SKP2

Gene Summary

Gene:SKP2; S-phase kinase associated protein 2
Aliases: p45, FBL1, FLB1, FBXL1
Location:5p13.2
Summary:This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. The protein encoded by this gene belongs to the Fbls class; in addition to an F-box, this protein contains 10 tandem leucine-rich repeats. This protein is an essential element of the cyclin A-CDK2 S-phase kinase. It specifically recognizes phosphorylated cyclin-dependent kinase inhibitor 1B (CDKN1B, also referred to as p27 or KIP1) predominantly in S phase and interacts with S-phase kinase-associated protein 1 (SKP1 or p19). In addition, this gene is established as a protooncogene causally involved in the pathogenesis of lymphomas. Alternative splicing of this gene generates three transcript variants encoding different isoforms. [provided by RefSeq, Jul 2011]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:S-phase kinase-associated protein 2
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (17)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SKP2 (cancer-related)

Yang Y, Lu Y, Wang L, et al.
Skp2 is associated with paclitaxel resistance in prostate cancer cells.
Oncol Rep. 2016; 36(1):559-66 [PubMed] Related Publications
Prostate cancer is the most commonly diagnosed tumor in men in the United States. Patients with hormone-refractory prostate cancer are often treated with paclitaxel, but most of them eventually develop drug resistance. S-phase kinase associated protein 2 (Skp2) is a component of the SCF (Skp1-Cullin1-F-box) type of E3 ubiquitin ligase complexes. In the present study, we investigated the role of Skp2 in paclitaxel-resistant DU145-TxR or PC-3-TxR cells by Skp2 silencing or using Skp2 inhibitors. We first confirmed that Skp2 expression is up-regulated in DU145-TxR or PC-3-TxR cells compared with their parental cells DU145 or PC-3, respectively. Knockdown of Skp2 or Skp2 inhibitor treatment in DU145-TxR or PC-3-TxR cells restored paclitaxel sensitivity. E-cadherin was decreased while Vimentin was increased in PC-3-TxR or DU145-TxR cells. In addition, p27 expression was inversely correlated with Skp2 expression in DU145-TxR or PC-3-TxR cells. Moreover, p27 was found to increase in both Skp2 silencing PC-3-TxR and DU145-TxR cells. These results suggest that Skp2 is associated with prostate cancer cell resistance to paclitaxel. Skp2 may be a potential therapeutic target for drug-resistant prostate cancer.

Panaccione A, Chang MT, Carbone BE, et al.
NOTCH1 and SOX10 are Essential for Proliferation and Radiation Resistance of Cancer Stem-Like Cells in Adenoid Cystic Carcinoma.
Clin Cancer Res. 2016; 22(8):2083-95 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
PURPOSE: Although the existence of cancer stem cells (CSC) in adenoid cystic carcinoma (ACC) has been proposed, lack of assays for their propagation and uncertainty about molecular markers prevented their characterization. Our objective was to isolate CSC from ACC and provide insight into signaling pathways that support their propagation.
EXPERIMENTAL DESIGN: To isolate CSC from ACC and characterize them, we used ROCK inhibitor-supplemented cell culture, immunomagnetic cell sorting, andin vitro/in vivoassays for CSC viability and tumorigenicity.
RESULTS: We identified in ACC CD133-positive CSC that expressed NOTCH1 and SOX10, formed spheroids, and initiated tumors in nude mice. CD133(+)ACC cells produced activated NOTCH1 (N1ICD) and generated CD133(-)cells that expressed JAG1 as well as neural differentiation factors NR2F1, NR2F2, and p27Kip1. Knockdowns ofNOTCH1, SOX10, and their common effectorFABP7had negative effects on each other, inhibited spheroidogenesis, and induced cell death pointing at their essential roles in CSC maintenance. Downstream effects ofFABP7knockdown included suppression of a broad spectrum of genes involved in proliferation, ribosome biogenesis, and metabolism. Among proliferation-linked NOTCH1/FABP7 targets, we identified SKP2 and its substrate p27Kip1. A γ-secretase inhibitor, DAPT, selectively depleted CD133(+)cells, suppressed N1ICD and SKP2, induced p27Kip1, inhibited ACC growthin vivo, and sensitized CD133(+)cells to radiation.
CONCLUSIONS: These results establish in the majority of ACC the presence of a previously uncharacterized population of CD133(+)cells with neural stem properties, which are driven by SOX10, NOTCH1, and FABP7. Sensitivity of these cells to Notch inhibition and their dependence on SKP2 offer new opportunities for targeted ACC therapies.

Zhang B, Xu J, Li C, et al.
MBD1 is an Epigenetic Regulator of KEAP1 in Pancreatic Cancer.
Curr Mol Med. 2016; 16(4):404-11 [PubMed] Related Publications
BACKGROUND: MBD1 (Methyl-CpG Binding Domain Protein 1) is highly expressed in pancreatic cancer. Nrf2 (NF-E2 p45-related factor 2) and the 'antioxidant response element' (ARE)-driven genes that NRF2 controls are frequently upregulated in pancreatic cancer and correlate with poor survival. Keap1 (Kelch-like ECH-associated protein 1) is a dominant negative regulator of NRF2 and is reported to be epigenetically regulated by promoter methylation. However, the role of MBD1 with antioxidant response and its association with KEAP1 has never been reported before and remains unclear.
OBJECTIVE: We investigated the role of MBD1 in antioxidant response and its regulatory function in KEAP1 transcription in pancreatic cancer cells.
METHOD: MBD1 was silenced to examine its role in antioxidant response. To explore the underlying mechanism, transcriptional and protein levels of KEAP1 was examined. The correlation between MBD1 and KEAP1 was confirmed in pancreatic cancer tissue samples by using immunohistochemistry (IHC). Dualluciferase reporter assay and Chromatin immunoprecipitation (ChIP) were used to elucidate he mechanism of MBD1 in KEAP1 transcriptional control. Moreover, co-immunoprecipitation (CoIP) assay was performed to uncover the regulatory role of MBD1 in KEAP1 transcription through its association with c-myc.
RESULTS: MBD1 silencing decreased antioxidant response and the related ARE target genes through epigenetic regulation of KEAP1. MBD1 negatively correlated with KEAP1 in pancreatic cancer tissue samples. Moreover, c-myc was a MBD1 interaction partner in KEAP1 epigenetic regulation.
CONCLUSION: MBD1 can induce antioxidant response in pancreatic cancer through down-regulation of KEAP1. c-myc plays a key role in MBD1 mediated epigenetic silencing of KEAP1.

