBB3, EGFR were examined by liquidchip platform in 350 patients . Data on clinical features were obtained from medical records of 119 patients, and the follow-up was conducted in 106 patients who received platinum-based adjuvant chemotherapy.
RESULTS: We identified 5.0% ALK rearrangements, 1.7% ROS1 rearrangements, 36.6% EGFR mutations, 8.9% KRAS mutations, 0% BRAF mutations, and 4.0% PIK3CA mutations. Double or coexisting mutations were identified in 13 patients. Significant correlations were observed among EGFR, KRAS mutation, ERCC1, TYMS, RRM1, TUBB3, EGFR expression, and clinical features, especially histology (P < 0.05). Significant cross-correlations were observed in some pairs of genes (P < 0.05). Patients with low RRM1 expression had a better progression-free survival (PFS) (P < 0.05). Furthermore, EGFR-mutated patients with low RRM1 expression or patients with both ERCC1 and RRM1 low expression had a better PFS (P < 0.05).
CONCLUSION: Combined analysis of these commonly studied genes may promote the individual treatment in NSCLC. RRM1 may be a prognostic and predictive biomarker for PFS in patients with NSCLC who received platinum-based adjuvant chemotherapy, and combining EGFR mutation and RRM1 expression or combining ERCC1 and RRM1 expression can enhance prognostic and predictive power for PFS.

Liu Y, Kheradmand F, Davis CF, et al.
Focused Analysis of Exome Sequencing Data for Rare Germline Mutations in Familial and Sporadic Lung Cancer.
J Thorac Oncol. 2016; 11(1):52-61 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: The association between smoking-induced chronic obstructive pulmonary disease (COPD) and lung cancer (LC) is well documented. Recent genome-wide association studies (GWAS) have identified 28 susceptibility loci for LC, 10 for COPD, 32 for smoking behavior, and 63 for pulmonary function, totaling 107 nonoverlapping loci. Given that common variants have been found to be associated with LC in genome-wide association studies, exome sequencing of these high-priority regions has great potential to identify novel rare causal variants.
METHODS: To search for disease-causing rare germline mutations, we used a variation of the extreme phenotype approach to select 48 patients with sporadic LC who reported histories of heavy smoking-37 of whom also exhibited carefully documented severe COPD (in whom smoking is considered the overwhelming determinant)-and 54 unique familial LC cases from families with at least three first-degree relatives with LC (who are likely enriched for genomic effects).
RESULTS: By focusing on exome profiles of the 107 target loci, we identified two key rare mutations. A heterozygous p.Arg696Cys variant in the coiled-coil domain containing 147 (CCDC147) gene at 10q25.1 was identified in one sporadic and two familial cases. The minor allele frequency (MAF) of this variant in the 1000 Genomes database is 0.0026. The p.Val26Met variant in the dopamine β-hydroxylase (DBH) gene at 9q34.2 was identified in two sporadic cases; the minor allele frequency of this mutation is 0.0034 according to the 1000 Genomes database. We also observed three suggestive rare mutations on 15q25.1: iron-responsive element binding protein neuronal 2 (IREB2); cholinergic receptor, nicotinic, alpha 5 (neuronal) (CHRNA5); and cholinergic receptor, nicotinic, beta 4 (CHRNB4).
CONCLUSIONS: Our results demonstrated highly disruptive risk-conferring CCDC147 and DBH mutations.

Wong HY, Wang GM, Croessmann S, et al.
TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer.
Oncotarget. 2015; 6(42):44927-40 [PubMed] Free Access to Full Article Related Publications
Male breast cancer comprises less than 1% of breast cancer diagnoses. Although estrogen exposure has been causally linked to the development of female breast cancers, the etiology of male breast cancer is unclear. Here, we show via fluorescence in situ hybridization (FISH) and droplet digital PCR (ddPCR) that the Y chromosome was clonally lost at a frequency of ~16% (5/31) in two independent cohorts of male breast cancer patients. We also show somatic loss of the Y chromosome gene TMSB4Y in a male breast tumor, confirming prior reports of loss at this locus in male breast cancers. To further understand the function of TMSB4Y, we created inducible cell lines of TMSB4Y in the female human breast epithelial cell line MCF-10A. Expression of TMSB4Y resulted in aberrant cellular morphology and reduced cell proliferation, with a corresponding reduction in the fraction of metaphase cells. We further show that TMSB4Y interacts directly with β-actin, the main component of the actin cytoskeleton and a cell cycle modulator. Taken together, our results suggest that clonal loss of the Y chromosome may contribute to male breast carcinogenesis, and that the TMSB4Y gene has tumor suppressor properties.

Ma NK, Lim JK, Leong MF, et al.
Collaboration of 3D context and extracellular matrix in the development of glioma stemness in a 3D model.
Biomaterials. 2016; 78:62-73 [PubMed] Related Publications
A hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies. We observed collaboration between 3D context and laminins in promoting glioma stemness. Depending on the laminin isoform presented, U251 cells cultured on ESPS scaffolds (3D) exhibited increased expression of stemness markers compared to those cultured on tissue culture polystyrene (2D). Our results indicate the influence of 3D (versus 2D) context on integrin expression, specifically, the upregulation of the laminin-binding integrins alpha 6 and beta 4. By a colony forming assay, we showed enhanced clonogenicity of cells grown on ESPS scaffolds in collaboration with laminins 411, 421, 511 and 521. Evaluation of patient glioma databases demonstrated significant enrichment of integrin and ECM pathway networks in tumors of worse prognosis, consistent with our observations. The present results demonstrate how 3D versus 2D context profoundly affects ECM signaling, leading to stemness.