Wang X, He B, Gao Y, Li Y
FOXR2 contributes to cell proliferation and malignancy in human hepatocellular carcinoma.
Tumour Biol. 2016; 37(8):10459-67 [PubMed] Related Publications
Forkhead box R2 (FOXR2), a member of forkhead box (FOX) family, has been identified as an oncogene in medulloblastoma and breast cancer recently. However, the expression and function of FOXR2 in hepatocellular carcinoma cell (HCC) are still unclear. Here, we report that FOXR2 is frequently upregulated in 25/42 (59.5 %) of HCC specimens compared with neighboring non-cancerous tissues in messenger RNA (mRNA) level and further confirmed by immunohistochemistry analysis in protein level. Cellular function analyses revealed that FOXR2 promoted cell growth and colony formation, whereas knockdown of FOXR2 by RNA inference inhibited cell growth and decreased the growth ability of HCC cells in soft agar. Moreover, we also found FOXR2 overexpression facilitated the development of tumor xenografts in nude mice model. In addition, we validated β-catenin, Skp2, c-Myc, and Gli-1 as the potential downstream effectors of FOXR2 in the regulation of cell proliferation and malignancy by quantitative real-time PCR analysis. Collectively, our data suggest that FOXR2 promotes cell proliferation and malignancy in HCC and could be a novel promising therapeutic target for this disease.

Kibel AS, Ahn J, Isikbay M, et al.
Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma.
Prostate. 2016; 76(5):479-90 [PubMed] Related Publications
BACKGROUND: Because a significant number of patients with prostate cancer (PCa) are diagnosed with disease unlikely to cause harm, genetic markers associated with clinically aggressive PCa have potential clinical utility. Since cell cycle checkpoint dysregulation is crucial for the development and progression of cancer, we tested the hypothesis that common germ-line variants within cell cycle genes were associated with aggressive PCa.
METHODS: Via a two-stage design, 364 common sequence variants in 88 genes were tested. The initial stage consisted of 258 aggressive PCa patients and 442 controls, and the second stage added 384 aggressive PCa Patients and 463 controls. European-American and African-American samples were analyzed separately. In the first stage, SNPs were typed by Illumina Goldengate assay while in the second stage SNPs were typed by Pyrosequencing assays. Genotype frequencies between cases and controls were compared using logistical regression analysis with additive, dominant and recessive models.
RESULTS: Eleven variants within 10 genes (CCNC, CCND3, CCNG1, CCNT2, CDK6, MDM2, SKP2, WEE1, YWHAB, YWHAH) in the European-American population and nine variants in 7 genes (CCNG1, CDK2, CDK5, MDM2, RB1, SMAD3, TERF2) in the African-American population were found to be associated with aggressive PCa using at least one model. Of particular interest, CCNC (rs3380812) was associated with risk in European-American cohorts from both institutions. CDK2 (rs1045435) and CDK5 (rs2069459) were associated with risk in the African-American cohorts from both institutions. Lastly, variants within MDM2 and CCNG1 were protective for aggressive PCa in both ethnic groups.
CONCLUSIONS: This study confirms that polymorphisms within cell cycle genes are associated with clinically aggressive PCa. Validation of these markers in additional populations is necessary, but these markers may help identify patients at risk for potentially lethal carcinoma.

Furfaro AL, Traverso N, Domenicotti C, et al.
The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance.
Oxid Med Cell Longev. 2016; 2016:1958174 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.

Borriello A, Naviglio S, Bencivenga D, et al.
Histone Deacetylase Inhibitors Increase p27(Kip1) by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation.
Oxid Med Cell Longev. 2016; 2016:2481865 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Histone deacetylase inhibitors (HDACIs) represent an intriguing class of pharmacologically active compounds. Currently, some HDACIs are FDA approved for cancer therapy and many others are in clinical trials, showing important clinical activities at well tolerated doses. HDACIs also interfere with the aging process and are involved in the control of inflammation and oxidative stress. In vitro, HDACIs induce different cellular responses including growth arrest, differentiation, and apoptosis. Here, we evaluated the effects of HDACIs on p27(Kip1), a key cyclin-dependent kinase inhibitor (CKI). We observed that HDACI-dependent antiproliferative activity is associated with p27(Kip1) accumulation due to a reduced protein degradation. p27(Kip1) removal requires a preliminary ubiquitination step due to the Skp2-SCF E3 ligase complex. We demonstrated that HDACIs increase p27(Kip1) stability through downregulation of Skp2 protein levels. Skp2 decline is only partially due to a reduced Skp2 gene expression. Conversely, the protein decrease is more profound and enduring compared to the changes of Skp2 transcript. This argues for HDACIs effects on Skp2 protein posttranslational modifications and/or on its removal. In summary, we demonstrate that HDACIs increase p27(Kip1) by hampering its nuclear ubiquitination/degradation. The findings might be of relevance in the phenotypic effects of these compounds, including their anticancer and aging-modulating activities.

Gee HE, Buffa FM, Harris AL, et al.
MicroRNA-Related DNA Repair/Cell-Cycle Genes Independently Associated With Relapse After Radiation Therapy for Early Breast Cancer.
Int J Radiat Oncol Biol Phys. 2015; 93(5):1104-14 [PubMed] Related Publications
PURPOSE: Local recurrence and distant failure after adjuvant radiation therapy for breast cancer remain significant clinical problems, incompletely predicted by conventional clinicopathologic markers. We had previously identified microRNA-139-5p and microRNA-1274a as key regulators of breast cancer radiation response in vitro. The purpose of this study was to investigate standard clinicopathologic markers of local recurrence in a contemporary series and to establish whether putative target genes of microRNAs involved in DNA repair and cell cycle control could better predict radiation therapy response in vivo.
METHODS AND MATERIALS: With institutional ethics board approval, local recurrence was measured in a contemporary, prospectively collected series of 458 patients treated with radiation therapy after breast-conserving surgery. Additionally, independent publicly available mRNA/microRNA microarray expression datasets totaling >1000 early-stage breast cancer patients, treated with adjuvant radiation therapy, with >10 years of follow-up, were analyzed. The expression of putative microRNA target biomarkers--TOP2A, POLQ, RAD54L, SKP2, PLK2, and RAG1--were correlated with standard clinicopathologic variables using 2-sided nonparametric tests, and to local/distant relapse and survival using Kaplan-Meier and Cox regression analysis.
RESULTS: We found a low rate of isolated local recurrence (1.95%) in our modern series, and that few clinicopathologic variables (such as lymphovascular invasion) were significantly predictive. In multiple independent datasets (n>1000), however, high expression of RAD54L, TOP2A, POLQ, and SKP2 significantly correlated with local recurrence, survival, or both in univariate and multivariate analyses (P<.001). Low RAG1 expression significantly correlated with local recurrence (multivariate, P=.008). Additionally, RAD54L, SKP2, and PLK2 may be predictive, being prognostic in radiation therapy-treated patients but not in untreated matched control individuals (n=107; P<.05).
CONCLUSIONS: Biomarkers of DNA repair and cell cycle control can identify patients at high risk of treatment failure in those receiving radiation therapy for early breast cancer in independent cohorts. These should be further investigated prospectively, especially TOP2A and SKP2, for which targeted therapies are available.

He W, Feng J, Zhang Y, et al.
microRNA-186 inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma by targeting SKP2.
Lab Invest. 2016; 96(3):317-24 [PubMed] Related Publications
miR-186 has been demonstrated to have a significant role as a tumor suppressor in many types of cancers. Nevertheless, its biological function in esophageal squamous cell carcinoma (ESCC) remains unknown. In the present study, we found that the expression level of miR-186 was downregulated in ESCC in comparison with the adjacent normal tissues and was significantly associated with differentiation level, TNM stage, and lymph node metastasis of ESCC. Functional experiments revealed that enforced overexpression of miR-186 in ESCC cells suppressed the proliferation, invasion, and induced the apoptosis of cells. Luciferase reporter assay and western blotting analysis were performed to verify the target gene regulated by miR-186, SKP2. Our findings established that the miR-186 has a suppressive role in ESCC progression via SKP2-mediated pathway, and this implies that miR-186 could be a potential therapeutic target for ESCC.

Kitagawa K, Kitagawa M
The SCF-type E3 Ubiquitin Ligases as Cancer Targets.
Curr Cancer Drug Targets. 2016; 16(2):119-29 [PubMed] Related Publications
The ubiquitin system controls protein stability and function. F-box proteins form SCF (SKP1-Cullin1-F-box protein)-type ubiquitin (E3) ligases to selectively target their substrates for degradation via the ubiquitin-proteasome pathway. Here, we review F-box proteins associated with cancer development. S-phase kinase-associated protein 2 (SKP2) (also known as FBXL1) is often overexpressed in human cancers, and functions as an oncogenic E3 ligase to degrade tumor suppressor gene products. Moreover, F-box/WD repeat-containing protein 7 (FBXW7) (also known as Fbw7) is often mutated in human cancers and functions as a tumor suppressive E3 ligase targeting oncogenic proteins for degradation. SKP2 is a potential drug target for cancer therapy and FBXW7 is useful in determining patient diagnosis, prognosis, and drug sensitivity. In this review, we also discuss other F-box proteins involved in cancer-associated cellular processes such as cell cycle control, epigenetic regulation, epithelial mesenchymal transition, apoptosis/survival, drug resistance, and DNA-damage responses.

Ding M, Li X, Qiu T
Combination of multiple gene markers to detect circulating tumor cells in the peripheral blood of patients with non-small cell lung cancer using real-time PCR.
Genet Mol Res. 2015; 14(4):13033-40 [PubMed] Related Publications
Our study aims to determine the clinical significance of human telomerase reverse transcriptase (hTERT), S-phase kinase-associated protein 2 (Skp2) and thyroid transcription factor-1 (TTF-1) mRNA expressions in peripheral blood (PB) of patients with non-small cell lung cancer (NSCLC). Real-time polymerase chain reaction was used to investigate the gene expressions of hTERT, Skp2, TTF-1 as in the PB of 60 patients with NSCLC and 20 benign lung diseases. Statistical analyses were performed to examine the correlation between the expression of these mRNA markers and the clinical pathological features of NSCLC. We found that hTERT, Skp2, and TTF-1 were overexpressed in the PB of NSCLC patients, and demonstrated high specificity as well as sensitivity when used for NSCLC diagnosis. Significant correlation was observed between disease stage and the three markers (P < 0.05). This study suggests that the genes hTERT, Skp2, and TTF-1 play important roles in tumor genesis and development, and can be used as diagnosis markers in NSCLC patients. The expression of three markers in combination can significantly improve the sensitivity and accuracy of diagnosis relative to single marker diagnosis, and provides a reliable method to detect CTCs in the PB. Additionally, these markers can also be used as diagnostic markers for clinical stages of NSCLC.