Grossi F, Dal Bello MG, Salvi S, et al.
Expression of Ribonucleotide Reductase Subunit-2 and Thymidylate Synthase Correlates with Poor Prognosis in Patients with Resected Stages I-III Non-Small Cell Lung Cancer.
Dis Markers. 2015; 2015:302649 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Biomarkers can help to identify patients with early-stages or locally advanced non-small cell lung cancer (NSCLC) who have high risk of relapse and poor prognosis. To correlate the expression of seven biomarkers involved in DNA synthesis and repair and in cell division with clinical outcome, we consecutively collected 82 tumour tissues from radically resected NSCLC patients. The following biomarkers were investigated using IHC and q
RT-PCR: excision repair cross-complementation group 1 (ERCC1), breast cancer 1 (BRCA1), ribonucleotide reductase subunits M1 and M2 (RRM1 and RRM2), subunit p53R2, thymidylate synthase (TS), and class III beta-tubulin (TUBB3). Gene expression levels were also validated in an available NSCLC microarray dataset. Multivariate analysis identified the protein overexpression of RRM2 and TS as independent prognostic factors of shorter overall survival (OS). Kaplan-Meier analysis showed a trend in shorter OS for patients with RRM2, TS, and ERCC1, BRCA1 overexpressed tumours. For all of the biomarkers except TUBB3, the OS trends relative to the gene expression levels were in agreement with those relative to the protein expression levels. The NSCLC microarray dataset showed RRM2 and TS as biomarkers significantly associated with OS. This study suggests that high expression levels of RRM2 and TS might be negative prognostic factors for resected NSCLC patients.

El-Deiry WS, Vijayvergia N, Xiu J, et al.
Molecular profiling of 6,892 colorectal cancer samples suggests different possible treatment options specific to metastatic sites.
Cancer Biol Ther. 2015; 16(12):1726-37 [PubMed] Free Access to Full Article Related Publications
Metastatic colorectal cancer (mCRC) carries a poor prognosis with an overall 5-year survival of 13.1%. Therapies guided by tumor profiling have suggested benefit in advanced cancer. We used a multiplatform molecular profiling (MP) approach to identify key molecular changes that may provide therapeutic options not typically considered in mCRC. We evaluated 6892 mCRC referred to Caris Life Sciences by MP including sequencing (Sanger/NGS), immunohistochemistry (IHC) and in-situ hybridization (ISH). mCRC metastases to liver, brain, ovary or lung (n = 1507) showed differential expression of markers including high protein expression of TOPO1 (52%) and/or low RRM1 (57%), TS (71%) and MGMT (39%), suggesting possible benefit from irinotecan, gemcitabine, 5FU/capecitabine and temozolomide, respectively. Lung metastases harbored a higher Her2 protein expression than the primary colon tumors (4% vs. 1.8%, p = 0.028). Brain and lung metastases had higher KRAS mutations than other sites (65% vs 59% vs 47%, respectively, p = 0.07, <0.01), suggesting poor response to anti-EGFR therapies. BRAF-mutated CRC (n = 455) showed coincident high protein expression of RRM1 (56%), TS (53%) and low PDGFR (22%) as compared with BRAF wild-type tumors. KRAS-mutated mCRC had higher protein expression of c-MET (47% vs. 36%) and lower MGMT (56% vs. 63%), suggesting consideration of c-MET inhibitors and temozolomide. KRAS-mutated CRC had high TUBB3 (42% vs. 33%) and low Her2 by IHC (0.5%) and HER2 by FISH (3%, p <0.05). CRC primaries had a lower incidence of PIK3CA and BRAF mutations in rectal cancer versus colon cancer (10% and 3.3%, respectively). MP of 6892 CRCs identified significant differences between primary and metastatic sites and among BRAF/KRAS sub-types. Our findings are hypothesis generating and need to be examined in prospective studies. Specific therapies may be considered for different actionable targets in mCRC as revealed by MP.

Shimizu A, Kaira K, Yasuda M, et al.
Decreased expression of class III β-tubulin is associated with unfavourable prognosis in patients with malignant melanoma.
Melanoma Res. 2016; 26(1):29-34 [PubMed] Related Publications
Class III β-tubulin (TUBB3) has been recognized as being associated with resistance to taxane-based regimens in several cancers. However, little is known about the clinicopathological significance of TUBB3 expression in patients with cutaneous malignant melanoma. The aim of this study was to examine the prognostic significance of TUBB3 expression in cutaneous malignant melanoma. A total of 106 patients with surgically resected cutaneous malignant melanoma were assessed. Tumour sections were immunohistochemically stained for TUBB3, Ki-67 and microvessel density with CD34. TUBB3 was highly expressed in 80% (85/106) of patients. No statistically significant relationship was observed between the high expression of TUBB3 and any variables. On univariate analysis, ulceration, disease stage, TUBB3 and CD34 revealed a significant relationship with overall survival and progression-free survival. Multivariate analysis confirmed that a low TUBB3 expression was an independent prognostic factor for poor prognosis of cutaneous malignant melanoma. The decreased expression of TUBB3 could be a significant marker for predicting unfavourable prognosis in patients with cutaneous malignant melanoma.

He Q, Peng B, Zhuang D, et al.
Clinicopathological significance of β -tubulin isotype III gene expression in breast cancer patients.
Cancer Biomark. 2015; 15(6):823-31 [PubMed] Related Publications
BACKGROUND: The molecular classification of breast cancer mainly focuses on estrogen receptor (ER), Progesterone receptor (PgR), and Human Epidermal Growth Factor Receptor 2(HER2/Neu) status detected by immunohistochemistry (IHC) analysis. The β -tubulin isotype III (TUBB3) gene was thought to be a marker of taxane resistance or cancer aggressiveness.
METHODS: To evaluate the clinicopathological significance of TUBB3 expression in breast cancer patients, we measured TUBB3 mRNA levels in 92 breast cancer patients by Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and examined their correlation with ER, PgR, and HER2 status detected by IHC.
RESULTS: We observed a significant positive correlation between the TUBB3 mRNA expression and the immunohistochemical positivity of both PgR (p= 0.000) and HER2 (p= 0.001). In addition, TUBB3 mRNA expression was associated with lymph nodes status (P= 0.008) and tumor stages (0.029), but no correlation was found with other clinicopathological features, such as age, pathohistological grades and tumor size.
CONCLUSIONS: In conclusion, TUBB3 expression correlated significantly with molecular markers of breast cancer, such as PgR and HER2, suggesting that TUBB3 mRNA level facilitate the identification of a subset of patients who respond to Taxane treatment in addition to hormonal therapy and trastuzumab.

Xu YC, Zhang FC, Li JJ, et al.
RRM1, TUBB3, TOP2A, CYP19A1, CYP2D6: Difference between mRNA and protein expression in predicting prognosis of breast cancer patients.
Oncol Rep. 2015; 34(4):1883-94 [PubMed] Related Publications
The study investigated the clinical significance of RRM1 (ribonucleoside reductase subunit M1), TUBB3 (tubulin-β-III), TOP2A (DNA topoisomerase II), CYP19A1 (cytochrome P450, family 19, subfamily A, polypeptide 1) and CYP2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6) for the diagnosis and possible predictive roles in breast cancer. Tissue microarray detected the expression of RRM1, tubulin-β-III, Topo IIα, CYP19A1 and CYP2D6 protein in breast cancer tissue and tissue adjacent to tumors (TATs). In addition, a publically available tool, was used to assess the prognostic value of their gene expression in breast cancer (http://kmplot.com). Analysis for relapse-free survival (RFS), disease-free survival (DFS) and overall survival (OS) was performed. Cytoplasmic RRM1, tubulin-β-III, CYP19A1 and Topo IIα staining were significantly higher in breast cancer tissues compared with TATs (P<0.050). Significant correlation occurred between RRM1 expression with pathological classification (P=0.018), lymph node involvement (P=0.035) and ER status (P=0.003). Tubulin-β-III and CYP2D6 expression correlated significantly with tumor grade (P=0.021 for tubulin-β-III and P=0.029 for CYP2D6, respectively). Cox analysis showed that the protein expression of CYP2D6, CYP19A1, RRM1, Topo IIα or tubulin-β-III was not an independent prognostic factor. A significant association occurred between RFS and TUBB3, TOP2A, CYP19A1, and CYP2D6 mRNA expression. With CYP19A1 (P<0.001) and CYP2D6 (P<0.001), a high expression was associated with good clinical outcome. Conversely, a low expression of TUBB3 (P<0.001) and TOP2A (P<0.001) was associated with good clinical outcome. TUBB3 (P=0.0004) and TOP2A (P<0.001) were significant prognostic factors in predicting the patient OS. The expression of RRM1, tubulin-β-III, Topo IIα and CYP19A1 in tumor tissues was significantly higher than that in TATs. TUBB3, TOP2A, CYP19A1 and CYP2D6 gene expression, but not protein expression, was associated with patient survival.

Du J, Li B, Fang Y, et al.
Overexpression of Class III β-tubulin, Sox2, and nuclear Survivin is predictive of taxane resistance in patients with stage III ovarian epithelial cancer.
BMC Cancer. 2015; 15:536 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Class III β-tubulin, Sox2, and Survivin play important roles in tumor survival and proliferation. However, the association of these three factors with clinicopathological characteristics, chemoresistance, and survival in patients with ovarian cancer remains controversial.
METHODS: We investigated the predictive value and correlation among the expression levels of Class III β-tubulin, Sox2, and Survivin in 110 patients with stage III ovarian epithelial cancer, including 58 patients who received taxane-based chemotherapy and 52 patients who received non-taxane-based chemotherapy. Expression of these three factors was immunohistochemically examined in 110 ovarian tumor tissues obtained from patients before chemotherapy.
RESULTS: The positive expression rates for Class III β-tubulin, Sox2, and Survivin in ovarian tumor tissues were 59.09 %, 61.82 % and 52.73 %, respectively. The expression of nuclear Survivin and Class III β-tubulin was consistent with that of Sox2 (p = 0.005 and 0.020, respectively). Positive expression of Class III β-tubulin, Sox2, and nuclear Survivin was significantly associated with chemoresistance to taxane-based chemotherapy (p = 0.006, 0.007, and 0.009, respectively), but not to non-taxane-based chemotherapy. Additionally, overexpression of Class III β-tubulin, Sox2, and nuclear Survivin predicted poor progression-free survival in patients receiving taxane-based chemotherapy (p = 0.032, 0.005, and 0.004, respectively).
CONCLUSIONS: These findings suggest that overexpression of Class III β-tubulin, Sox2, and nuclear Survivin might be predictive of taxane resistance and poor progression-free survival in patients with stage III ovarian epithelial cancer. Expression of these three factors may show positive correlations in these patients.