Su L, Han D, Wu J, Huo X
Skp2 regulates non-small cell lung cancer cell growth by Meg3 and miR-3163.
Tumour Biol. 2016; 37(3):3925-31 [PubMed] Related Publications
Maternally expressed gene 3 (Meg3) encodes a long non-coding RNA that has been shown to play a role in tumorigenesis. Skp2 is a component of the E3 ubiquitin ligase SCF that specifically promotes the ubiquitination-associated degradation of CDK inhibitor p27, and has been shown to promote cancer cell growth in different types of cancers, including non-small cell lung cancer (NSCLC). Nevertheless, a regulatory relationship between Meg3 and Skp2 has not been acknowledged. Here, we showed that NSCLC specimens had significant higher levels of Skp2 and significantly lower levels of Meg3, compared to paired non-tumor lung tissue. The levels of Meg3 and Skp2 were inversely correlated in NSCLC specimens. Patients with low Meg3 levels had a poor survival. Overexpression of Meg3 decreased Skp2 protein and increased p27 protein, while depletion of Meg3 increased Skp2 protein and decreased p27 protein in NSCLC cells, without altering Skp2 mRNA. These data suggest that the Skp2 may be regulated by Meg3 at post-transcriptional level. Bioinformatics analyses showed that miR-3163 bound to 3'-UTR of Skp2 mRNA in NSCLC cells to inhibit its translation, which was supported by luciferase reporter assay. Meg3 augmented the effects of miR-3163 on Skp2 mRNA, possibly through binding-induced function enhancement, which was supported by the double fluorescent in situ hybridization showing co-localized intracellular Meg3 and miR-3163 signals in NSCLC cells. The miR-3163 levels in NSCLC were not different from in NT, suggesting that the regulation of Skp2 in NSCLC by miR-3163 may require coordination of Meg3. Thus, our data suggest that Meg3 and miR-3163 may coordinate suppression of translation of Skp2 mRNA in NSCLC cells to inhibit NSCLC cell growth.

Uddin S, Bhat AA, Krishnankutty R, et al.
Involvement of F-BOX proteins in progression and development of human malignancies.
Semin Cancer Biol. 2016; 36:18-32 [PubMed] Related Publications
The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.

Vriend J, Reiter RJ
Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system--a review.
Mol Cell Endocrinol. 2015; 417:1-9 [PubMed] Related Publications
Melatonin inhibits human breast cancer cells stimulated with estrogen. This antiproliferative action depends on the presence of the estrogen receptor alpha (ERα) in the human MCF-7 cell line and is strictly dose-dependent. Since researchers concerned with melatonin and breast cancer have not considered the relevance of the ubiquitin-proteasome system to this research in this review we do so. The fact that the first breast cancer susceptibility gene to be identified, Brca1, functions as a ubiquitin ligase indicates that the ubiquitin-proteasome system has a role in regulating susceptibility to breast cancer. While mutations of this gene increase the incidence of breast cancer, the wild type gene suppresses estrogen-dependent transcriptional events relying on the estrogen receptor ERα. Three other ubiquitin ligases, SCF(Skp2), E6AP and APC, interact directly with ERα at the ERE and AP-1 promoters of ERα target genes. Melatonin, like proteasome inhibitors, decreases estrogen-induced gene transcription. Indeed, it has been reported that melatonin specifically inhibits estrogen-induced transcription mediated by ERα at the ERE and AP1 gene promoters. Herein, we present a model in which the inhibitory action of melatonin on MCF-7 cells is mediated, directly or indirectly, by the ubiquitin-proteasome system. In this model ERα, apoptotic proteins, and cell cycle proteins, all influenced by melatonin, are substrates of key ubiquitin ligases including SCF(Skp2), E6AP, and SCF(B-TrCP). Since dysfunction of the ubiquitin-proteasome system is a risk factor for breast cancer, this model provides a context in which to test the clinical potential, and limitations, of melatonin and proteasome inhibitors.

Sun YJ, Wang XK, Li BJ
S-phase kinase-associated protein 2 expression interference inhibits breast cancer cell proliferation.
Genet Mol Res. 2015; 14(3):9244-52 [PubMed] Related Publications
We investigated the expression of S-phase kinase-associated protein 2 (SKP2) in breast cancer tissues, and the effects of SKP2-specific small interfering RNA (siRNA) interference on breast cancer cell proliferation. Thirty subjects provided breast cancer tissue samples and 18 subjects provided normal breast specimens for this study. The expression of SKP2 in breast cancer patient tissues and normal breast tissues was detected by western blotting analysis and reverse transcription-polymerase chain reaction. SKP2-specific siRNA was used to decrease SKP2 expression in breast cancer cell line MDA-MB-231. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell proliferation. SKP2 expression in breast cancer tissues was significantly higher than in normal breast tissues (P < 0.05). Two pairs of siRNA specific to SKP2 were required to downregulate SKP2 expression in the breast cancer cell line MDA-MB-231. The MTT assay showed that MDA-MB-231 growth significantly slowed after SKP2 interference. Patients with breast cancer have an increased SKP2 level. Interference in SKP2 gene expression can inhibit breast cancer cell growth, suggesting that SKP2 is potentially a new target for breast cancer therapy.