Zwenger AO, Grosman G, Iturbe J, et al.
Expression of ERCC1 and TUBB3 in locally advanced cervical squamous cell cancer and its correlation with different therapeutic regimens.
Int J Biol Markers. 2015; 30(3):e301-14 [PubMed] Related Publications
BACKGROUND: Several studies in solid tumors have shown that expression of excision repair cross-complementation group 1 (ERCC1) and class III β-tubulin (TUBB3) can predict response to chemoradiotherapy and might be prognostic factors. We assessed the role of ERCC1 and TUBB3 expressions as predictive and prognostic factors in locally advanced cervical squamous cell carcinoma (LACSCC) patients treated with different neoadjuvant regimens.
METHODS: ERCC1 and TUBB3 were detected in 88 patients with LACSCC by immunohistochemical analysis. Sixty-two patients were included in 3 different prospective trials and grouped as follows: vinorelbine or docetaxel (group A, n = 44) and ifosfamide-vinorelbine-cisplatin (group B, n = 18). Both groups were compared with standard cisplatin chemoradiotherapy (group C, n = 26). Clinical data at baseline, disease-free survival (DFS) and overall survival (OS) were also collected. Univariate and multivariate Cox models were used to analyze the risk factors.
RESULTS: Thirty-five patients (39.8%) and 18 (20.5%) had high ERCC1 and TUBB3 expression, respectively. Both proteins were overexpressed in tumors with unfavorable characteristics. High ERCC1 was associated with advanced FIGO stage (p = 0.034) and progressive disease (49% vs. 28%). Poor DFS (p = 0.021) and OS (p = 0.005) were observed in group C patients with high ERCC1 expression. Multivariate analysis showed that ERCC1 expression, FIGO stage and pretreatment hemoglobin level were significant prognostic factors (p = 0.002, p = 0.008 and p = 0.005, respectively).
CONCLUSIONS: ERCC1 expression could be a predictive and prognostic factor in LACSCC patients who receive cisplatin monotherapy. Conversely, TUBB3 had no impact on survival in patients treated with antimicrotubule agents.

Wallerek S, Sørensen JB
Biomarkers for efficacy of adjuvant chemotherapy following complete resection in NSCLC stages I-IIIA.
Eur Respir Rev. 2015; 24(136):340-55 [PubMed] Related Publications
Biomarkers may be useful when deciding which nonsmall cell lung cancer (NSCLC) patients may benefit from adjuvant chemotherapy following complete resection and which chemotherapeutic agents may be used preferably in individual patients in order to maximise survival. A literature search covering the period from 2003 to May, 2014 was conducted using PubMed and the following search terms: "non-small cell lung cancer", "NSCLC", "adjuvant chemotherapy", "randomized", "randomised", "biomarkers", "prognostic", "predictive". This review focuses on current knowledge of biomarkers for prognosis or efficacy of adjuvant treatment following complete resection in stage I-IIIA NSCLC patients. This review includes results on 18 different biomarkers and five gene profiles. A statistically significant prognostic impact was reported for: iNTR, TUBB3, RRM1, ERCC1, BRCA1, p53, MRP2, MSH2, TS, mucin, BAG-1, pERK1/2, pAkt-1, microRNA, TopIIA, 15-gene profile, 92-gene profile, 31-gene profile and 14-gene profile. A statistically significant predictive impact was reported for: ERCC1, p53, MSH2, p27, TUBB3, PARP1, ATM, 37-gene profile, 31-gene profile, 15-gene profile and 92-gene profile. Uncertainties regarding the optimal analysis method and cut-off levels for the individual markers may blur the prognostic or predictive signals. None of the possible predictive markers have been validated in prospective trials. Thus, there are no biomarkers ready to use in an adjuvant setting in NSCLC.

Ohashi T, Yoshimasu T, Oura S, et al.
Class III Beta-tubulin Expression in Non-small Cell Lung Cancer: A Predictive Factor for Paclitaxel Response.
Anticancer Res. 2015; 35(5):2669-74 [PubMed] Related Publications
AIM: In order to clarify whether class III beta-tubulin (TUBB3) is a predictive marker for paclitaxel (PTX) chemotherapy, chemosensitivity was examined using an in vitro drug sensitivity assay.
PATIENTS AND METHODS: Twelve specimens from non-small cell lung cancer (NSCLC) patients were obtained for dose-response curve analysis and measurement of the half-maximal effective dose (ED50) of PTX using the histoculture drug response assay (HDRA). Forty-one specimens were evaluated using the HDRA and the inhibition ratio (IR) at a concentration of 25 μg/ml PTX (IR25) was measured. TUBB3 expression was evaluated by H-score in immunohistochemical staining.
RESULTS: The ED50 of PTX was 24.5 ± 8.06 μg/ml. The median H-score was significantly higher (p=0.0076) in the high effective dose (HE)-group (ED50 >25 μg/ml) than in the low effective (LE)-group (ED50 ≤ 25 μg/ml). The mean IR25 was 53.8 ± 26.6%. The median H-score for the high-inhibition ratio (HI)-group (IR25 >50%) was significantly higher (p=0.0337) than the low-inhibition ratio (LI)-group (IR25 ≤ 50%).
CONCLUSION: High TUBB3 expression in NSCLC appeared to correlate with lower PTX sensitivity.

Zou ZQ, Du YY, Sui G, Xu SN
Expression of TS, RRM1, ERCC1, TUBB3 and STMN1 Genes in Tissues of Non-small Cell Lung Cancer and its Significance in Guiding Postoperative Adjuvant Chemotherapy.
Asian Pac J Cancer Prev. 2015; 16(8):3189-94 [PubMed] Related Publications
BACKGROUND: To explore the expression of TS, RRM, ERCC1, TUBB3 and STMN1 genes in the tissues of patients with non-small cell lung cancer (NSCLC) and its significance in guiding the postoperative adjuvant chemotherapy.
MATERIALS AND METHODS: Real time polymerase chain reaction (PCR) was applied to detect the expression of TS, RRM, ERCC1, TUBB3 and STMN1 genes in the tissues of NSCLC patients so as to analyze the relationship between the expression of each gene and the clinical characteristics and to guide the postoperative individualized chemotherapy according to the detection results of NSCLC patients.
RESULTS: Expression of TS gene was evidently higher in patients with adenocarcinoma than those with non-adenocarcinoma (P=0.013) and so was the expression of ERCC1 (P=0.003). The expression of TUBB3 gene was obviously higher in NSCLC patients in phases I/II and IV than those in phase III (P1=0.021; P2=0.004), and it was also markedly higher in patients without lymph node metastasis than those with (P=0.008). The expression of STMN1 gene was apparently higher in patients in phase I/II than those in phase IV (P=0.002). There was no significant difference between the rest gene expression and the clinical characteristics of NSCLC patients (P>0.05). Additionally, the disease- free survival (DFS) was significantly longer in patients receiving gene detections than those without (P=0.021).
CONCLUSIONS: The selection of chemotherapeutic protocols based singly on patients' clinical characteristics has certain blindness. However, the detection of tumor-susceptible genes can guide the postoperative adjuvant chemotherapy and prolong the DFS of NSCLC patients.

Lee JW, Ryu YK, Ji YH, et al.
Hypoxia/reoxygenation-experienced cancer cell migration and metastasis are regulated by Rap1- and Rac1-GTPase activation via the expression of thymosin beta-4.
Oncotarget. 2015; 6(12):9820-33 [PubMed] Free Access to Full Article Related Publications
Signaling by small guanosine triphosphatases (GTPase), Rap1/Rac1, is one of the major pathways controlling cancer cell migration and tumor metastasis. Thymosin beta-4 (Tβ4), an actin-sequestering protein, has been shown to increase migration of cancer cells. Episodes of hypoxia and re-oxygenation (H/R) are an important phenomenon in tumor microenvironment (TME). We investigated whether Tβ4 could play as an intermediary to crosstalk between Rac1- and Rap1- GTPase activation under hypoxia/reoxygenation (H/R) conditions. Inhibition of Tβ4 expression using transcription activator-like effector nucleases (TALEN) significantly decreased lung metastasis of B16F10 cells. Rac1 and Rap1 activity, as well as cancer cell migration, increased following induction of Tβ4 expression in normoxia- or H/R-experienced cells, but were barely detectable in Tβ4-depleted cells. Rap1-regulated Rac1 activity was decreased by a dominant negative Rap1 (Rap1N17), and increased by 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), a Rap1 activator. In contrast, a Rac1-specific inhibitor, NSC23766, and dominant negative Rac1 (Rac1N17) enhanced Tβ4 expression and aberrant Rap1 activity. While NSC23766 and Rac1N17 incompletely inhibited tumor metastasis in vivo, and H/R-experienced cancer cell migration in vitro, more efficient attenuation of cancer cell migration was accomplished by simultaneous inactivation of Rap1 and Rac1 with Rap1N17 and Rac1N17, respectively. These data suggest that a combination therapy targeting both Rap1 and Rac1 activity may be an effective method of inhibiting tumor metastasis.

Mariani M, Karki R, Spennato M, et al.
Class III β-tubulin in normal and cancer tissues.
Gene. 2015; 563(2):109-14 [PubMed] Related Publications
Microtubules are polymeric structures composed of tubulin subunits. Each subunit consists of a heterodimer of α- and β-tubulin. At least seven β-tubulin isotypes, or classes, have been identified in human cells, and constitutive isotype expression appears to be tissue specific. Class III β-tubulin (βIII-tubulin) expression is normally confined to testes and tissues derived from neural cristae. However, its expression can be induced in other tissues, both normal and neoplastic, subjected to a toxic microenvironment characterized by hypoxia and poor nutrient supply. In this review, we will summarize the mechanisms underlying βIII-tubulin constitutive and induced expression. We will also illustrate its capacity to serve as a biomarker of neural commitment in normal tissues and as a pure prognostic biomarker in cancer patients.