Hafez MM, Alhoshani AR, Al-Hosaini KA, et al.
SKP2/P27Kip1 pathway is associated with Advanced Ovarian Cancer in Saudi Patients.
Asian Pac J Cancer Prev. 2015; 16(14):5807-15 [PubMed] Related Publications
BACKGROUND: Ovarian cancer is the most common gynecological malignancy and constitutes the fifth leading cause of female cancer death. Some biological parameters have prognostic roles in patients with advanced ovarian cancer and their expression may contribute to tumor progression. The aim of this study was to investigate the potential prognostic value of SKP2, genes P27Kip1, K-ras, c-Myc, COX2 and HER2 genes expression in ovarian cancer.
MATERIALS AND METHODS: This study was performed on two hundred formalin fixed paraffin embedded ovarian cancer and normal adjacent tissues (NAT). Gene expression levels were assessed using real time PCR and Western blotting.
RESULTS: Elevated expression levels of SKP2, K-ras, c-Myc, HER2 and COX2 genes were observed in 61.5% (123/200), 92.5% (185/200), 74% (148/200), 96 % (192/200), 90% (180/200) and 78.5% (157/200) of cancer tissues, respectively. High expression of SKP2 and down-regulation of P27 was associated with advanced stages of cancer.
CONCLUSIONS: The association between high expression of c-Myc and SKP2 with low expression of P27 suggested that the Skp2-P27 pathway may play an important role in ovarian carcinogenesis. Reduced expression of P27 is associated with advanced stage of cancer and can be used as a biological marker in clinical routine assessment and management of women with advanced ovarian cancer.

Lin HP, Lin CY, Huo C, et al.
AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2.
Oncotarget. 2015; 6(29):27097-112 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
The qRT-PCR analysis of 139 clinical samples and analysis of 150 on-line database clinical samples indicated that AKT3 mRNA expression level was elevated in primary prostate tumors. Immunohistochemical staining of 65 clinical samples revealed that AKT3 protein expression was higher in prostate tumors of stage I, II, III as compared to nearby normal tissues. Plasmid overexpression of AKT3 promoted cell proliferation of LNCaP, PC-3, DU-145, and CA-HPV-10 human prostate cancer (PCa) cells, while knockdown of AKT3 by siRNA reduced cell proliferation. Overexpression of AKT3 increased the protein expression of total AKT, phospho-AKT S473, phospho-AKT T308, B-Raf, c-Myc, Skp2, cyclin E, GSK3β, phospho-GSK3β S9, phospho-mTOR S2448, and phospho-p70S6K T421/S424, but decreased TSC1 (tuberous sclerosis 1) and TSC2 (tuberous Sclerosis Complex 2) proteins in PC-3 PCa cells. Overexpression of AKT3 also increased protein abundance of phospho-AKT S473, phospho-AKT T308, and B-Raf but decreased expression of TSC1 and TSC2 proteins in LNCaP, DU-145, and CA-HPV-10 PCa cells. Oncomine datasets analysis suggested that AKT3 mRNA level was positively correlated to BRAF. Knockdown of AKT3 in DU-145 cells with siRNA increased the sensitivity of DU-145 cells to B-Raf inhibitor treatment. Knockdown of TSC1 or TSC2 promoted the proliferation of PCa cells. Our observations implied that AKT3 may be a potential therapeutic target for PCa treatment.

Hnit SS, Xie C, Yao M, et al.
p27(Kip1) signaling: Transcriptional and post-translational regulation.
Int J Biochem Cell Biol. 2015; 68:9-14 [PubMed] Related Publications
p27(Kip1) is an inhibitor of a broad spectrum of cyclin-dependent kinases (CDKs), and the loss of a single p27(Kip1) allele is thereby sufficient to increase tumor incidence via CDK-mediated cell cycle entry. As such, down-regulation of p27(Kip1) protein levels, in particular nuclear expressed p27(Kip1), is implicated in both disease progression and poor prognosis in a variety of cancers. p27(Kip1) expression is positively regulated by the transcription factor MENIN, and inhibited by oncogenic transcription factors MYC and PIM. However, regulation of p27(Kip1) protein expression and function is predominantly through post-translational modifications that alter both the cellular localization and the extent of E3 ubiquitin ligase-mediated degradation. Phosphorylation of p27(Kip1) at Thr(187) and Ser(10) is a prerequisite for its degradation via the E3 ubiquitin ligases SKP2 (nuclear) and KPC (cytoplasmic), respectively. Additionally, Ser(10) phosphorylated p27(Kip1) is predominantly localized in the cytoplasm due to the nuclear export protein CRM1. Another E3 ubiquitin ligase, PIRH2, degrades p27(Kip1) in both the cytoplasm and nucleus independent of phosphorylation state. As such, inhibition of cell cycle entry and progression in a variety of cancers may be achieved with therapies designed to correct p27(Kip1) localization and/or block its degradation.