Kanojia D, Morshed RA, Zhang L, et al.
βIII-Tubulin Regulates Breast Cancer Metastases to the Brain.
Mol Cancer Ther. 2015; 14(5):1152-61 [PubMed] Free Access to Full Article Related Publications
Brain metastases occur in about 10% to 30% of breast cancer patients, which culminates in a poor prognosis. It is, therefore, critical to understand the molecular mechanisms underlying brain metastatic processes to identify relevant targets. We hypothesized that breast cancer cells must express brain-associated markers that would enable their invasion and survival in the brain microenvironment. We assessed a panel of brain-predominant markers and found an elevation of several neuronal markers (βIII-tubulin, Nestin, and AchE) in brain metastatic breast cancer cells. Among these neuronal predominant markers, in silico analysis revealed overexpression of βIII-tubulin (TUBB3) in breast cancer brain metastases (BCBM) and its expression was significantly associated with distant metastases. TUBB3 knockdown studies were conducted in breast cancer models (MDA-Br, GLIM2, and MDA-MB-468), which revealed significant reduction in their invasive capabilities. MDA-Br cells with suppressed TUBB3 also demonstrated loss of key signaling molecules such as β3 integrin, pFAK, and pSrc in vitro. Furthermore, TUBB3 knockdown in a brain metastatic breast cancer cell line compromised its metastatic ability in vivo, and significantly improved survival in a brain metastasis model. These results implicate a critical role of TUBB3 in conferring brain metastatic potential to breast cancer cells.

Fu X, Cui P, Chen F, et al.
Thymosin β4 promotes hepatoblastoma metastasis via the induction of epithelial-mesenchymal transition.
Mol Med Rep. 2015; 12(1):127-32 [PubMed] Free Access to Full Article Related Publications
Hepatoblastoma (HB) is the most common malignant hepatic tumor in children and complete surgical resection offers the highest possibility for cure in this disease. Tumor metastasis is the principle obstacle to the development of efficient treatments for patients with HB. The present study aimed to measure the expression levels of thymosin β4 (Tβ4) in liver samples from patients with HB and to investigate the involvement of Tβ4 in HB metastasis. The expression of Tβ4 was significantly higher in liver samples from patients with metastatic HB and in the HepG2 metastatic HB cell line, compared with that in adjacent healthy liver samples and in the L02 healthy hepatic cell line. By contrast, the expression levels of epithelial-cadherin (E-cadherin) and cytosolic accumulation of β-catenin, the two most prominent markers involved in epithelial-mesenchymal transition (EMT), were reduced in liver specimens from patients with metastatic HB compared with that of healthy adjacent control tissue. HepG2 cells were transfected with small interfering-RNA in order to downregulate Tβ4 gene expression. This resulted in a reduced cell migratory capacity compared with control cells. Tβ4 gene expression knockdown significantly inhibited transforming growth factor β1-mediated-EMT in vitro by upregulating the expression of E-cadherin. The results of the present study suggested that Tβ4 may promote HB metastasis via the induction of EMT, and that Tβ4 may therefore be a target for the development of novel treatments for patients with HB.

Marrelli M, Paduano F, Tatullo M
Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.
J Dent Res. 2015; 94(6):843-52 [PubMed] Related Publications
It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell-based therapies to treat neurologic diseases.

Jiang H, Wang H, Wang S, et al.
Expression of ERCC1, TYMS, RRM1, TUBB3, non-muscle myosin II, myoglobin and MyoD1 in lung adenocarcinoma pleural effusions predicts survival in patients receiving platinum-based chemotherapy.
Mol Med Rep. 2015; 11(5):3523-32 [PubMed] Related Publications
The association between the expression of excision repair cross‑complementing gene 1 (ERCC1), thymidylate synthase (TYMS), ribonuleotide reductase M1 (RRM1), βIII‑tubulin (TUBB3), non‑muscle myosin II, myoglobin and MyoD1 in metastatic lung adenocarcinoma, and clinical outcomes with platinum‑based chemotherapy treatment is not well‑established. Recently, increasing attention has been focused on the involvement of ERCC1, TYMS, RRM1 and TUBB3 in the development of drug resistance. There has been less research into the role of muscle myosin II, myoglobin and MyoD1 in the pathogenesis of lung cancer, although these genes are known to have important functions within tumor cells. In the current study, malignant pleural effusion from 116 patients with untreated lung adenocarcinoma diagnosed between 2011 and 2012, were collected. The protein expression levels of ERCC1, TYMS, RRM1 and TUBB3 were evaluated with immunocytochemistry and western blot analysis. The expression levels of non‑muscle myosin II, myoglobin and MyoD1 were measured in a subset of 50 patients, treated with platinum‑based chemotherapy. The association of each of these seven factors with one another, as well as with patient survival were analyzed. Immunohistochemistry demonstrated that the percentage of pleural fluid samples from patients with lung adenocarcinoma expressing ERCC1, TYMS, RRM1 and TUBB3 was 37, 36.2, 82.7 and 69.8%, respectively. In the subset of 50 patients in whom the remaining factors were analyzed, the percentage expressing non‑muscle myosin II was 48%, for myoglobin the figure was 40% and for MyoD1 it was 38%. There was a positive correlation between each pair of the above seven molecules with the exception of TYMS and RRM1. Expression of ERCC1, TYMS, TUBB3, non‑muscle myosin II, myoglobin and MyoD1 genes was associated with decreased survival in patients with metastatic lung adenocarcinoma. Expression of ERCC1, TYMS, TUBB3, non‑muscle myosin II, myoglobin and MyoD1 was also associated with decreased survival rates of patients with lung adenocarcinoma treated with platinum‑based chemotherapy. These factors may be used as clinical biomarkers to predict the biological behavior and chemoresistance of tumor cells, and the survival of patients with lung carcinoma.

McCarroll JA, Sharbeen G, Liu J, et al.
βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer.
Oncotarget. 2015; 6(4):2235-49 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, β-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of β-tubulins in pancreatic cancer are unknown. We measured the expression of different β-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Next, we used RNAi to silence βIII-tubulin expression in pancreatic cancer cells, and measured cell growth in the absence and presence of chemotherapeutic drugs. Finally, we assessed the role of βIII-tubulin in regulating tumor growth and metastases using an orthotopic pancreatic cancer mouse model. We found that βIII-tubulin is highly expressed in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Further, we demonstrated that silencing βIII-tubulin expression reduced pancreatic cancer cell growth and tumorigenic potential in the absence and presence of chemotherapeutic drugs. Finally, we demonstrated that suppression of βIII-tubulin reduced tumor growth and metastases in vivo. Our novel data demonstrate that βIII-tubulin is a key player in promoting pancreatic cancer growth and survival, and silencing its expression may be a potential therapeutic strategy to increase the long-term survival of pancreatic cancer patients.

Wang H, Yang B, Geng T, et al.
Tissue-specific selection of optimal reference genes for expression analysis of anti-cancer drug-related genes in tumor samples using quantitative real-time RT-PCR.
Exp Mol Pathol. 2015; 98(3):375-81 [PubMed] Related Publications
Gene transcription analysis in clinical tumor samples can help with diagnosis, prognosis, and treatment of cancers. We aimed to identify the optimal reference genes for reliable expression analysis in various tumor samples by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Using a one-step TaqMan-based qRT-PCR, 5 commonly used reference genes (ACTB, GAPDH, RPLPO, GUSB, and TFRC) and 10 anticancer drug-related genes (TYMS, RRM1, TUBB3, STMN1, TOP2A, EGFR, VEGFR2, HER2, ERCC1, and BRCA1) were analyzed in 327 tissue samples from lung, rectal, colon, gastric, esophageal, and breast tumors. According to the expression stability assessments obtained by using three programs (geNorm, NormFinder, and BestKeeper) and a comprehensive ranking method, the optimal reference genes for lung, gastric, esophageal, and breast tumors were RPLPO, GAPDH, ACTB, and ACTB, respectively. For rectal tumors, a combination of the 3 most stable genes (GUSB, ACTB, and RPLPO) was suitable for qRT-PCR, whereas for colon tumors, a combination of the 4 most stable genes (GAPDH, ACTB, GUSB, and RPLPO) was optimal for qRT-PCR. Based on the expression data of target genes normalized against selected reference genes, the principal component analysis revealed 4 expression patterns in 6 different tissues. One pattern was observed in gastric, rectal, and colon tumor tissues, which are gastrointestinal tumors. Expressions in the breast, lung, and esophageal tissues were separately represented as one pattern. Our results could facilitate the practice of personalized cancer medicine based on the gene expression profile of the patients.

Duran GE, Wang YC, Francisco EB, et al.
Mechanisms of resistance to cabazitaxel.
Mol Cancer Ther. 2015; 14(1):193-201 [PubMed] Free Access to Full Article Related Publications
We studied mechanisms of resistance to the novel taxane cabazitaxel in established cellular models of taxane resistance. We also developed cabazitaxel-resistant variants from MCF-7 breast cancer cells by stepwise selection in drug alone (MCF-7/CTAX) or drug plus the transport inhibitor PSC-833 (MCF-7/CTAX-P). Among multidrug-resistant (MDR) variants, cabazitaxel was relatively less cross-resistant than paclitaxel and docetaxel (15- vs. 200-fold in MES-SA/Dx5 and 9- vs. 60-fold in MCF-7/TxT50, respectively). MCF-7/TxTP50 cells that were negative for MDR but had 9-fold resistance to paclitaxel were also 9-fold resistant to cabazitaxel. Selection with cabazitaxel alone (MCF-7/CTAX) yielded 33-fold resistance to cabazitaxel, 52-fold resistance to paclitaxel, activation of ABCB1, and 3-fold residual resistance to cabazitaxel with MDR inhibition. The MCF-7/CTAX-P variant did not express ABCB1, nor did it efflux rhodamine-123, BODIPY-labeled paclitaxel, and [(3)H]-docetaxel. These cells are hypersensitive to depolymerizing agents (vinca alkaloids and colchicine), have reduced baseline levels of stabilized microtubules, and impaired tubulin polymerization in response to taxanes (cabazitaxel or docetaxel) relative to MCF-7 parental cells. Class III β-tubulin (TUBB3) RNA and protein were elevated in both MCF-7/CTAX and MCF-7/CTAX-P. Decreased BRCA1 and altered epithelial-mesenchymal transition (EMT) markers are also associated with cabazitaxel resistance in these MCF-7 variants, and may serve as predictive biomarkers for its activity in the clinical setting. In summary, cabazitaxel resistance mechanisms include MDR (although at a lower level than paclitaxel and docetaxel), and alterations in microtubule dynamicity, as manifested by higher expression of TUBB3, decreased BRCA1, and by the induction of EMT.