Chiang IT, Wang WS, Liu HC, et al.
Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro.
Oncol Rep. 2015; 34(4):1853-74 [PubMed] Related Publications
Lung cancer is the most common cause of cancer mortality and new cases are on the increase worldwide. However, the treatment of lung cancer remains unsatisfactory. Curcumin has been shown to induce cell death in many human cancer cells, including human lung cancer cells. However, the effects of curcumin on genetic mechanisms associated with these actions remain unclear. Curcumin (2 µM) was added to NCI-H460 human lung cancer cells and the cells were incubated for 24 h. Total RNA was extracted from isolated cells for cDNA synthesis, labeling, microarray hybridization and flour‑labeled cDNA hybridized on chip. Localized concentrations of fluorescent molecules were detected and quantified using Expression Console software (Affymetrix) with default RMA parameters. GeneGo software was used for the key genes involved and their possible interaction pathways. The results showed that ~170 genes were significantly upregulated and 577 genes were significantly downregulated in curcumin‑treated cells. Specifically, the up‑ and downregulated genes included CCNE2, associated with DNA damage; ID3, associated with cell survival and 146 genes with a >2- to 3-fold change including the TP53INP1 gene, associated with DNA damage; CDC6, CDCA5, TAKMIP2, CDK14, CDK5, CDCA76, CDC25A, CDC5L and SKP2, associated with cell cycle; the CARD6, ID1 and ID2 genes, associated with cell survival and the BRMS1L, associated with cell migration and invasion. Additionally, 59 downregulated genes exhibited a >4-fold change, including the DDIT3 gene, associated with DNA damage; while 97 genes had a >3- to 4-fold change including the DDIT4 gene, associated with DNA damage; the CCPG1 gene, associated with cell cycle and 321 genes with a >2- to 3-fold including the GADD45A and CGREF1 genes, associated with DNA damage; the CCPG1 gene, associated with cell cycle, the TNFRSF10B, GAS5, TSSC1 and TNFRSF11B gene, associated with cell survival and the ARHAP29 and CADM2 genes, associated with cell migration and invasion. In conclusion, gene alterations provide information regarding the cytotoxic mechanism of curcumin at the genetic level and provide additional biomarkers or targets for the treatment of human lung cancer.

Li H, An J, Wu M, et al.
LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2.
Oncotarget. 2015; 6(29):27847-64 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Long non-coding RNA HOTAIR predicts negative tumor prognosis and exhibits oncogenic activity. Herein, we demonstrate HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Mechanistically, HOTAIR reduces the recuritment of the CREB, P300, RNA polII onto the SETD2 promoter region that inhibits SETD2 expression and its phosphorylation. Thereby, the SETD2 binding capacity to substrate histone H3 is weakened, triggering a reduction of trimethylation on histone H3 thirty-sixth lysine, and thereby the H3K36me3-hMSH2-hMSH6-SKP2 complex is also decreased. Strikingly, the complex occupancy on chromosome is depressed, preventing from mismatch DNA repair. While reducing the degradation capacity of Skp2 for aging histone H3 bound to damaged DNA, the aging histone repair is impaired. Furthermore, that the damaged DNA escaped to repair can causes microsatellite instability(MSI) and abnormal expression of cell cycle related genes that may trigger the hepatocarcinogenesis. This study provides evidence for HOTAIR to promote tumorigenesis via downregulating SETD2 in liver cancer stem cells.

Xie C, Lu Z, Liu G, et al.
Numb downregulation suppresses cell growth and is associated with a poor prognosis of human hepatocellular carcinoma.
Int J Mol Med. 2015; 36(3):653-60 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Numb, an endocytic adaptor, is a known cell fate determinant that participates in asymmetric cell division. The present study aimed to explore the potential roles of Numb in hepatocarcinogenesis. Numb expression was investigated in hepatocellular carcinomas (HCC) with reverse transcription‑quantitative polymerase chain reaction and immunohistochemical examination; its association with the prognosis of HCC patients was analyzed. In addition, the effects of Numb deletion on proliferation of HCC cells and its relevant molecules were evaluated in Huh7 and HepG2 cells. Numb overexpression was observed in 62% of adjacent non‑tumor tissues and 46% of tumor tissues. Overexpression of Numb in HCC was associated with histological grade, portal vein invasion and the number of tumors (P=0.001, 0.022 and 0.034 respectively). Multivariate analysis revealed that Numb expression was an independent prognostic indicator of HCC patients. Methylation of the Numb promoter contributed to hepatocarcinogenesis. In vitro assays demonstrated that Numb silencing resulted in inhibition of cell proliferation, induction of apoptosis, downregulation of cyclin‑dependent protein kinase 4 (CDK4) and S‑phase kinase‑associated protein 2 (SKP2), and upregulation of Bcl‑2 homologous antagonist/killer (BAK) and cyclin‑dependent kinase inhibitor 1 (p21). The present study suggests that downregulation of Numb inhibits colony formation and cell proliferation, induces apoptosis of HCC cells and independently predicts the poor prognosis of HCC patients. Thus, Numb has a potential role in the development and progression of HCC.

Huang J, Zhou Y, Thomas GS, et al.
NEDD8 Inhibition Overcomes CKS1B-Induced Drug Resistance by Upregulation of p21 in Multiple Myeloma.
Clin Cancer Res. 2015; 21(24):5532-42 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
PURPOSE: CKS1B is significantly upregulated in multiple myeloma and associated with poor prognosis. The identification of novel therapies is essential for effective treatment of patients resistant to chemotherapy. The NEDD8 inhibitor MLN4924 selectively targets SCF(Skp2) activation and offers a more specific approach to protein degradation inhibition than total proteasomal inhibition. The goal of this study was to evaluate whether MLN4924 is effective in high CKS1B conditions and identify mechanisms regulating drug potency.
EXPERIMENTAL DESIGN: Bortezomib and MLN4924 sensitivity was assessed through proliferation, viability, clonogenic potential, and senescence induction in cells overexpressing CKS1B. The mechanism for MLN4924 sensitivity was elucidated by immunoblot analysis of SCF(skp) substrates and confirmed by shRNA knockdown. The clinical relevance of the NEDD8 pathway was examined in gene expression profiles (GEP) derived from healthy people, patients with monoclonal gammopathy of undetermined significance (MGUS), and multiple myeloma.
RESULTS: Cells overexpressing CKS1B were resistant to bortezomib but sensitive to MLN4924. Treatment of CKS1B-overexpressing cells with MLN4924 decreased proliferation, clonogenicity, and induced senescence. MLN4924, but not bortezomib, induced stabilization of p21 and knockdown of p21 resulted in loss of MLN4924 sensitivity. Patients with MGUS and multiple myeloma exhibited increased expression of NEDD8 pathway genes relative to normal plasma cells. Multiple myeloma patients with high NEDD8 expression were linked to bortezomib resistance in clinical trials, and had inferior outcomes.
CONCLUSIONS: Our data demonstrate that cells with elevated CKS1B expression are resistant to bortezomib but sensitive to MLN4924 and offer a mechanism through the stabilization of p21. These findings provide rationale for targeting the NEDD8 pathway in multiple myeloma patients exhibiting elevated expression of CKS1B. Clin Cancer Res; 21(24); 5532-42. ©2015 AACR.