Han Y, Yu DP, Zhou SJ, et al.
Associations between clinical characteristics and oncogene expression in patients with non-small cell lung cancer.
Genet Mol Res. 2014; 13(4):8913-24 [PubMed] Related Publications
More than 40 oncogenes associated with non-small cell lung cancer (NSCLC) have been identified with varied gene expression. The correlations between specific clinical characteristics and oncogene expression in NSCLC patients were examined. From October 2011 to September 2012, a total of 60 patients with NSCLC (male:female, 34:24; mean age, 59.5 ± 10.6 years; age range, 31-81 years) were diagnosed and evaluated for treatment with radical resection at a single facility. Eligible patients exhibiting tumor node metastasis (TNM) stage I-III NSCLC confirmed by post-surgical pathology were included. mRNA expression was detected by branched DNA-liquidchip technology (bDNA-LCT) and mutations were detected at EGFR exons 18, 19, 20, and 21, KRAS exons 2 and 3, BRAF and PIK3CA exons 9 and 20. Correlations between gene expression at mutations and clinical characteristics of gender, age, histological type, degree of differentiation, smoking status, immunohistochemical (IHC) evaluation of TTF-1, TNM staging, and discrete age ("nage") were examined. Significant associations were observed between IHC staining for TTF-1 and histological type (P = 0.00001) and with BRAC1, TYMS, RRM1, and TUBB3 expression (P = 0.0187, 0.0051, 0.024, and 0.0238, respectively). Significant cross-correlations were observed between TYMS, BRAC1, TOP2A, STMN1, TUBB3, and RRM1 expression (P < 0.05), but not between EGFR exon 21, KRAS exon 2, and PIK3CA exon 9 expression and any other mutation expression (P > 0.05). Relationships between clinical characteristics and oncogene expression in NSCLC, particularly those of TTF-1 level and smoking status, may be useful indicators of prognosis and development of anti-cancer drug resistance.

Bordji K, Grandval A, Cuhna-Alves L, et al.
Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells.
FEBS J. 2014; 281(23):5220-36 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is the deadliest form of primary brain cancer. Several reports have indicated aberrant levels of βIII-tubulin (βIII-t) in human GBM. βIII-t overexpression was linked to increasing malignancy in glial tumors and described to determine the onset of resistance to chemotherapy. Furthermore, a linkage was suggested between the induction of βIII-t expression and hypoxia, a hallmark of GBM. We investigated the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the regulation of the βIII-t gene (TUBB3) in GBM cells cultured in either normoxia or hypoxia. We report for the first time that HIF-2α, but not HIF-1α, is involved in hypoxia-induced βIII-t expression in GBM cells. By gene-reporter experiments and site-directed mutagenesis, we found that two overlapping hypoxia response elements located in the 3' UTR of the gene were involved in the activation of TUBB3. This occurred through an enhanced binding of HIF-2α to the 3' region, as revealed by an electrophoretic mobility shift assay. Conversely, the promoter of TUBB3 was shown to be inactive. In addition, we observed that HIF-1α exhibits a repressive effect on βIII-t expression in cells cultured in normoxia. These results show that both HIF-α isoforms have opposing effects on βIII-t expression in GBM cells. Finally, we observed that hypoxia-induced βIII-t expression is well correlated with the kinetics of HIF-2α protein stabilization. The evidence for a direct linkage between HIF-2α and increased expression of βIII-t by hypoxia suggests that an anti-HIF-2α strategy (i.e. by downregulating βIII-t) could be of potential interest for improving the treatment of GBM.

Mishra DK, Scott KL, Wardwell-Ozgo JM, et al.
Circulating tumor cells from 4D model have less integrin beta 4 expression.
J Surg Res. 2015; 193(2):745-53 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Currently, there is no in vitro or ex vivo model that can isolate circulating tumor cells (CTCs). Recently, we developed a four-dimensional (4D) lung cancer model that allows for the isolation of CTCs. We postulated that these cells have different properties than parental (2D) cells.
MATERIALS AND METHODS: We obtained CTCs by growing A549, H1299, 393P, and 344SQ cell lines on the 4D lung model. The CTCs were functionally characterized in vitro and gene expression of the cell adhesion molecules was compared with respective 2D cells. Integrin beta 4 (ITGB4) was further investigated by stably transfecting the A549 and H1299 cells.
RESULTS: We found that all cell lines produced CTCs, and that CTCs from the 4D model were less adherent to the plastic and have a slower growth rate than respective 2D cells (P < 0.01). Most of the cell adhesion molecules were downregulated (P < 0.05) in CTCs, and ITGB4 was the common molecule, significantly more underexpressed in CTCs from all cell lines than their respective 2D cells. The modulation of ITGB4 led to a differential function of 2D cells.
CONCLUSIONS: CTCs from the 4D model have different transcriptional, translational, and in vitro characteristics than the same cells grown on a petri dish, and these CTCs from the 4D model have the properties of CTCs that are responsible for metastasis.

Piao Z, Hong CS, Jung MR, et al.
Thymosin β4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/β-catenin signaling pathway.
Biochem Biophys Res Commun. 2014; 452(3):858-64 [PubMed] Related Publications
Thymosin β4 (Tβ4) is a 43-amino-acid peptide involved in many biological processes. However, the precise molecular signaling mechanism(s) of Tβ4 in cell invasion and migration remain unclear. In this study, we show that Tβ4 was significantly overexpressed in colorectal cancer tissues compared to adjacent normal tissues and high levels of Tβ4 were correlated with stage of colorectal cancer, and that Tβ4 expression was associated with morphogenesis and EMT. Tβ4-upregulated cancer cells showed increased adhesion, invasion and migration activity, whereas Tβ4-downregulated cells showed decreased activities. We also demonstrated that Tβ4 interacts with ILK, which promoted the phosphorylation and activation of AKT, the phosphorylation and inactivation of GSK3β, the expression and nuclear localization of β-catenin, and integrin receptor activation. These results suggest that Tβ4 is an important regulator of the ILK/AKT/β-catenin/Integrin signaling cascade to induce cell invasion and migration in colorectal cancer cells, and is a potential target for cancer treatment.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TUBB3, Cancer Genetics Web: http://www.cancer-genetics.org/TUBB3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999