Tebay LE, Robertson H, Durant ST, et al.
Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.
Free Radic Biol Med. 2015; 88(Pt B):108-46 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
UNLABELLED: Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and
NAD(P)H: quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.

Hayes AJ, Skouras C, Haugk B, Charnley RM
Keap1-Nrf2 signalling in pancreatic cancer.
Int J Biochem Cell Biol. 2015; 65:288-99 [PubMed] Related Publications
Transcription factor NF-E2 p45-related factor 2 (Nrf2, also called Nfe2l2), a master regulator of redox homeostasis, and its dominant negative regulator, Kelch-like ECH-associated protein 1 (Keap1), together tightly control the expression of numerous detoxifying and antioxidant genes. Nrf2 and the 'antioxidant response element' (ARE)-driven genes it controls are frequently upregulated in pancreatic cancer and correlate with poor survival. Upregulation of Nrf2 is, at least in part, K-Ras oncogene-driven and contributes to pancreatic cancer proliferation and chemoresistance. In this review, we aim to provide an overview of Keap1-Nrf2 signalling as it relates to pancreatic cancer, discussing the effects of inhibiting Nrf2 or Nrf2/ARE effector proteins to increase chemosensitivity.

Bochis OV, Irimie A, Pichler M, Berindan-Neagoe I
The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer.
J Gastrointestin Liver Dis. 2015; 24(2):225-34 [PubMed] Related Publications
Colorectal cancer is one of the most frequent cancers worldwide, having the fourth mortality rate among cancers in both sexes. Numerous studies are investigating the signalling pathways and different factors involved in the development and progression of colorectal cancer. It has recently been shown that the S-phase kinase-associated protein 2 (Skp2) overexpression plays an important role in the pathogenesis of colorectal cancer. We review the role of Skp2 and its ubiquitin-proteasome pathway in colorectal cancer. The F-box protein Skp2, a component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin-ligase complex, has been shown to regulate cellular proliferation, cancer progression and metastasis by targeting several cell cycle regulators for ubiquitination and subsequent 26S proteasome degradation. The best known protein substrate of the Skp2 is the cyclin-dependent kinase inhibitor 1B (CDKN1B), also known as p27Kip1. Overexpression of Skp2 and loss of CDKN1B (p27) was strongly associated with aggressive tumor behavior and poor clinical outcome in a variety of cancers, including colorectal cancer. An efficient interaction between Skp2 and CDKN1B (p27) requires the presence of an essential activator of the SCF-Skp2 complex, the cyclin-dependent kinase subunit 1 (Cks1) cofactor. Alterations in the Skp2, Cks1 and CDKN1B (p27) expression have major effects on colorectal carcinogenesis and may serve as an important and independent prognostic marker. Furthermore, we highlight that Skp2 may be a promising therapeutic target for colorectal cancer, and development of Skp2 inhibitors would have a great impact on colorectal cancer therapy.

Wang L, Ye X, Cai X, et al.
Curcumin suppresses cell growth and invasion and induces apoptosis by down-regulation of Skp2 pathway in glioma cells.
Oncotarget. 2015; 6(20):18027-37 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Studies have demonstrated that curcumin exerts its tumor suppressor function in a variety of human cancers including glioma. However, the exact underlying molecular mechanisms remain obscure. Emerging evidence has revealed that Skp2 (S-phase kinase associated protein 2) plays an oncogenic role in tumorigenesis. Therefore, we aim to determine whether curcumin suppresses the Skp2 expression, leading to the inhibition of cell growth, invasion, induction of apoptosis, and cell cycle arrest. To this end, we conducted multiple methods such as MTT assay, Flow cytometry, Wound healing assay, invasion assay, RT-PCR, Western blotting, and transfection to explore the functions and molecular insights of curcumin in glioma cells. We found that curcumin significantly inhibited cell growth, suppressed cell migration and invasion, induced apoptosis and cell cycle arrest in glioma cells. Furthermore, we observed that overexpression of Skp2 promoted cell growth, migration, and invasion, whereas depletion of Skp2 suppressed cell growth, migration, and invasion and triggered apoptosis in glioma cells. Mechanistically, we defined that curcumin markedly down-regulated Skp2 expression and subsequently up-regulated p57 expression. Moreover, our results demonstrated that curcumin exerts its antitumor activity through inhibition of Skp2 pathway. Collectively, our findings suggest that targeting Skp2 by curcumin could be a promising therapeutic approach for glioma prevention and therapy.

Jamal A, Swarnalatha M, Sultana S, et al.
The G1 phase E3 ubiquitin ligase TRUSS that gets deregulated in human cancers is a novel substrate of the S-phase E3 ubiquitin ligase Skp2.
Cell Cycle. 2015; 14(16):2688-700 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
E3 ubiquitin ligases have been implicated in the ubiquitination and proteasome-mediated degradation of several key regulators of cell cycle. Owing to their pleotropic behavior, E3 ubiquitin ligases are tightly regulated both at transcriptional and post-translational levels. The E3 ubiquitin ligase TRUSS (tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein) which negatively regulates c-Myc, are found down-regulated in most human cancer cell lines. However, the mechanism of regulation of intracellular levels of TRUSS remains elusive. Here we show that TRUSS is expressed majorly during the G1 phase of cell cycle and its level starts to decline with the expression of S-phase specific E3 ligase Skp2. Enforced expression of Skp2 led to a marked increase in the ubiquitination of TRUSS after its phosphorylation by GSK3β and followed by rapid proteolytic degradation. Our co-immunoprecipitation studies suggested a direct interaction between Skp2 and TRUSS through the LRR motif of Skp2. Interestingly, the human tumor samples that exhibited elevated expression of Skp2, showed relatively poor expression of TRUSS. Further, enforced expression of HBx, the oncoprotein of Hepatitis B virus which is known to stabilize c-Myc and enhance its oncogenic potential, led to the intracellular accumulation of TRUSS as well as c-Myc. Apparently, HBx also interacted with TRUSS which negatively impacted the TRUSS-c-Myc and TRUSS-Skp2 interactions leading to stabilization of TRUSS. Thus, the present study suggests that TRUSS is a novel substrate of E3 ligase Skp2 and that disruption of TRUSS-Skp2 interaction by viral oncoproteins could lead to pathophysiological sequelae.

Huang H, Song Y, Wu Y, et al.
Erbin loss promotes cancer cell proliferation through feedback activation of Akt-Skp2-p27 signaling.
Biochem Biophys Res Commun. 2015; 463(3):370-6 [PubMed] Related Publications
Erbin localizes at the basolateral membrane to regulate cell junctions and polarity in epithelial cells. Dysregulation of Erbin has been implicated in tumorigenesis, and yet it is still unclear if and how disrupted Erbin regulates the biological behavior of cancer cells. We report here that depletion of Erbin leads to cancer cell excessive proliferation in vitro and in vivo. Erbin deficiency accelerates S-phase entry by down-regulating CDK inhibitors p21 and p27 via two independent mechanisms. Mechanistically, Erbin loss promotes p27 degradation by enhancing E3 ligase Skp2 activity though augmenting Akt signaling. Interestingly, we also show that Erbin is an unstable protein when the Akt-Skp2 signaling is aberrantly activated, which can be specifically destructed by SCF-Skp2 ligase. Erbin loss facilitates cell proliferation and migration in Skp2-dependent manner. Thus, our finding illustrates a novel negative feedback loop between Erbin and Akt-Skp2 signaling. It suggests disrupted Erbin links polarity loss, hyperproliferation and tumorigenesis.

Kang G, Yun H, Sun CH, et al.
Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors.
Oncotarget. 2016; 7(6):6538-51 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. We sequenced nine exomes and transcriptomes, and two genomes of GISTs for integrated analyses. We detected 306 somatic variants in nine GISTs and recurrent protein-altering mutations in 29 genes. Transcriptome sequencing revealed 328 gene fusions, and the most frequently involved fusion events were associated with IGF2 fused to several partner genes including CCND1, FUS, and LASP1. We additionally identified three recurrent read-through fusion transcripts: POLA2-CDC42EP2, C8orf42-FBXO25, and STX16-NPEPL1. Notably, we found intragenic deletions in one of three exons of the VHL gene and increased mRNAs of VEGF, PDGF-β, and IGF-1/2 in 56% of GISTs, suggesting a mechanistic link between VHL inactivation and overexpression of hypoxia-inducible factor target genes in the absence of hypoxia. We also identified copy number gain and increased mRNA expression of AMACR, CRIM1, SKP2, and CACNA1E. Mapping of copy number and gene expression results to the KEGG pathways revealed activation of the JAK-STAT pathway in small intestinal GISTs and the MAPK pathway in wild-type GISTs. These observations will allow us to determine the genetic basis of GISTs and will facilitate further investigation to develop new therapeutic options.

Gao JK, Wang LX, Long B, et al.
Arsenic Trioxide Inhibits Cell Growth and Invasion via Down- Regulation of Skp2 in Pancreatic Cancer Cells.
Asian Pac J Cancer Prev. 2015; 16(9):3805-10 [PubMed] Related Publications
Arsenic trioxide (ATO) has been found to exert anti-cancer activity in various human malignancies. However, the molecular mechanisms by which ATO inhibits tumorigenesis are not fully elucidated. In the current study, we explored the molecular basis of ATO-mediated tumor growth inhibition in pancreatic cancer cells. We used multiple approaches such as MTT assay, wound healing assay, Transwell invasion assay, annexin V-FITC, cell cycle analysis, RT-PCR and Western blotting to achieve our goal. We found that ATO treatment effectively caused cell growth inhibition, suppressed clonogenic potential and induced G2-M cell cycle arrest and apoptosis in pancreatic cancer cells. Moreover, we observed a significant down-regulation of Skp2 after treatment with ATO. Furthermore, we revealed that ATO regulated Skp2 downstream genes such as FOXO1 and p53. These findings demonstrate that inhibition of Skp2 could be a novel strategy for the treatment of pancreatic cancer by ATO.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SKP2, Cancer Genetics Web: http://www.cancer-genetics.org/SKP2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999